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Abstract: Real-time monitoring of urban building development provides a basis for urban planning
and management. Remote sensing change detection is a key technology for achieving this goal.
Intelligent change detection based on deep learning of remote sensing images is a current focus
of research. However, most methods only use unimodal remote sensing data and ignore vertical
features, leading to incomplete characterization, poor detection of small targets, and false detections
and omissions. To solve these problems, we propose a multi-path self-attentive hybrid coding
network model (MAHNet) that fuses high-resolution remote sensing images and digital surface
models (DSMs) for 3D change detection of urban buildings. We use stereo images from the Gaofen-7
(GF-7) stereo mapping satellite as the data source. In the encoding stage, we propose a multi-path
hybrid encoder, which is a structure that can efficiently perform multi-dimensional feature mining of
multimodal data. In the deep feature fusion link, a dual self-attentive fusion structure is designed that
can improve the deep feature fusion and characterization of multimodal data. In the decoding stage,
a dense skip-connection decoder is designed that can fuse multi-scale features flexibly and reduce
spatial information losses in small-change regions in the down-sampling process, while enhancing
feature utilization and propagation efficiency. Experimental results show that MAHNet achieves
accurate pixel-level change detection in complex urban scenes with an overall accuracy of 97.44%
and F1-score of 92.59%, thereby outperforming other methods of change detection.

Keywords: multimodal fusion; self-attention; multi-path hybrid coding; dense skip-connection
decoding; 3D change detection; stereo mapping satellite

1. Introduction

Remote sensing change detection is the process of analyzing and determining changes
on the Earth’s surface using multi-temporal remote sensing data [1]. Due to the complexity
of object observation, which is affected by the solar altitude angle, external noise, sensor
noise, different sensor types, and weather conditions, the detection of change based on
multi-temporal remote sensing images is complicated [2]. Buildings are an important part
of cities, and, as China’s infrastructure construction and urbanization continue to accelerate,
the change detection in urban buildings is important for urban land resource management,
urban expansion, and governmental decision-making [3–5].

In recent years, along with the gradual maturity of remote sensing imaging technology,
and data transmission and storage technology, the amount of remote sensing data has
grown explosively. A large number of remote sensing satellites have been launched around
the world, gradually constituting a global-scale earth observation system. This allows large
amounts of high-spatial-, high-spectral-, and high-temporal-resolution remote sensing
data to be applied quickly and conveniently [6]. High-spatial-resolution optical remote
sensing images are popular because they can clearly characterize spatial information and
geometric features. In remote sensing applications, high-resolution remote sensing images
that contain a large amount of detailed information are crucial for remote sensing image
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interpretation. The trade-off between spectral resolution and spatial resolution limits the
performance of modern spectral imagers and the use of compressive sensing (CS) technol-
ogy for super-resolution remote sensing image reconstruction. These compensate for image
undersampling artifacts through derivative compressive sensing and can reduce distortion
and noise in the digital remote sensing image reconstruction process [7,8]. In addition,
CS technology can ensure the output of high-resolution remote sensing images, while
achieving the miniaturization of focal plane linear array sensing of remote sensing imaging
structures, thus greatly reducing the cost of remote sensing scene information acquisition
and reconstruction and providing high-quality data support and a technical guarantee
for the development of high-resolution remote sensing image change detection technol-
ogy [9,10]. However, shadows, spatial heterogeneity, and complex imaging conditions are
common in remote sensing scenes. This can cause problems such as reduced inter-class
separability and high intra-class variability, which greatly affect remote sensing image
analysis and processing [11–13]. Traditional remote sensing image processing methods are
often inadequate for complex, large-scale data processing tasks in this era of remote sensing
big data. Therefore, there is an urgent need for image processing and analysis methods for
remote sensing change detection that can operate efficiently, rapidly, and automatically in
real time [14].

With the rapid development of computer science and artificial intelligence technology,
new intelligent change detection methods have been developed involving deep learning
of remote sensing data [15]. However, these data-driven deep learning change detection
algorithms are mostly focused on the study of 2D unimodal optical remote sensing images.
Although these may contain rich information on ground radiation, they do not reflect
changes in surface coverage comprehensively. Real scene changes occur not only in the
horizontal direction but also in the vertical direction, especially for features such as build-
ings. Using a single observation dimension and insufficient information will usually lead
to incomplete change detection, poor measurement of small targets, and false detections,
which, to a certain extent, limit the application value of remote sensing change detection.
Using 3D remote sensing data can significantly improve the reliability of change detection
because these can provide more refined 3D spatial information on the ground surface.
With the development of 3D remote sensing technology, the threshold of availability of
3D remote sensing data, such as stereo images, point cloud data, and DSMs obtained via
satellite-based, airborne, and close-field photogrammetry techniques, is gradually reduced,
increasing the application potential of 3D intelligent change detection [16]. Therefore, there
is an urgent need to study multimodal deep learning change detection methods that can
fuse 2D and 3D remote sensing data. Fusion of multimodal remote sensing data can pro-
duce richer feature representations for change detection learning tasks, resulting in better
change detection results [17]. Multimodal deep learning enables computers to understand
and process heterogeneous data from multiple sources, and it has been widely used in
natural language processing, speech recognition, image processing, and other fields [18].
Therefore, the field of change detection should be developed to gain the advantages and
full potential of remote sensing big data. There is a need to explore 3D intelligent change de-
tection methods that integrate multimodal remote sensing datasets by using deep learning
algorithms based on data-driven models.

In this paper, we propose a multi-path self-attentive hybrid coding network model
called MAHNet, which fuses high-definition remote sensing images with the DSM. We
conducted experiments on 3D change detection of buildings in urban scenes. The main
advantages of the method are as follows:

• We propose a multi-path hybrid coding network structure. Different types of encoders
are designed for multimodal feature mining tasks to enhance the feature representation
capability of the different representation forms of high-resolution remote sensing
images and the DSM.

