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Abstract: As clean, renewable energy, photovoltaic (PV) energy can reduce the ozone-layer loss
and climate deterioration caused by the use of traditional types of energy to generate electricity. At
present, most PV energy products involve the influence of cloud cover on solar radiation. However,
the resolution and precision of most cloud cover data are not fine enough to reflect the actual cloud
distribution in local areas. This leads to incorrect distribution results of PV energy in areas with
high-spatial-variability clouds. Using high-resolution and high-precision cloud cover data obtained
by satellite remote sensing to estimate the distribution of PV energy can solve this problem. In this
study, the Global Land High-Resolution Cloud Climatology (GLHCC), a 10-day cloud frequency
product with a resolution of 1 km and located in China, was used to construct a cloud-based solar
radiation estimation model. Using the inverse relationship between cloud cover and solar radiation,
the GLHCC was converted into sunshine percentage data. Using meteorological station data in China,
a Least Squares Fit (LSF) and error check were carried out on the A-P, Lqbal, Bahel and Sen Models
to determine the optimal solar radiation estimation model (Sen Model). Based on the sunshine
percentage data, the Sen Model and terrain shielding factors, the distribution of PV energy in China
was estimated. Finally, comparing to the Global Horizontal Irradiance (GHI) of the World Bank and
the yearly average global irradiance of the Photovoltaic Geographic Information System (PVGIS), PV
energy data in this paper more accurately reflected the distribution of PV energy in China, especially
in areas with high-spatial-variability clouds.

Keywords: photovoltaic energy; GLHCC cloud products; sunshine percentage; Sen Model

1. Introduction

With the development of new energy (clean, renewable energy), the PV power genera-
tion output as a proportion of the total energy output has increased steadily [1,2]. After
China proposed the concepts of “carbon neutral” and “peak carbon dioxide emissions” at
the 75th Session of the United Nations General Assembly in 2020, the use of PV energy and
other new energy has received increased attention [3]. As a renewable, clean energy, PV en-
ergy, through its use, can reduce the ozone-layer depletion and climate degradation caused
by traditional energy use in electricity generation [4–7]. Therefore, PV power generation
plays an important role in a country’s energy strategy. In the implementation of specific PV
power generation strategies, without considering the influence of PV facilities, the choice
of the PV power station location has a direct impact on the cost of power generation and
determines the power output of PV energy.
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The location of PV power stations is affected by many factors, including PV energy,
terrain, traffic conditions and ground attachments [8,9]. The availability of PV energy
is a prerequisite for the development value of a site. Due to the high cost of radiation
measurement equipment, complex measurement technology and other factors, most mete-
orological stations lack radiation measurement conditions, and only the sunshine duration
and other meteorological parameters are observed [10,11]. For example, China currently
has 756 ground meteorological data observation stations open to the public, of which only
100 stations can observe solar radiation [12]. Compared with general meteorological data,
such as temperature, cloud cover and sunshine duration, the distribution of meteorolog-
ical stations used to observe solar radiation is generally sparse. This results in a lack of
solar radiation data in most areas, which is difficult to meet the requirements of solar
energy utilization and other applications. Therefore, it is a common choice of many solar
radiation estimation models to estimate the distribution of PV energy using conventional
meteorological data (temperature, cloud cover and sunshine duration).

Since Kimball [13] put forward the idea that there might be a strong correlation be-
tween sunshine percentage and total radiation in 1919, and Angstrom [14] devised the
formula for total radiation in 1924, a large number of models for calculating total solar radi-
ation have been established. These radiation models can be placed in three categories [15]:
theoretical models [16], empirical models [17] and machine learning models [18]. The
most commonly used theoretical models include the Hottel Model [19,20], Threlkeld and
Jordan Model [19,21] and the ASHRAE Model [22,23]. Most theoretical models consider
the influence of the main components of the atmosphere on the solar shortwave radiation
in detail. The theoretical models have solid physical foundations, but their structures are
extremely complex. The input parameters of the theoretical models include variables such
as ozone-layer thickness, aerosol content and atmospheric precipitable water. These vari-
ables are difficult to obtain, which limits the popularization and application of theoretical
models. A theoretical model is mainly used to calculate the solar radiation on sunny days
and to represent the amount of solar radiation in the atmosphere under ideal conditions.
However, due to the influence of the atmosphere, humidity, water vapor pressure and other
factors, there are only a few days in a year when the amount of radiation is close to the
solar radiation of a clear day. With the development of computer technology, in order to
better deal with complex nonlinear problems, researchers have proposed many methods to
estimate the radiation amount using machine learning models. These methods include the
Artificial Neural Network (ANN) [24,25], Support Vector Machine (SVM) [26,27], Markov
Model (MM) [28,29], Extreme Learning Machine (ELM) [30,31], Random Forest (RF) [32,33]
and Gaussian Process Regression (GPR) models [34,35]. However, machine learning models
are often characterized by high model complexity and long training times and are, there-
fore, not suitable for large-scale solar radiation estimation at the present stage. Empirical
models use the correlation between solar radiation and other conventional meteorological
parameters to construct a regression model to predict solar radiation. According to the
meteorological factors that they use, the models are divided into sunshine percentage
model [14,36–40], temperature model [41,42], cloud cover model [43,44] and component-
decomposition model [45–47]. The high precision and simple form of an empirical model
based on sunshine percentage mean that it is widely used [48–51].