• We design a multimodal feature fusion model based on dual self-attention. The model
can adaptively represent the high-level semantic relations of multimodal 3D fusion
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features in both the channel and space dimensions and enhance the fusion effect and
characterization of heterogeneous features.

• We design a dense skip-connection decoding structure. Compared with ordinary
decoders, it is more flexible in conducting multi-scale feature learning with multimodal
heterogeneous data. It can enhance feature utilization and propagation efficiency and
improve small-scale change detection capability.

• Our experimental results on a self-made GF-7 dataset show that MAHNet has superior
change detection performance compared to other comparison methods.

The rest of this paper is organized as follows: Section 2 provides an overview of
change detection methods. Section 3 introduces our proposed methodology. Section 4
presents our change detection experiments using the GF-7 dataset. Section 5 provides a
training process and discusses network inference efficiency. The final section concludes the
paper and makes suggestions for future work.

2. Related Work

Remote sensing change detection has been a challenging focus of research in remote
sensing applications. Currently, there are no universal change detection methods that
can be applied to any scenario. Change detection research has gone through three stages
according to different times, objects, and methods.

2.1. Pixel-Level Change Detection

Traditional change detection methods based on image elements can be classified
into direct comparison methods, image transformation methods, and post-classification
comparison methods. (1) Direct comparison methods perform pixel-by-pixel spectral
change vector difference comparisons based on algebraic operations, such as the image
difference method [19], image regression analysis [20], the image ratio method [21], the
vegetation index difference method [22], and change vector analysis (CVA) [23]. These
methods are relatively simple, straightforward, and easy to implement but generally have
the disadvantages of poor change detection and poor targeting. (2) Image transformation
methods transform an image so that the change information is separated and enhanced,
thus reducing data redundancy. These include principal component analysis (PCA) [24],
multivariate alteration detection (MAD) [25], Kauth–Thomas (KT) transform [26], and
Gramm–Schmidt (GS) transform [27]. (3) Image classification change detection methods
mainly include post-classification comparison methods [28], spectral-temporal hybrid
analysis [29], and expectation-maximization (EM) change detection [30]. In recent years,
Ghaderpour and Vujadinovic [31] have innovatively proposed the Jumps Upon Spectrum
and Trend (JUST) change detection method. JUST can simultaneously search for trends
and statistically significant spectral components of each time series segment in order to
identify the potential jumps. This is done by considering appropriate weights associated
with the time series, thus being able to address the challenges posed by unstable and
uneven sampling intervals of time-series remote sensing data and atmospheric effects
during remote sensing change detection. The main advantage of these methods is that
they can provide detailed categories of change information and reduce the influence of
external factors on multi-temporal remote sensing images. However, their change detection
accuracy is usually limited by the classification accuracy of multi-temporal remote sensing
images. In addition, these traditional change detection methods rely heavily on a priori
knowledge of model parameters and only use the spectral value features of a single pixel
from a multi-temporal remote sensing image as the base analysis unit, while ignoring the
important contextual features of remote sensing images. Hence, they cannot truly reflect
the complete geographic object analysis unit and cannot be applied to all scenarios.

2.2. Machine Learning and Object-Based Change Detection

In the late 20th century, with the continuous progress and development of computer
science and technology, machine-learning-based image classification algorithms have grad-
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ually gained popularity in the field of remote sensing change detection. These include the
support vector machine (SVM) [32], the artificial neural network (ANN) [33], random forest
(RF) [34], and others. Recently, Han et al. [35] applied a modified hierarchical extreme
learning machine (HELM) to SAR images and optical image change detection. The HELM
algorithm can be applied to a wider range of heterogeneous remote sensing data, and the
accuracy and efficiency of the detection results have been significantly improved. These
machine learning methods have, to some extent, overcome the shortcomings of traditional
change detection methods that rely heavily on artificially set prior knowledge and com-
plex statistical models. This enhances the automation of remote sensing change detection.
Since then, object-based image analysis techniques have been gradually applied to change
detection, which take the complete spatial study object as the basic unit of change detec-
tion analysis. Compared to pixel-level change detection methods, object-based methods
can more comprehensively represent the geospatial, spectral, geometric, and background
features of remotely sensed images. This can improve the synergy and integrity of change
features and reduce the dependence on image geographic registration, sensor, and remote
sensing data to a certain extent [36,37]. However, object-based change detection has not
received sufficient attention due to the complexity of the feature and the limitations of
image segmentation methods.

2.3. Deep Learning Change Detection

At the beginning of the 21st century, with the advent of artificial intelligence, remote
sensing image processing methods gradually changed from being model-driven to being
data-driven and from being based on mathematics and statistics to being based on intelli-
gent perception. Nowadays, data-driven deep learning techniques are widely studied and
applied in the field of change detection. Neural network models based on deep learning
can automatically extract abstract spatial features and high-level semantic information
from a large number of complex images without heuristic feature extraction. This brings
new development opportunities and challenges to remote sensing image processing and
deep understanding of remote sensing scenes [38]. In the era of remote sensing big data,
deep learning technology can be used to achieve real-time, rapid, large-scale, and high-
precision processing of remote sensing data to better serve geographic state monitoring.
Currently, many scholars have proposed deep learning change detection algorithms based
on supervised learning, semi-supervised learning, weakly supervised learning, and un-
supervised learning, including convolutional neural networks (CNNs), recurrent neural
networks (RNNs), deep belief networks (DBNs), Auto-Encoders (AEs), restricted Boltz-
mann machines (RBMs), generative adversarial networks (GANs), and other network
structures [39].

Supervised-learning-based CNNs are popular in the field of remote sensing change
detection because of their powerful ability to extract and represent high-level abstract
features. Rodrigo et al. [40] proposed an end-to-end fully convolutional network with
a Siamese structure for remote sensing change detection. It uses a different feature fu-
sion strategy and makes a great improvement in change detection accuracy and speed.
Zheng et al. [41] proposed a cross-layer CNN (CLNet) based on cross-layer modules to
achieve efficient multi-dimensional feature fusion with multi-scale features and contextual
features. Zhang et al. [42] designed a depth-supervised full convolutional Siamese image
fusion network using VGG16 as the feature encoder to extract depth features. These are
input into a depth feature difference recognition network to generate disparity features.
Finally, an attention module is used to fuse multi-scale depth features with multi-scale
disparity features for change detection. Samadi et al. [43] combined morphological indexes
with deep belief networks (DBNs) for SAR change detection. Considering the characteris-
tics of multi-temporal remote sensing change detection, Mou et al. [44] designed a change
detection method based on joint time–space spectral representation learning of an RNN
and CNN. It uses the powerful image analysis capability of a CNN to learn the spatial and
spectral features of multi-temporal remote sensing images. Then, RNN analysis processes
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the temporal correlations between multi-temporal remote sensing data, thus providing
a more comprehensive qualitative analysis of change features. Recently, some scholars
have incorporated attention mechanisms into convolutional neural networks to improve
segmentation, such as ADS-Net [45], MAR-SNet [46], FCCDN [47], and MapsNet [48]. All
these methods constrain and guide the features of the process of remote sensing image
feature extraction and feature fusion in order to improve change detection by highlighting
important change features and suppressing interference from unimportant change features.
These methods have achieved good change detection results in public datasets, such as
WHU and LEVIR-CD.

However, supervised-learning-based change detection algorithms usually require a
large number of manually labeled real-change labels. This is laborious, and the change
detection results are, to a certain extent, limited by errors in visual interpretation, making it
difficult to apply to all remote sensing change scenarios. Based on this, some scholars have
proposed deep learning change detection algorithms based on semi-supervised and weakly
supervised learning. These can reduce the dependence on labeled datasets to a certain
extent and typify the development of remote sensing change detection toward automation
and artificial intelligence. Li et al. [49] proposed a deep, non-smooth, non-negative matrix
decomposition (nsNMF) network based on semi-supervised learning for change detection
in synthetic aperture radar (SAR) images. It uses a small amount of labeled data for SAR
image change detection through an integrated learning approach that combines a nonlinear
deep nsNMF model with an extreme learning machine (ELM) with strong generalization
capability and low computational complexity. Lu et al. [50] proposed a weakly supervised
change detection algorithm for pre-classification by analyzing the feature variability of
edge mapping. It uses the pre-classification result as a label map and then trains the remote
sensing image with added Gaussian noise using the deep-stacked denoising self-encoder
SDAE to make a model with strong denoising and stronger robustness. However, these
data-driven deep learning change detection algorithms are still inherently affected by
the accumulation of errors caused by human intervention during the sample production
process, while unsupervised learning truly achieves end-to-end change detection and, thus,
has more far-reaching research value. Fang et al. [51] proposed an unsupervised change
detection method integrated with multiple methods. First, a set of pseudo change maps
were generated using a pre-trained CNN and CVA, and then, another pseudo change map
was generated using a decision tree and post-classification comparison by fusing the two
pseudo change maps to generate more reliable labeled samples. The samples were then
fed into a lightweight CNN for training, thus achieving unsupervised intelligent change
detection of remote sensing images with superior change detection results. Although these
unsupervised methods of learning change detection are more automated and intelligent,
research on unsupervised remote sensing change detection using deep learning techniques
is still lacking.

With the rapid development of remote sensing big data, the Internet of Things, cloud
computing, and other new technologies, it has become possible to fuse multi-source data
for more accurate data mining. At present, a large amount of remote sensing data can
be conveniently applied to remote sensing change detection tasks, which is conducive to
the realization of periodic, large-scale, multi-scale, high-precision, and intelligent remote
sensing change detection research. Therefore, some scholars have carried out remote sens-
ing change detection research from the perspective of multimodal heterogeneous remote
sensing data fusion. Ma et al. [52] proposed a heterogeneous remote sensing image change
detection method based on image transformation and a deep capsule network structure.
The method maps two heterogeneous remote sensing images in a pixel-level feature space
and compares, classifies, and fuses the mapping results to obtain training labels. The two
images are then fed into a deep capsule network for training, which improves the change
detection effect, while suppressing the effect of noise. The experimental results surpass
those by some current methods. Inspired by the structure of SE-Net [53], Zhang et al. [54]
designed a symmetric structure called W-Net. The two feature-extraction units of this
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network structure can simultaneously input multiple homogeneous or heterogeneous re-
mote sensing data for change detection experiments. Tian et al. [55] extracted areas of
change by combining height change information from DSM data with the Kullback–Leibler
similarity metric from stereo remote sensing imagery. Then, the Dempster–Shafer fusion
algorithm was used to combine these two change metrics to improve the change detection
accuracy. From this, we find that in the era of remote sensing big data, the integration,
fusion, association, cooperative learning, and joint feature representation of different types
of remote sensing data can improve intelligent analysis and integrate remote sensing scene
perception with the technical support of artificial intelligence. This can gradually realize a
remote sensing change detection system based on digital twinning.

3. Methodology

In this section, we introduce the method proposed in this paper in four parts: (1) the
basic network framework, (2) the multi-path hybrid encoder, (3) the dual self-attention
fusion module, and (4) the dense skip-connection decoder.