Sunshine percentage is an important parameter for calculating the amount of solar
radiation [36]. Usually, when simulating solar radiation, the observation data of sunshine
duration at conventional meteorological stations are used. Such data have high reliability.
However, the spatial continuity of meteorological stations is poor, and the distribution
is irregular. In the past, the inverse distance weighting (IDW), Kriging, Spline Function
and other interpolation methods were used to calculate the distribution of 1-D points on
a 2-D plane. However, these methods do not consider the distribution characteristics of
meteorological elements themselves, resulting in a large error in the estimation results.
With the development of space technology in recent years, the data provided by satellites
have high resolution in space and time, which makes up for the spatio-temporal dispersion
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of station data. It is of great significance to introduce the sunshine percentage generated
using remote sensing data into the estimation of radiation.

The sunshine duration is usually determined by the amount of time the sun is obscured
by sufficiently opaque clouds [52]. There is a marked inverse relationship between the
sunshine duration and cloud cover, and according to Rangarajan [52], there is a linear
relationship between total cloud cover and the sunshine percentage under ideal conditions.
However, in practice, the estimation of cloud cover in a short time is not completely
error-free and is affected by the observation angle and cloud movement. Although the
relationship between the amount of cloud and sunshine percentage is not completely
linear [53], the error is much reduced when using cloud cover data over a long enough
period of time to estimate sunshine percentage. Therefore, based on the correlation between
cloud cover and sunshine percentage, a cloud-based solar radiation estimation model can
be established using cloud cover to produce continuous sunshine percentage data. At
present, most PV energy products consider the influence of cloud cover on solar radiation,
and some studies have tried to convert the amount of cloud into sunshine percentage [54–56].
However, the resolution of most cloud products is not fine enough to reflect the cloud
distribution in local areas. The main satellite remote sensing cloud data include the National
Oceanic and Atmospheric Administration (NOAA) series satellite cloud products [57,58],
the International Satellite Cloud Climatology Project (ISCCP) products [59,60], the Earth
Observing System (EOS) series satellite cloud products [61] and the Cloud Detecting
Satellite (CloudSat) cloud products [62]. The spatial resolution of these products is greater
than 3 km, which does not meet the research requirements of areas with high-spatial-
variability clouds. Therefore, it is necessary to use a cloud product with high resolution
and precision for generating sunshine percentage. Zhang et al. [63] produced the global
land cloud coverage product GLHCC based on the 1 km MOD09 cloud mask from 2001
to 2016. The product has made two improvements to the MOD09 cloud mask, reducing
the confusion between ice, snow, bright areas and clouds. GLHCC more accurately reflects
global cloud distribution than PATMOS-X (Pathfinder Atmospheres—Extended) cloud
products and long-term cloud frequency based on the MOD35 cloud mask. Therefore,
GLHCC is a good choice for establishing a cloud-based solar radiation estimation model.

Therefore, this paper uses the 10-day cloud frequency product GLHCC in China with
a resolution of 1 km to generate the sunshine percentage according to a linear model. The
sunshine duration data and solar radiation data of 72 meteorological stations are used for
the quarterly Least Squares Fit (LSF) to solve the best fitting coefficients of four models
(A-P, Lqbal, Bahel and Sen Models). An error check is conducted on the fitting results of
each model to select the most suitable PV energy estimation model for China. The quarterly
coefficients and 10-day sunshine percentage generated by cloud cover are substituted
into the optimal model to complete the preliminary prediction of the distribution of PV
energy. The terrain shielding factor is calculated based on the principle of hillshade by
using the real solar altitude angle and azimuth angle; the final PV energy distribution data
are then obtained. The products in this study are produced in 10-day, monthly, quarterly
and annual products for different applications. The annual distribution of PV energy in
China provides an important reference for the location of PV power stations. The 10-day,
monthly and quarterly products provide a reference for existing power stations to carry
out peak regulation and energy storage and to supplement wind power generation or
hydroelectric power generation at appropriate times. Finally, in order to prove that the
GLHCC cloud product produces a more accurate result for the estimation of PV energy, we
compare the PV product in this study with the Global Horizontal Irradiance (GHI) data
and the irradiance data from the Photovoltaic Geographic Information System (PVGIS).

2. Study Area and Data

Since 2009, China has been vigorously developing the PV industry and implementing
new energy strategies. Therefore, China is selected as the study area to study solar radiation
estimation based on cloud cover. GLHCC cloud data, meteorological station data, Digital
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Terrain Elevation Model (DEM) data and related data for consistency checking are used in
the specific experiment. The study area and the data used are described below.

2.1. Overview of the Study Area

China is located in the eastern part of Eurasia and the west coast of the Pacific Ocean,
between 73◦33′E–135◦05′E and 3◦51′N–53◦33′N. China has various climate types, including
a monsoon climate, a continental climate and a mountain climate. From the southeast coast
to the northwest inland, the spatial distribution of annual precipitation shows a decreasing
trend. In winter, due to the great distance between the north and south of China and the
influence of the Siberian cold current, the north is very cold, while the south is not. In
summer, high temperatures are widespread across the country due to the higher latitudes
and longer days in the north, while the south is directly exposed to the sun. The terrain of
China is high in the west and low in the east, with a ladder-like distribution. The mountains
and plateaus cover a vast area, and the distance between east and west is about 5000 km,
while the continental coastline is more than 18,000 km long.

China is a country with abundant solar energy resources, with more than two-thirds
of its area having annual sunshine hours of more than 2000 h and annual radiation of
more than 5000 MJ/m2. However, due to the differences in climate and terrain, the spatial
heterogeneity of geographical factors is large. Therefore, solar energy resources are seriously
unevenly distributed and have obvious spatial variation.