3.1. Basic Network Structure

MAHNet takes dual-temporal high-resolution remote sensing images and the DSM
as input data. It consists of three main parts: a multi-path hybrid encoder, a dual self-
attentive feature fusion module, and a dense skip-connection decoder. The structure
is shown in Figure 1. The coding structure of MAHNet is that of a multi-path hybrid
encoder composed of a ResNet and an FCNN. ResNet-34 is used as the primary encoder
for high-resolution remote sensing image feature mining tasks, and an FCNN is used as
the secondary encoder for DSM height information extraction. This hybrid coding method
can effectively accomplish the data mining of complex 2D space–spectrum joint features
of high-resolution remote sensing images and simple height features of the DSM. The
primary and secondary encoders can acquire multi-scale features from low-level to high-
level features through continuous feature mining and down-sampling, while the feature
extraction results at both ends are fused and output simultaneously to form multimodal
3D fusion features. In the deep feature fusion stage, deep adaptive weighted fusion
of the change feature vectors is performed by a dual self-attention-based multimodal
feature fusion model to form a stable multimodal change information representation state.
Then, the attention feature maps generated by the two modules are input into a standard
convolutional layer (1024 filters), a ReLU activation function, a BatchNorm layer, and a
Dropout layer, respectively, after summing the mapped outputs to generate the final dual-
channel attention-weighted fusion feature results. Finally, the low-level to high-level 3D
fusion features are fed into the dense skip-connection structure at the corresponding scale,
and the image’s spatial resolution is restored using an up-sampling process. The dense
skip-connection structure can accomplish multi-scale feature fusion of high-level semantic
information and low-level spatial location information to achieve precise localization of
spatial detail information, thus improving change detection in small-change regions and
target edges. Finally, a Softmax layer is used to generate a change probability map.

3.2. Multi-Path Hybrid Encoder (MPHE)

We propose a multi-path hybrid coding structure consisting of two independent
encoders—a primary encoder and a secondary encoder—and an intermediate fusion struc-
ture. Since the high-resolution remote sensing images have multiple bands and record
multiple complex information types, such as geometric structure, texture features, and the
spatial domain distribution of features, the spatial resolution is high and the data structure
is relatively complex. The residual network has a powerful feature mining ability that
can extract complex features for dual-time-phase high-resolution remote sensing images
and effectively alleviate the gradient disappearance problem of complex features in the
propagation process [56]. The DSM records feature height information in the form of a
single waveform, which has a relatively singular data structure and representation form
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and relatively low feature complexity. Therefore, a simple FCNN is used as a sub-encoder
for the simple feature learning task of the DSM to avoid the overfitting problem, while
also saving computational resources and improving learning efficiency [57]. Finally, the
RGB features extracted from the high-resolution remote sensing images and the height
features extracted from the DSM are mapped to the same feature space, from top to bottom,
to achieve cross-modal information fusion processing and constitute the multimodal 3D
fusion feature f 3D. According to Equation (1), we can calculate the feature fusion result for
the remote sensing image and the DSM.

f3D = Imagei,j ⊕ DSMi,j (1)

where ⊕ denotes the feature combination of the high-resolution remote sensing image fea-
ture map and the DSM feature map using the concatenate function to form multimodal 3D
fusion features and i and j denote the length and width of the feature map, respectively. We
design the multi-path hybrid coding structure to meet the multi-level and multi-scale fea-
ture learning requirements of different datasets and, at the same time, input the multimodal
3D fusion features into the same dimensional dense skip-connection decoding structure for
adaptive learning and training to strengthen its expression performance. Then, the feature
extraction results of both paths are continuously down-sampled to achieve the purpose of
feature compression, eliminate redundant information, and reduce computational effort,
while the over-sensitivity of the convolutional layer to location information can be allevi-
ated. After multiple down-sampling, the features will become more and more abstract, the
contained feature information will be more advanced, and the feature expression capability
will be more powerful.
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3.3. Dual Self-Attention Fusion Module (DAFM)

Since the MPHE achieves multimodal feature fusion in a way that connects the feature
matrices of both high-resolution remote sensing images and the DSM, this fusion method
is simple but makes almost no direct connection between the parameters. Although the
later convolutional feature extraction unit can adaptively model the relationship between
the parameters, this undoubtedly enhances the model training difficulty. Therefore, a
dual self-attentive depth feature fusion method based on location attention and channel
attention was designed. By establishing the spatial dependency and the channel correlation
of the multimodal 3D fusion features in the high-resolution remote sensing images and
the DSM, the high-level abstraction fusion and characterization effect is improved and the
ability to discriminate local features in the global context is enhanced. The structure of this
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system is shown in Figure 2, where C, H, and W refer to the number of channels, length,
and width of the feature map, respectively.
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The DAFM can model the semantic relationship between the initial feature fusion
results of the high-resolution remote sensing images and the DSM in two dimensions:
locations and channels. It adaptively combines local features with the global view to
achieve integrated learning of multimodal 3D fused features according to their correlation
in these two dimensions [58]. First, the spatial dependency between any two object locations
in the feature map is established. We emphasize the relevance of local features in the global
view. The features at all locations are aggregated and updated using a location attention
model, for which feature weights are determined according to the similarity of the features
at two corresponding locations. Second, a channel attention module is used to capture the
channel dependencies between any two channels in the feature map. The feature map of
each channel mapping is updated using the weighted sum of all feature channel maps.
Finally, the feature map outputs by these two attention modules are fused.

The high-level semantic information of remote sensing scenes is beneficially closely
related to the extraction of contextual features. The location attention module can precisely
locate the spatial correlation of local features under the global view, which is crucial to
understanding and interpreting remote sensing scenes. Figure 3 represents the position
attention structure. The position self-attention module mainly contains the following three
parts: location weight calculation, location weight update, and remapping of location
weights. Position attention is formulated as follows:

ωj = Aj + α
N

∑
i=1

Di·
exp

(
Bi · Cj

)
N
∑

i=1
exp

(
Bi · Cj

)
 (2)

where i and j denote the row and column numbers, respectively, of the image feature
elements; A denotes the initial feature fusion result obtained after convolution of the high-
resolution remote sensing image and the DSM; B, C, and D are the three feature maps
obtained after convolution; N = H ×W denotes the total number of image elements in a
channel feature map; and α is the position weight coefficient, which has an initial value of
0, which varies with the training process. The B-deformed and transposed feature maps are
matrices multiplied with the C-deformed feature maps to obtain the N × N-dimensional
location attention maps. To reduce the computational difficulty, the weight values of this
location attention map are mapped between (0,1) using the Softmax function to obtain
the normalized location attention map S. The result is multiplied by the deformed weight
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matrix of the feature map D while multiplying by the weight coefficient α for the location
attention weight update task to capture the global contextual features in the feature map D.
Finally, the final location attention feature map ω is obtained by weighted mapping with
the original feature map.
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More feature maps are usually obtained after the convolution operation is applied
to the remote sensing images, each of which represents a specific class of channels. The
magnitude of a value somewhere in the channel represents the response of the strength
of that feature. By explicitly constructing the interdependencies between channels of
multi-source remote sensing data, the responsiveness of different channel features can be
adaptively readjusted to emphasize feature mapping relationships between channels with
high correlations [53]. As shown in Figure 4, the channel self-attention module contains the
following main parts: channel weight calculation, updating, and remapping. The channel
self-attention module can be denoted as follows:

δj = Aj + β
c

∑
i=1

Ai ·
exp

(
Ai · Aj

)
c
∑

i=1
exp

(
Ai · Aj

)
 (3)

where β is the channel weight coefficient, which has an initial value of 0, which changes
with the training process. Firstly, the deformation result of feature fusion map A is matrix-
multiplied with the reshape + transpose result. Then, the C × C-dimensional channel
attention map X is obtained using the Softmax function, which establishes the high-level
semantic relationship between any two channels. Then, we multiply the X and A defor-
mation results with the channel weight coefficient β to obtain the channel attention result
map, which captures the high-level semantic features between different channels. Finally,
the final channel attention feature map δ is obtained by weighted mapping with the initial
feature map A.
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3.4. Dense Skip-Connection Decoder (DSCD)

Since the multi-path hybrid encoder usually loses spatial information in the process of
obtaining high-level semantic information, the final feature map will become considerably
abstract and spatial detail information, such as small-change regions and edges, is easily
lost. This is not conducive to achieving fine-grained remote sensing change detection. The
decoder, however, can effectively restore the spatial domain detail features of the image
through spatial up-sampling, producing a more accurate localization for each pixel. At the
same time, the use of the skip-connection structure achieves multi-scale fusion of high-level
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abstract features and low-level spatial features. However, combining only the feature
maps of the same feature mapping channels of the encoder and decoder with constraints
often does not achieve the desired multiscale fusion effect. Inspired by the structures of
DenseNet [59] and UNet++ [60], the decoding structure was designed as a dense skip-
connection decoding structure. It can achieve the task of multi-scale feature fusion more
flexibly when the semantic information of the encoder feature mapping is closer to that
of the feature mapping in the decoder. This improves the utilization of features, enhances
the efficiency of feature propagation, encourages the reuse of features, and, thus, makes
optimizer optimization easier to implement [61]. The feature mapping output for each
node of the dense connection can be described as:

xi,j =

{
H
(
xi−1,j

)
, j = 0

H
([

[xi,k]
j−1
k=0, U

(
xi+1,j−1

)])
, j > 0

(4)

where i denotes the down-sampling layer, j denotes the convolutional block of the
dense skip-connection decoding layer, H(.) is the convolution operation, U(.) denotes
the up-sampling layer, and [.] represents the concatenation layer. For example,
x1,3 = H

[
Merge1, x1,0, x1,1, x1,2, U

(
x2,2)], that is, the input of each convolutional layer

of the dense skip-connection decoder, is the result of fusing the output from each previous
convolutional layer with the corresponding up-sampled output.

4. Experiments

In this section, we verify the validity and reliability of MAHNet through a series of
experiments. The following sections describe (1) the data sources and study area, (2) the
experimental environment, parameter settings, and loss function selection, (3) details of the
change detection evaluation index, (4) methods used for comparison, and (5) a series of
qualitative and quantitative comparative experiments conducted to verify the validity and
reliability of MAHNet.

4.1. Data Sources and Study Area

The experimental data were obtained from China’s first sub-meter high-resolution
optical stereo mapping satellite, GF-7. It carries two high-resolution optical line array
cameras for continuous observation and acquisition of high-overlap, high-definition optical
stereo images. The dual-line array cameras include forward-looking (+26◦ inclination) and
backward-looking (−5◦ inclination) cameras. The backward-looking camera can acquire
panchromatic (0.65 m spatial resolution) and multispectral (containing near-infrared, red,
green, and blue bands with a 2.6 m spatial resolution) images. We used the Gram–Schmidt
image fusion algorithm to fuse pre-processed 0.65 m hind-view panchromatic images with
2.6 m multispectral images to generate 0.65 m high-resolution images and a high-precision
DSM with a spatial resolution of 1 m. This was carried out by matching the high-overlap
stereo images of the front-view and hind-view cameras based on the RPC model.

The study area was in Jinhua City, Zhejiang Province, China, and had a total area
of 47.76 km2, as shown in Figure 5a. Since the satellite data archive is relatively small at
present, we only obtained single-time phase data of the study area for May 2020. So, this
image was used as the post-temporal phase data source. Based on this, the pre-temporal
phase data were obtained by changing the region simulation. The dual-temporal phase
data are shown in Figure 5b–f.
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4.2. Experimental Parameter Settings

The experimental operating environment was an Intel(R) Xeon(R) E5-2683 CPU with
64 GB of RAM and an NVIDIA GeForce RTX 2080Ti graphics card with 11 GB of video
memory running the Tensorflow deep learning framework. Due to the limitations of
computer memory, we cropped the study area data into small 256× 256-pixel images in the
form of a sliding window. There were 5040 images in the training set and 992 images in the
validation set. Another non-repeating area of about 4 km2 was selected as the test set. In
the training process, we used the learning-rate-adaptive optimization algorithm (Adam) as
the optimizer. The initial learning rate was set to 1 × 10−4. The exponential decay factors
beta1 and beta2 (for the first- and second-order moment estimates, respectively) were set
to the default values of 0.9 and 0.999, respectively. The eps was set to the default value of
1 × 10−7. The number of high-resolution remote sensing images and DSMs in one batch
was 4, and the number of training iterations was set to 50 batches. A cross-entropy loss
function was selected that has the formula shown below.

Loss = − 1
N

N

∑
i=1

[yi · log(p(yi)) + (1− yi) · log(1− p(yi))] (5)

where N represents the total number of pixels, i is the ith pixel, p(yi) is the true change
label, yi=1 is the predicted change pixel (indicating change), and yi=0 indicates no change.

4.3. Evaluation Metrics

Five evaluation metrics are used to evaluate the effect of change detection: precision,
overall accuracy (OA), recall, F1-score, and kappa coefficient. Precision indicates the ratio
of the number of correctly predicted change pixels to the total number of predicted change
pixels. OA indicates the ratio of the number of correctly predicted pixels to the total number
of pixels. Recall indicates the ratio of the number of correctly predicted change pixels to
the total number of actual change pixels. F1-score is the summed average of precision and
recall. The kappa coefficient is used to check whether the predicted and actual results of
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the change detection model are consistent. The calculation formulas of the five metrics are
as follows:

Precision =
TP

TP + FP
(6)

OA =
TP + TN

TP + FP + TN + FN
(7)

Recall =
TP

TP + FN
(8)

F1 =
2 · Precision · Recall
Precision + Recall

(9)

Kappa =
po − pe

1− pe
(10)

where TP indicates true positives (number of images predicted to have changed that
actually changed), FP denotes false positives (number of images predicted to have changed
that were actually unchanged), FN denotes false negatives (number of images predicted to
be unchanged that actually changed), and TN denotes true negatives (number of images
predicted to be unchanged that were actually unchanged). Po denotes the prediction
accuracy, and Pe denotes the chance consistency. In addition, due to the randomness in the
process of model training and fitting, the inference results still have small deviations, even
when the models are trained under the same learning strategy. To ensure the reliability of
the experimental results, we trained each method five times and calculated the mean and
variance of the composite evaluation index F1-score to reduce the effect of random errors.

4.4. Comparison of Experimental Results

We conducted a cross-sectional comparison experiment between the proposed MAH-
Net change detection algorithm and some traditional change detection methods, deep
learning change detection algorithms, and popular semantic segmentation algorithms that
only use high-resolution remote sensing images as input data for 2D change detection.

(1) Traditional change detection methods: These included change vector analysis (CVA) [23]
and iterative weighted multivariate change detection (IRMAD) [62]. CVA determines
the area of change by analyzing the change vector of dual-time-phase remote sensing
images. The magnitude of the change vector can determine the degree of change,
and its direction can discriminate the type of feature change. IRMAD is a typical
correlation analysis (MAD) extension of the change detection algorithm.

(2) Deep learning change detection algorithms: These were the fully convolutional early
fusion network (FC-EF) [40], the fully convolutional Siamese network (FC-Siam-
Conv) [40], and the fully convolutional Siamese difference network (FC-Siam-Diff) [40].
These are FCNN change detection algorithms that use different fusion strategies.

(3) Semantic segmentation algorithms: We used the following coding- and decoding-
structure-based classical image segmentation algorithms: the fully convolutional
network (FCN) [63], the semantic segmentation network (SegNet) [64], the U-shaped
neural network (UNet) [65], and a nested U-Net architecture (Unet++), as well as the
high-resolution network (HRNet) [66], which is an advanced algorithm for human
pose estimation. Unlike most image segmentation algorithms that serially connect
convolutional layers and finally recover the image spatial resolution by up-sampling,
this network connects convolutional layers in parallel to form a multiple sub-network
from high to low resolution and iteratively fuses the high-resolution features generated
from the high to low sub-networks. This ensures that the features have high-spatial-
resolution details and a guaranteed expression effect.

4.5. Comparison of Experimental Results

As shown in Table 1, the results of the quantitative experiments in the GF-7 dataset
show that MAHNet provides the best change detection. The five evaluation indexes for
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MAHNet were OA = 97.44% (mean = 97.41%; var = 0.08%), precision = 92.71%, recall = 92.47%,
F1-score = 92.59% (mean = 92.47%; var = 0.12%), and kappa coefficient = 91.01%, which
were the highest of all methods and indicate more balanced performance. This fully
indicates that the fusion of high-resolution remote sensing images and the DSM enriches
the expression of change features. It achieves multi-dimensional feature mining of the
RGB features of high-resolution remote sensing images and the height features of DSMs to
form complementary information that achieves mutual supplementation between different
modal features, thus making the model more robust and noise resistant.

Table 1. Quantitative evaluation results of different methods on the GF-7 dataset.

Classes Method OA Precision Recall F1-score Kappa
OA F1

Mean Var Mean Var

CVA 85.38 49.10 42.99 44.35 36.44 - - - -
IRMAD 85.79 52.85 67.16 57.87 49.81 - - - -
FC-EF 92.95 84.10 73.22 78.28 74.10 92.92 0.09 78.18 0.12

FC-Siam-Conv 92.44 86.54 66.89 75.44 71.07 92.38 0.15 75.54 0.11
FC-Siam-Diff 92.75 88.47 66.96 76.23 72.05 92.88 0.22 76.26 0.23

Image FCN 91.93 80.87 70.08 75.09 70.30 91.77 0.07 75.12 0.08
SegNet 93.27 86.47 72.56 78.91 74.94 93.21 0.14 78.93 0.25
UNet 93.63 87.91 73.36 79.98 76.23 93.56 0.15 79.99 0.28

UNet++ 93.97 88.08 75.48 81.29 77.72 93.87 0.29 81.41 0.26
HRNet 94.76 84.30 85.78 85.03 81.85 94.62 0.10 85.28 0.25