2.2. Data
2.2.1. GLHCC Global Land Cloud Coverage Products

The GLHCC is a high-resolution (1 km) and high-precision global land 10-day cloud
frequency dataset [57]. GLHCC was derived from the MOD09 cloud mask from 1 January
2001 to 31 December 2016 and is provided as cloud mask flags in the MOD/MYD09GA
daily surface reflectance product. This product uses a short wave, infrared threshold
method and the B2/6 threshold method to improve and enhance the original MODIS
(Moderate-resolution Imaging Spectroradiometer) cloud mask so as to reduce the confusion
between ice and snow, bright areas and clouds. GLHCC cloud products are stored in
a GeoTIFF format. The high resolution and high precision of the product readily meet
the needs of a fine-grained model and the resolution requirements of PV power station
locations in this study.

2.2.2. Meteorological Station Data

In this study, 100 stations providing sunshine duration and solar radiation data from
the China Meteorological Administration (http://data.cma.cn (accessed on 8 September
2020)) were used, and the data from 72 high-quality stations were used as the standard
data for the LSF for the solar radiation estimation models. The meteorological data of these
stations is stored in a CSV format, and the stations are densely distributed in eastern China
and sparsely distributed in western China, as shown in Figure 1.

2.2.3. SRTM DEM Data

Shuttle Radar Topography Mission (SRTM) data were produced by the National
Aeronautics and Space Administration (NASA), the National Image and Mapping Agency
(NIMA) and the German and Italian space agencies. The interferometric imaging radar
mounted on the US space shuttle “Endeavour” was used to obtain the radar data after
11 days of near-global operation. The dataset covers more than 80% of the global land
surface with a uniform resolution and accuracy. The amount of radar image data obtained
by the SRTM system is about 9.8 trillion bytes. After more than two years of data processing,
a DEM is made; that is, the current SRTM terrain product data. The SRTM DEM has been
used in various research fields to obtain many important scientific results. The SRTM
products include grid data with spatial resolutions of 30 and 90 m, which are called
“SRTM1” and “SRTM3”, respectively. The SRTM data used in this study are SRTM3.

http://data.cma.cn
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2.2.4. Data for Consistency Checking

The data used for consistency checking in this study are the GHI data of the World
Bank with a resolution of 250 m and the irradiance data from PVGIS with a resolution of
5 km.
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Figure 1. Distribution of solar radiation stations in China.

Published studies by the World Bank provide the aggregated and unified views of
solar energy resources, including PVOUT (Photovoltaic Power Potential), GHI (Global
Horizontal Radiation), DIF (Diffuse Horizontal Radiation), GTI (Global Radiation for
Optimal tilted Surfaces), OPTA (Optimal Tilt of Photovoltaic Modules), DNI (Direct Normal
Exposure) and TEMP (Air Temperature, measured in ◦C). Solar energy, PV potential and
other parameters are provided in the form of grid data in two formats: GeoTIFF and
AAIGRID (ESRI ASCII grid). The GHI data used in this study are yearly average daily total
solar radiation.

The irradiance data of PVGIS are calculated using the National Solar Radiation
Database (NSRDB) [64], developed by the National Renewable Energy Laboratory (NREL).
The NSRDB is a serially complete collection of hourly and half-hourly values of the three
most common measurements of solar radiation—global horizontal, direct normal and
diffuse horizontal irradiance—and meteorological data. The data available here are only
long-term averages, calculated from hourly global and diffuse irradiance values over the
period 2005–2015. The data are stored in the GeoTIFF format. The irradiance data used
in this paper are the yearly average global irradiance on the horizontal plane from 2005
to 2015.

3. Materials and Methods

To build a cloud-based solar radiation estimation model, cloud cover is first converted
into sunshine percentage data using a cloud-based sunshine percentage model. Then,
using the meteorological station data and basic astronomical and geographical data, an
LSF is carried out to solve the empirical coefficients of the A-P, Iqbal, Bahel and Sen
Models. The most suitable solar radiation estimation model for China was determined by
error-checking the fitting results of the four models. The SRTM DEM data were used to
calculate the terrain shielding factor based on the hillshade calculation principle. Based on
sunshine percentage data and the optimal model, the distribution of PV energy in China
was estimated in combination with the terrain shielding. Finally, the GHI of the World Bank
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and the irradiance of PVGIS were used for consistency checking the PV products in this
study. Figure 2 is a technical flowchart of the cloud-based solar radiation estimation model.
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3.1. Relative Sunshine Percentage

In this study, the cloud frequency product GLHCC was used to generate the sunshine
percentage according to the inverse relationship between cloud cover and solar radiation.
The sunshine percentage here refers to the sunshine percentage with no error in cloud cover
observations. The relationship between sunshine percentage and cloud cover is linear, as
shown in Formula (1).

C = (1− S/S0) (1)

where C is the total amount of cloud, which can also be said to be the cloud frequency; S is
the sunshine duration; and S0 is the duration of possible sunshine.

There is a good negative correlation between total cloud cover and sunshine percent-
age, but the correlation differs significantly at different times. Therefore, when using cloud
cover data to generate sunshine percentage, it should be integrated by period. In other
words, the cloud cover data for period 36 generated the sunshine percentage data for period
36. The daily observational data for cloud cover, whether ground observation or satellite
remote sensing data have a problem inherent to observation time; that is, the time term in
a single day is discrete. Therefore, surplus data on a long time-series scale is used in this
study to make up for the insufficient data on the single-day scale. The GLHCC is a 10-day
product produced from 16 years of cloud observation data, which meets the requirements
of this study. A long time-series average cloud frequency can better express a stable state of
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cloud cover in a time period, which is better for generating the sunshine percentage and
for predicting the distribution of PV energy.

3.2. Calculation of Basic Astronomical and Geographic Data

Astronomical solar radiation (ASR), also known as extraterrestrial solar radiation and
extra-atmospheric solar radiation, refers to the solar radiation when the sun reaches the
upper boundary of the atmosphere. Its value is only related to the relative position of the
sun and the earth and the geographical position of the earth’s surface. ASR forms not only
the basic background of the amount of solar radiation received on the ground but is also
one of the most important astronomical parameters in radiation calculation. The calculation
formula of daily total ASR is given by Formula (2). In this study, the 10-day average daily
total ASR was calculated using the daily total ASR.

H0 =
24× 3600Gsc

π
k× (cos∅ cos δ sin ωs +

πωs

180
sin∅ sin δ) (2)

where Gsc is the solar constant, which refers to the total radiation energy received from the
sun per unit time per unit area on a theoretical surface perpendicular to the sun’s rays and
at the earth’s mean distance from the sun. Gsc varies little from month to month, with an
annual mean range of ±3.5%. For convenience of calculation, the annual average value of
Gsc is taken, i.e.,:

Gsc = 1367 W/m2 (3)

k is the eccentricity correction coefficient, which is given by Formula (4):

k = 1 + 0.033 cos
360D
365

(4)

where D is the day of the year from 1 January.
δ (solar declination) refers to the angle between the line joining the centers of the sun

and the earth and its projection on the equatorial plane. δ is caused by the earth orbiting
the sun at a certain inclination. Its value is only related to the calculated date, which varies
from +23◦26′ to −23◦26′. The declination angle is given by Formula (5):

δ = 23.45 sin
360(D + 284)

365
(5)

ω (hour angle) is the angle between an observer’s meridian (a great circle passing over
his head and through the celestial poles) and the hour circle (any other great circle passing
through the poles) on which some celestial body lies. The local hour angle at noon is 0,
negative in the morning and positive in the afternoon, with a difference of π/6 every hour.
ωs (sunset angle) is calculated according to Formula (6):

ωs = arccos(− tan∅ tan δ) (6)

where ∅ is the local latitude.
S0 (duration of possible sunshine) is calculated using Formula (7):

S0 =
2

15
ωs (7)

3.3. Calculation of Empirical Coefficient of Radiation Estimation Model

The total solar radiation on the ground mainly depends on astronomical radiation
and the weakening effect of the atmosphere on solar radiation. This weakening effect
is expressed as the ratio of total solar radiation on the horizontal plane to astronomical
radiation; that is, the clear sky index, as shown in Formula (8):

Kt = H/H0 (8)
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A large number of the literature and data studies show that there is a good correlation
between the clear sky index and sunshine percentage. In 1924, Angstrom [14] proposed
the earliest calculation model by using the correlation between the ratio of sunny solar
radiation (Hc) to total radiation and the percentage of sunshine, as shown in Formula (9):

H
Hc

= a + b
S
S0

(9)

The application of Formula (9) is limited due to the complexity of the sunny solar
radiation. In 1940, Prescott [32] modified Angstrom’s model and proposed to replace sunny
solar radiation with astronomical radiation, as shown in Formula (10):

H
H0

= a + b
S
S0

(10)

This model is called the A-P Model. The A-P Model provided a correlation between
the clear sky index and sunshine percentage for the first time. The A-P Model is simple in
form, and the calculation of astronomical radiation in the model is easy. Therefore, the A-P
Model was quickly adopted by researchers and has become one of the most widely used
models in solar radiation estimation.

Based on the A-P Model, subsequent researchers proposed models with quadratic
polynomial, cubic polynomial, exponential and logarithmic forms.

Based on the meteorological data of three meteorological stations in Canada, Iqbal [33]
proposed a quadratic polynomial model:

H
H0

= a + b
S
S0

+ c(
S
S0

)2 (11)

Based on the sunshine hours and total solar radiation data of 48 meteorological stations
in different countries, Bahel [34] established a cubic polynomial model based on sunshine
percentage, which is applicable to all countries:

H
H0

= a + b
S
S0

+ c(
S
S0

)2 + d(
S
S0

)3 (12)

Sen [65] proposed a simple three-coefficient nonlinear model to estimate global solar
radiation from sunshine percentage:

H
H0

= a + b(
S
S0

)c (13)

This study intends to use the above four linear and nonlinear models to simulate the
relationship between sunshine percentage and solar radiation in China and to calculate
the optimal empirical coefficient of the models. The data of 72 stations with a continuous
sunshine duration and solar radiation were selected and divided into four time periods
according to season. The station data were substituted into the above four linear and
nonlinear models to calculate the empirical coefficients of the radiation-estimation model.
The empirical coefficient was solved using the LSF according to the linear model and
nonlinear model. The LSF method calculates the optimal coefficient of the model by
optimizing the sum of the squares of minimum error. The reason why the empirical
coefficient was not calculated over 10 days is that an empirical coefficient arrived at using
the data for 10 days out of 16 years does not guarantee its stability and the accuracy of
the final result. Finally, empirical coefficients for models divided by season were obtained,
which is suitable for the prediction of PV energy distribution every 10 days in this season.
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3.4. Optimal Model Selection and Estimation of PV Energy Distribution

The accuracies of the four models with empirical coefficients are compared. The
following three error checking formulas were used to analyze each model:

Determinable coefficient (R2):

R2 =
∑n

i=1(ŷi − ỹ)2

∑n
i=1(yi − ỹ)2 (14)

Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1
|ŷi − yi| (15)

Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (16)

where, ŷi and yi are the simulation results and measured results, respectively, ỹ is the mean
value of y and n is the sample size.