Image + DSM MAHNet 97.44 92.71 92.47 92.59 91.01 97.41 0.08 92.47 0.12

As shown in Figure 6, the traditional change detection methods CVA and IRMAD,
which are based on statistical models, are significantly less adaptable and have a more
general change detection effect in monitoring objects such as urban buildings. Compared
with these, the change detection accuracy rates of the classical semantic segmentation
algorithms FCN, UNet, SegNet, and UNet++ were significantly better. Among them, the
depth-supervised semantic segmentation algorithm based on UNet++ performed the best,
with an accuracy rate of 88.08%. This largely stems from its dense skip-connection structure,
which improves its multi-level and multi-scale feature extraction capability. However, these
methods are generally characterized by low recall values and incomplete change detection
polygons. In addition, change detection algorithms such as FC-EF, FC-Siam-Conv, and
FC-Siam-Diff have the problem of high misdetection rates and a poor balance between
recall and precision. The HRNet algorithm shows good performance in 2D change detection
from remote sensing images with high spatial resolution, and the results of each evaluation
index are more balanced. Among them, the comprehensive evaluation index, F1-score,
reached 85.03% and the recall was significantly improved. Hence, it is the segmentation
method with the best comprehensive effect among all the 2D change detection methods
and showed strong adaptability to the GF-7 dataset.

4.6. Multi-Path Hybrid Coding Comparison Experiment

We propose a multi-path hybrid coding network structure that integrates primary
and secondary encoders and an intermediate fusion layer for two different modalities of
GF-7 optical images and DSM data. Designing targeted independent encoders according
to different data properties and modes can complete the complex feature learning of
multimodal data more efficiently than Siamese neural networks, which share a single
model. To find the best encoders for different data, a neural network model is designed to
learn the complex features of multimodal data. To find the best feature extraction unit for
different data, we combine different feature extraction methods and analyze the hybrid
encoder combination that is most suitable for GF-7 and DSM feature extraction through
comparative experiments.
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• Deep Siamese convolutional neural network (DSCN): This network has two identical
encoders. Dual-temporal high-resolution remote sensing images and dual-temporal
DSM data are fed into these two identical encoding structures for feature learning and
extraction tasks, respectively.

• Multi-path hybrid coding network (MPHE-18/34): This network consists of two
different coding structures: (1) a main encoder consisting of a ResNet and (2) a
sub-encoder consisting of a set of simple FCNNs. To verify the effect of combining
different residual networks with FCNNs, comparative experiments were conducted
using two lightly quantized residual networks, ResNet-18 and ResNet-34, paired with
FCNNs (Table 2).

Table 2. Multi-path hybrid coding comparative experiment results.

Encoder Method OA Precision Recall F1-Score Kappa
OA F1-Score

Mean Var Mean Var

DSCN 96.60 91.28 88.90 90.07 88.02 96.52 0.05 90.15 0.09
MPHE-18 96.64 88.42 92.83 90.57 88.53 96.61 0.07 90.63 0.12
MPHE-34 94.91 88.69 94.23 91.37 89.50 96.87 0.08 91.31 0.11

The precision value of DSCN change detection is the highest among the three methods,
at about 91.28%. However, all other evaluation metrics of this model are poor. The MPHE-
34 experiment performed the best, which used ResNet-34 as the primary encoder for
image feature extraction and a simple FCNN as the secondary encoder for DSM feature
extraction. As shown in Figure 7, the boundary of the changed area detected by MPHE-34
is clearer, flatter, and finer, and there is less over-segmentation of neighboring buildings
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with overlapping boundaries. The comprehensive change detection performance is the
strongest, with the recall accuracy evaluation index of the MPHE-34 hybrid coding structure
being 94.23%, which is 1.4% higher than that of MPHE-18 and 5.33% higher than that of
DSCN. The leakage detection phenomenon is also improved compared with the first two
methods; however, we also find that precision decreases to a certain extent, although its
comprehensive evaluation index (F1-score) is 91.37%, which is 0.8% higher than that of
MPHE-18, and the variance is controlled at about 0.11%. Meanwhile, the OA and kappa
evaluation indexes are significantly higher than those of other methods. The multi-path
hybrid coding network uses a set of simple FCNNs for the DSM highly variable information
shallow learning task. This can reduce the complexity of the model and improve the
learning efficiency relative to that using deep neural networks that are unaffected by
complex redundant information. For high-resolution images with high feature complexity,
ResNet-34 used as the main encoder can capture more global contextual information,
greatly improve the problem of inefficient information transfer and information loss in
deep neural networks, alleviate the gradient disappearance problem, ensure the integrity
and reliability of most of the change information propagation, and, therefore, detect more
comprehensive change information.
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4.7. Ablation Experiment

To verify the effectiveness of the different modules of MAHNet, we qualitatively
analyzed the MPHE, the DSCD, and the DAFM by ablation experiments (Table 3).

Table 3. Comparison of results of ablation experiments.

MPHE DAFM DSCD OA Precision Recall F1-Score Kappa
√

96.91 88.69 94.23 91.37 89.49√ √
97.07 89.84 93.70 91.73 89.95√ √
97.01 90.38 92.64 91.50 89.68√ √ √
97.44 92.71 92.47 92.59 91.04
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4.7.1. Effectiveness of the DAFM

The qualitative comparative experiments that introduced the DAFM into the backbone
network MPHE (Table 3) found that the precision and kappa values of change detection
were improved by about 1.15% and 0.46%, respectively, with a small loss in recall. This
indicates that the predicted results are more consistent with the real change detection
results. This is attributed to the fact that the dual self-attentive fusion module can improve
the fusion of high- and low-level spatial features, enhance the discriminative ability of local
change information in the global view, and, thus, achieve more accurate classification of
the possible change elements in the image.

4.7.2. Effectiveness of the DSCD

Adding the DSCD module to the MPHE backbone network increased the values of the
OA, precision, F1-score, and kappa coefficient evaluation indexes, among which precision
was improved, most obviously, by about 1.69%. This proves that stimulating feature reuse
via the DSCD module allows the change features to be propagated and used efficiently,
thus improving detection. However, this comes at the cost of losing a certain rate of full
detection, although the F1-score overall evaluation index still has a slight improvement
compared with that of MPHE.