The empirical coefficients of the best model were interpolated by IDW to obtain
the empirical coefficients for each seasonal model throughout the country. The sunshine
percentage integrated by the GLHCC and the basic astronomical and geographical data
were substituted into the model to solve the preliminary distribution of PV energy per
10 days.

3.5. Calculation of Terrain Shielding Factor

When sunlight reaches the ground through clouds, it is affected by the local terrain,
and the solar radiation reaching the ground is redistributed on the local surface. In areas
with rugged terrain, due to the influence of terrain shielding, slope and slope direction,
different slope surfaces receive different amounts of solar radiation [66]. Slope surfaces
with a larger included angle with solar light receive more solar radiation. In contrast,
slope surfaces with a smaller included angle with solar light have a relatively short direct
exposure time and receive less solar radiation. A traditional solar radiation estimation
model does not take into account the shielding of terrain against solar radiation, which
should be considered one of the location factors of PV power stations. Several studies have
considered the effect of terrain shielding on sunshine duration and solar radiation [67–71].
Since the placement angle of PV panels can be adjusted, this study only considers whether
PV panels can receive sunlight at a certain time. Terrain shielding can be divided into
direct radiation shielding and scattered radiation shielding. Direct radiation shielding
mainly considers the incident angle between the sunlight and local terrain, while scattered
radiation shielding considers the shielding of different conditions in each direction, which
is necessary to build various anisotropic scattering radiation models. Therefore, this study
only considers the influence of local terrain on the effects of direct radiation.

The calculation of the terrain shielding factor mainly considers the relationship among
slope, slope direction, solar altitude angle and solar azimuth. As shown in Figure 3, the
shielding area is divided into two main categories: One is the side of the mountain facing
away from the sun, for which the slope is greater than the solar altitude; the other is the
sheltered area that is blocked by the adjacent higher mountain and does not, therefore,
receive sunlight. In order to study the shielding effect of local terrain on solar radiation, this
study used DEM data with a resolution of 90× 90 m to calculate slope, aspect and hillshade.
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The method of calculating the terrain shielding factor involves using the sunrise time
as the starting point, the sunset time as the endpoint and 10 min as the time step to calculate
the masking area within 10 min (binary image of 0 or 1). The sheltered areas were averaged
to obtain the terrain shielding factor for a day (between 0 and 1); then, the daily terrain
shielding factors were averaged every 10 days to obtain a 10-day terrain shielding factor, as
shown in Formulas (17) and (18):

γi =
1
m

m

∑
j=1

Xij (17)

γ =
1
n

n

∑
i=1

γi (18)

where Xij is the sheltered area at time j of day i, γi is the terrain shielding factor of day i
and γ is the terrain-shielding factor within 10 days.

In this study, we used hillshade to calculate the sheltered area. The principle of a
hillshade algorithm is to calculate the illuminance value of each pixel by setting the position
of the assumed light source and using several adjacent pixels. If we set the real solar
altitude and azimuth, we obtain the real terrain shadow. When the illumination value of
a pixel is less than or equal to 0, it is part of a shadowed area, and the value of that pixel
is set to 0; in contrast, in an area that receives sunlight, the value is set to 1, as shown in
Formulas (19) and (20):

HS = (cos(Zs) ∗ cos(Slo)) + (sin(Zs)∗ sin(Slo)∗ cos(As − Asp)) (19)

X =

{
0, Hillshade ≤ 0
1, Hillshade > 0

(20)

where HS is the hillshade, Zs is the radian of the solar zenith angle and Slo is the radian
of the slope. As is the radian of the solar azimuth and Asp is the radian of the aspect in
that area.

• Solar zenith angle

The solar zenith angle (Zs) refers to the included angle between the direction of incident
light and the zenith (the direction perpendicular to the surface) and is the complement angle
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of the solar altitude angle (Es). Therefore, to calculate the solar zenith angle, we only need to
calculate the solar altitude angle. The calculation formulas are the Formulas (21) and (22):

sin Es = sin∅ sin δ + cos∅ cos δ cos ω (21)

Zs =
π

2
− Es (22)

where ∅ is the radian of the latitude, δ is the radian of the solar declination and ω is the
local hour angle.

• Solar azimuth angle

The solar azimuth angle is the azimuth angle of the Sun’s position. For solar energy
applications, it is clockwise from due north, so east is π/2, south is π and west is 3π/2.
The angle is given by Formula (23):

cos As =
(sin Es sin∅− sin δ)

cos Es cos∅ (23)

• Calculation of slope and aspect

The slope is the degree of steepness and gentleness of the surface unit. Generally, the
ratio of the vertical height h of the slope to the distance L in the horizontal direction is
called the slope (or slope ratio). Aspect is the orientation of the slope, measured clockwise
in degrees from 0 to 2π, where 0 is north-facing, π/2 is east-facing, π is south-facing and
3π/2 is west-facing. In a 3 × 3 window, the slope and aspect of each central pixel are
calculated using the values of eight adjacent pixels of the pixel.

4. Results and Analysis

Based on sunshine percentage data and the Sen Model, and using terrain shielding, we
successfully constructed a cloud-based solar radiation estimation model and obtained the
estimation results of PV energy in China. Section 4.1 discussed the sunshine percentage data
generated by cloud cover and seasonal variation. Section 4.2 presents the error-checking
results for the four empirical models and the characteristics of the empirical coefficients.
Section 4.3 describes the influence of terrain shielding on PV energy. Section 4.4 describes
in detail the estimated results for PV energy in China and compares them with other solar
radiation products.

4.1. Sunshine Percentage

Figure 4 shows the average daily sunshine percentage for the four seasons based on
cloud cover. Figure 4a shows the sunshine percentage in spring, which is obtained from
the average sunshine percentage for every 10 days in March, April and May. Figure 4b
shows the sunshine percentage in summer obtained from the average for June, July and
August. Figure 4c shows the sunshine percentage in autumn obtained from the average for
September, October and November. Figure 4d shows the sunshine percentage in winter
obtained from the average for January, February and December. Figure 4 shows that, on
the whole, the sunshine percentage is highest in winter and lowest in summer. The reason
for this is that China has more precipitation in summer and less precipitation in winter.
Regionally, the sunshine percentages in Xinjiang, Inner Mongolia, Northeast China and
Qinghai Tibet Plateau are high, and the sunshine percentage in Sichuan Basin is low. This
is because China has less precipitation in the north and more precipitation in the south.
In high-altitude areas, the air is thin, and the rainfall is less. Figure 4d shows an unusual
phenomenon: that is, the Junggar Basin in the northwestern corner of China (inside the red
circle) shows a markedly low sunshine percentage. This is due to the unique cloudy and
foggy weather formed by the unique terrain, humidity and temperature conditions in the
Junggar Basin.
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The causes of cloudy and foggy weather in the Junggar Basin are complex and require
strict environmental conditions. Cloudy and foggy weather occurs easily at temperatures of
0–15 ◦C but is rare under colder or warmer conditions. Humidity is a necessary condition
for cloudy and foggy weather. Low cloud generally exists in the region where the difference
between the temperature and dew point is 0–2 ◦C. More than 80% of cloudy and foggy
weather occurs in areas with a relative humidity of greater than 90%, so cloudy and foggy
weather often occurs when there is snow on the ground. The water evaporated from snow
is the source of water in cloudy and foggy weather. The Junggar Basin is surrounded by
mountains so that cloudy and foggy weather there is not disturbed by the external weather
system, meaning that it can last for more than 10 days once formed. Therefore, the sunshine
percentage in the Junggar Basin in winter is very low.

4.2. Empirical Coefficient of Solar Radiation Estimation Model

The empirical coefficients of the four models (A-P, Lqbal, Bahel and Sen Models) were
calculated using the data from 72 stations with a continuous sunshine duration and solar
radiation in China. The error of the four models was checked, and the checking results were
determined using R2, MAE and RMSE. Figure 5 shows the error-checking results of the
A-P, Lqbal, Bahel and Sen Models for the four seasons. The results show that the nonlinear
model proposed by Sen performs well from season to season, with a small MAE (spring:
0.557, summer: 0.615, autumn: 0.405, winter: 0.325), a small RMSE (spring: 0.730, summer:
0.799, autumn: 0.539, winter: 0.430) and a large R2 value (spring: 0.837, summer: 0.815,
autumn: 0.862, winter: 0.821). There is little difference between the Bahel and Sen Models.
However, the A-P linear model and Lqbal quadratic polynomial model perform poorly.
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As the error-checking results of the Bahel and Sen Models are basically the same,
we compare the coefficient stability of the two models, as shown in Figure 6. Figure 6a
shows the seasonal and annual standard deviation results of the four coefficients of the
Bahel Model. Coefficient a (spring: 0.055, summer: 0.039, autumn: 0.045, winter: 0.080,
annual: 0.059) changes least among the different stations, and coefficient c (spring: 0.984,
summer: 0.995, autumn: 1.098, winter: 1.052, annual: 1.035) changes most. The standard
deviations of the four coefficients vary little with respect to the season. Coefficient c, with
a large standard deviation, reaches its maximum in autumn and its minimum in spring.
In contrast, the three coefficients of the Sen Model have better stability in all seasons
(Figure 6b). The standard deviations of empirical coefficient a (spring: 0.051, summer:
0.036, autumn: 0.040, winter: 0.075, annual: 0.055) and b (spring: 0.037, summer: 0.039,
autumn: 0.037, winter: 0.061, annual: 0.051) are very small, and that of empirical coefficient
c (spring: 0.240, summer: 0.154, autumn: 0.201, winter: 0.299, annual: 0.232) is relatively
large. The standard deviations of the three coefficients all reach their maximum values in
winter. Empirical coefficient c, which has the greatest influence on the estimation result
of the model, reaches its minimum value in summer. In the actual investigation of the
empirical coefficients for each station, we found that the values of experience coefficients