4.7.3. Effectiveness of the DSCD + the DAFM

Finally, the DSCD module and the DAFM were added to the MPHE backbone network
at the same time, and from a quantitative perspective, the experimental results showed a
significant improvement in all assessment metrics except for a decrease in the check-all
rate. Among them, the change detection accuracy shows a more noticeable improvement.
In addition, the increments in OA, precision, F1-score, and kappa are 0.53%, 4.02%, 1.22%,
and 1.55%, respectively, and the performance of precision and recall is more balanced. As
shown in Figure 8, the proposed MAHNet detects the change region more accurately and
flatly. The false detection rate and the hole phenomenon are significantly improved, and the
boundary localization is more accurate. This is since the combined model of the DSCD and
the DAFM can efficiently propagate and use the high-level semantic features and detailed
change information captured from the complex 3D feature combinations of multimodal
data. Precision and recall are well balanced, which makes the model more robust and thus
effectively improves the final change detection effect.
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5. Discussion

We discuss some of the training details of the change detection experiments in terms
of the inference efficiency of the model. The changes in evaluation metrics, such as accuracy
and loss during training, are compared between MAHNet and the partial comparison
methods via modular ablation experiments under a fixed learning strategy. The evaluation
index changes of MAHNet and some comparison methods during the training process
are shown in Figure 9. Compared with the 2D change detection learning task carried
out by popular semantic segmentation algorithms such as FCN, UNet, SegNet, UNet++,
and HRNet for high-resolution remote sensing images, the 3D change detection method
integrating high-resolution remote sensing images and the DSM is more robust in both
the training and validation sets. The accuracy and loss curves converge significantly faster
and are more stable throughout the training process, and the combined performance in
accuracy and loss is better than that of other comparative methods and is more robust.

Figure 10 shows the curves of change in each assessment index during the training
process for the MPHE comparison experiment and the three-module ablation experiment.
MAHNet initially converges faster and tends to converge at about the 30th epoch. The loss
value in the validation set reaches 0.04099, which is the best convergence effect. Although
the other networks perform more smoothly in the training set, they all converge slightly
worse than MAHNet in the validation set, with the MPHE-34 and MPHE + DAFM fused
network models showing larger fluctuations in the validation process and poorer perfor-
mance in the validation set. This shows that MAHNet has strong noise immunity in the
training process.
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In order to visualize the change detection performance of different algorithms, we
have also introduced receiver operating characteristic (ROC) curves to evaluate the change
detection effect. Each point on the ROC reflects the perceptibility to the same signal
stimulus. A ROC curve is drawn by calculating the detection rate (TPR) and the false
detection rate (FPR), where the closer the line is to the upper left, the higher is the detection
rate and the better is the detection performance of the model change. The area under the
ROC curve is called the area under curve (AUC) and the closer the area is to 1, the better is
the detection. The ROC curves of different models are shown in Figure 11. Compared to the
comparative algorithms FC-EF, FC-Siam-Covn, FC-Siam-Diff, FCN, SegNet, UNet, UNet++,
and HRNet, MAHNet has the highest TPR, better sensitivity, and better check-all effect. In
contrast, FPR performed the lowest, indicating that MAHNet had a lower probability of
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error; its AUC = 0.9547, which is higher than HRNet’s AUC = 0.9121 by 0.0426, making it
the best performing of the comparison methods.
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Finally, we compared the inference efficiency of MAHNet using the test set. Although
our method achieves good change detection performance, it contains a large number of
model parameters and has a long inference time, as shown in Figure 12. MAHNet has the
best F1-score among all methods; however, it is less efficient in reasoning in the test set.
The DAFM significantly improves the change detection performance, while only adding
a small number of parameters, while the DSCD module improves the propagation and
utilization of features and improves change detection to a certain extent but takes longer
to infer due to the addition of more parameters and the more complex spatial structure
used in the up-sampling process. MAHNet has the best integrated change detection but,
with increases in the number of model parameters, the GPU’s computational cost increases.
The inference time of MAHNet increases by 246 s compared with that of the base network
MPHE, so the inference efficiency is poor.
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6. Conclusions

This paper proposes a 3D change detection method called MAHNet, which fuses
high-resolution remote sensing imagery with a DSM for multi-path self-attentive hybrid
coding in three parts: a multi-path hybrid encoder, a dual self-attentive fusion module,
and a dense skip-connection decoder. Targeted feature extraction methods are designed
for remote sensing data with two different modalities, namely, high-spatial-resolution
remote sensing images and DSMs. This enables feature mining and learning tasks with
different types of modal data and improves the efficiency of multi-level and multi-scale
feature learning between different types of data. In addition, to enhance the multimodal
depth feature fusion and expression effect, we designed a dual self-weighted attention
multimodal depth feature fusion structure based on channel attention and spatial attention
guidance. This improves the fusion and expression of the high-level abstract features
and low-level spatial features in multimodal data by establishing dual-channel feature
attention and interdependence of 3D change information. Finally, a dense skip-connection
decoder is designed to realize the flexible use of features and improve their utilization and
propagation efficiency.

Since there is no applicable public dataset, we conducted qualitative and quantitative
experiments and evaluations using the GF-7 dataset, which we produced ourselves. The
experimental results show that in complex urban remote sensing scenes, MAHNet provides
balanced and excellent performance in terms of all evaluation indexes when applied to the
test set. The network has strong robustness and noise immunity, a high comprehensive
evaluation index (F1-score = 92.59%), significantly reduced leakage detection and false
detection rates, more accurate boundary positioning of areas of change, significantly im-
proved void and boundary errors in the detected change area, and a more complete change
polygon, which proves the feasibility of the proposed method. In future work, we will
quantitatively validate the method on more datasets and, at the same time, focus on making
the network model and change detection scheme more lightweight with small samples and
weak supervision. This will help to realize rapid and accurate extraction of surface change
information and reduce the over-dependence on change samples so that the method can be
better applied to geographic condition monitoring.
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