c (minimum: −7.947, maximum: 0.915) and d (minimum: −0.529, maximum: 5.794) of
the Bahel Model had a broad distribution. The value of empirical coefficient c (minimum:
−0.086, maximum: 1.545) of the Sen Model had a small distribution. The Sen Model is the
most suitable model for solar radiation estimation based on sunshine duration in China
compared with the other three models in terms of error and coefficient stability. Therefore,
the Sen Model is selected as the best model for the estimation of solar radiation based on
sunshine duration in this study. The performance of each model is different from season to
season. The MAE and RMSE of each model are best in winter and worst in summer; while
the performance of R2 in spring and autumn is better than that in summer and winter.
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After selecting the Sen Model as the best model, the value changes (Figure 7) and
geographical changes (Figure 8) of the empirical coefficients of the Sen Model for the
72 stations are displayed. Figure 7 shows the coefficient distributions for the 72 stations from
season to season. Different color blocks represent different value ranges, and the numbers
on the color blocks represent the number of meteorological stations within that value range.
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Coefficient a of the 72 stations lies mainly between 0.1 and 0.2 for the four seasons. In
spring, summer and autumn, the coefficients are concentrated, with a distribution range of
0.1–0.3, while in winter, they are relatively dispersed, with a distribution range of 0.1–0.4.
The distribution range of coefficient b in spring, summer and autumn is 0.4–0.7, mostly
concentrated between 0.5 and 0.6, while in winter, the distribution range is 0.3–0.7, mostly
concentrated between 0.4 and 0.6. The distribution of coefficient c is relatively discrete in
the four seasons; but the dispersion is high in winter, with a range of 0.4–1.6.
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Coefficient c of the Sen Model varies significantly among the different regions and is
the coefficient that has the greatest impact on the final distribution results of the PV energy.
Therefore, we studied the regional differences of coefficient c. Figure 8 shows the differ-
ences in coefficient c for the 72 stations in different regions in spring (Figure 8a), summer
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(Figure 8b), autumn (Figure 8c) and winter (Figure 8d). Coefficient c varies regularly among
the different regions. On the whole, coefficient c is larger in the north, northeast, northwest,
west and southwest of China, and smaller in the east, southeast and south. The larger
coefficient c is, the more the solar radiation depends on the sunshine percentage; in contrast,
other local conditions, except for sunshine percentage, have a significant weakening effect
on the solar radiation. This may be because of local environmental conditions. For example,
due to the influence of monsoons in southern China, water vapor is abundant throughout
the year, which weakens solar radiation through absorption and scattering. Figure 9 shows
the average values of the Sen Model coefficients for all stations in the four seasons. The
three empirical coefficients of the Sen Model change little in the four seasons, which further
illustrates the stability of the Sen Model coefficients.
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Figures 10 and 11 show the change in the value range and geographical area of the
error-checking results for the Sen Model at the 72 stations. Figure 10 shows the distribution
of the value range for the 72 stations; points of different colors represent different stations.
There are great differences in the error values among the different stations. In spring, the
minimum value of MAE is 0.345, and the maximum is 0.710; in summer, the minimum
value is 0.390, and the maximum value is 0.807; in autumn, the minimum value is 0.220, and
the maximum value is 0.566; and in winter, the minimum value is 0.127, and the maximum
value is 0.513. In spring, the minimum value of RMSE is 0.454, and the maximum value is
0.977; in summer, the minimum value is 0.520, and the maximum value is 0.999; in autumn,
the minimum value is 0.287, and the maximum value is 0.765; and in winter, the minimum
value is 0.173, and the maximum value is 0.679. In spring, the minimum value of R2 is
0.696, and the maximum value is 0.925; in summer, the minimum value is 0.692, and the
maximum value is 0.922; in autumn, the minimum value is 0.786, and the maximum value
is 0.956; and in winter, the minimum value is 0.680, and the maximum value is 0.937. The
errors of the Sen Model vary greatly from season to season. MAE and RMSE are best in
winter and worst in summer; and R2 is best in spring and autumn. Figure 11 shows the
regional variation in R2 for the 72 stations, for which there is no obvious rule from region
to region.

4.3. Terrain Shielding

After estimating the initial PV energy distribution using the sunshine percentage
generated by cloud cover and the Sen Model, the terrain shielding factor was added to
the results. In fact, there are not many areas affected by terrain shielding in China, which
is commonly seen in mountainous areas with large elevation variations in southwestern
China and the mountains in Xinjiang at high latitude. The relatively flat terrain and very
low-latitude areas are not often shielded by terrain. Terrain shielding generally occurs in
winter but is rare in the other seasons. We take the Altai Mountains in northwest China
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as an example (Figure 12) to show the distribution of PV energy in early January after
adding the terrain shielding factor. Figure 12a is the DEM north of Tianshan Mountain.
Figure 12b shows the distribution of PV energy before adding the terrain shielding factor,
and Figure 12c shows the distribution of PV energy after adding the terrain shielding factor.
Compared with Figure 12b, Figure 12c shows many dark green patches on the shady slope
of the mountain, indicating areas with low PV energy. Due to the high latitude of the Altai
Mountains and the low solar altitude angle in winter, there is a large area on the shady
slope that does not receive sunlight during the day. The experiment proves that terrain
factors should be considered during deciding the location of PV power stations.
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4.4. PV Energy Distribution

The sunshine percentage data based on cloud cover and the optimal empirical co-
efficients were substituted into the Sen Model to estimate the PV energy distribution in
China combined with terrain shielding. After the estimation of the PV energy distribution,
the 10-day average daily total solar radiation in China is finally generated. Figure 13
shows a broken line diagram of the average daily total solar radiation for every 10 days in
China, and Figure 14 shows a diagram of the monthly average daily total solar radiation.
Figures 13 and 14 show that the daily total PV energy in China increases or decreases regu-
larly according to season. The PV energy in April, May, June, July, August and September
are more abundant, located predominantly in the north, northwest, west and southwest of
China, but are scarcer in the east, southeast and south. The PV energy in January, February,
March, October, November and December are relatively scarce and mainly concentrated in
the high-altitude areas in southwestern China.
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In order to prove that the GLHCC cloud product produces a more accurate result for
the estimation of PV energy, the GHI of the World Bank and the yearly average irradiance
of PVGIS are selected for consistency checking. Figure 15a shows the annual average daily
total PV energy, with a resolution of 1 km, in this study; Figure 15b shows the GHI data
of the World Bank, with a resolution of 250 m; and Figure 15c shows the yearly average
global irradiance of PVGIS, with a resolution of 5 km. Since the solar radiation data of
PVGIS only include the areas of Africa, part of Europe, part of Asia, part of South America
and part of Australia, the solar radiation data does not cover all of China. In addition,
the three products are normalized due to their different ways (daily total solar radiation
or instantaneous irradiance) of representing the distribution results of PV energy. The
PV energy distribution of the three products is roughly the same: The PV energy of the
southwest Qinghai-Tibet Plateau and Qaidam Basin is the most abundant, and the PV
energy of the Sichuan Basin is the scarcest. The main reason for the regional difference in
the distribution of PV energy is that the Qinghai-Tibet Plateau has a high altitude, relatively
thin air, little water-vapor content and little cloud cover, all of which only slightly weakens
the solar radiation. In addition, due to the low latitude of the Qinghai-Tibet Plateau, the
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average solar height is larger all year round, and the solar radiation is stronger. The Qaidam
Basin is located in the desertification area of northwestern China and is an arid and semi-
arid area with little precipitation and long sunshine duration. It is located at high-altitude
and, therefore, experiences only limited weakening of solar radiation by the atmosphere.
The amount of precipitation in the Sichuan Basin is significant, and water vapor is not easily
dispersed, leading to a relatively high number of cloudy days and foggy days. This results
in a short sunshine duration, low sunshine intensity and poor solar energy resources.
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However, there are still many differences between the three products. Compared with
the other two products, the PV energy in this paper is distributed in mountainous areas
with more cloud, have lower levels of solar radiation. The main anomaly in the GHI data is
that the irradiance of different regions in China has distinct boundaries. For example, the
irradiance of the GHI in Xinjiang is significantly smaller than the surrounding irradiance.
The other two products have no sudden change in solar radiation, except for the change
occurring in the mountains. This may be related to the different model parameters adopted
for the different regions in China in the GHI. The irradiance data of PVGIS show lower
levels of solar radiation in the area north of Tianshan Mountain than in the surrounding
areas, which does not show in the other two products.

In addition to the above macro differences between the three products, some local
details of GHI are different from the distribution of PV energy in this study and the
irradiance of PVGIS, mainly in the valley in southwestern China. Jinchuan County in
Sichuan province has unique climatic conditions and long sunshine hours. With an annual
average sunshine duration of more than 2400 h, it has the reputation of a “plateau sunny
city” and is a typical valley county. Therefore, taking Jinchuan County as an example, we
show the difference in the PV-resource distribution results of the three products in Figure 16.
Figure 16a is the DEM with a resolution of 90 m in Jinchuan County, Figure 16b is the PV
energy distribution map of this study (after normalization), Figure 16c is the GHI of the
World Bank (after normalization) and Figure 16d shows the irradiance of PVGIS (after
normalization). Figure 16 shows that the GHI of the World Bank is more detailed than the
PV energy of this study and the irradiance of PVGIS due to the difference in resolution.
However, the geographical distribution of PV energy in this study is similar to that of the
irradiance of the PVGIS. There is abundant PV energy in the valley area and scarce PV
energy on the hillside. However, the geographical distribution of the GHI in this area is
opposite to that of the PV energy in this study and the irradiance of the PVGIS. There is
a positive correlation between GHI and altitude. The lower the altitude, the lower the
solar radiation levels; and the higher the altitude, the higher the solar radiation levels.
The distribution of PV energy in this study and PVGIS is more consistent with the fact.
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Because the valley in this area is a typical dry-hot valley [72]; characterized by dry, hot and
plenty of sunshine. Part of the 30 MW PV poverty alleviation project in Jinchuan County,
Sichuan province, is built in the sunny Alaxue Village, shown in Figure 16. Although
the GHI of the World Bank reaches a spatial resolution of 250 km, it does not reflect the
actual PV energy well. Although the current solar radiation products mostly consider the
influence of the amount of cloud, cloud amount data are often of low spatial resolution or
low precision. The use of the GLHCC cloud amount data in this study greatly improves
the spatial resolution and accuracy of the solar radiation products.
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It is necessary to explain the causes of dry-hot valleys. Dry-hot valley regions are
rich in solar and heat resources, with a hot climate and little rain, which is not as wettish
as general valleys [73]. The main influencing factors in the formation of dry-hot valleys
are the foehn effect and the local circulation effect of valley winds. The foehn effect arises
when foehn winds pass through an area, making the climate hot and dry. Foehn winds are
caused by air currents descending over mountains, and their temperature rises by about
10 degrees Celsius for every 1000 m they fall. Valley winds are local winds with a daily
cycle, appearing in mountainous areas and surrounding areas. During the day, the hillside
receives more heat from the sun, and the air warms more. Over valleys at the same height
as mountain tops, the air warms less because it is farther from the ground. Due to the
continuous expansion and rise of warm air on the hillside, a low-pressure region is formed
near the ground at the top of the mountain and accumulates from the hillside to the valley.
The air accumulates from the mountainside over the valley, and the air over the valley
contracts and sinks under the influence of gravity. High pressure is formed on the valley
ground, and the downdraft forms a dry and hot environment. This local circulation effect
of valley winds causes cloud belts to appear on hillsides. Therefore, in a dry-hot valley
area, the amount of PV energy should be greater than on a hillside.

5. Discussion

In this study, a 10-day average daily total solar-radiation product with a resolution of
1 km was produced using GLHCC cloud coverage data. It should be noted that the annual
average product generated by the 10-day product is only a reference for the selection of
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PV power stations. The actual terrain conditions, land utilization situations and disaster
situations should also be considered in the real process of the station location. We proved
the applicability of our product by comparing it with the GHI of the World Bank and the
irradiance from PVGIS. Further explanation is needed for a comparison of the results.

Section 4.4 shows that the macro distributions of PV energy for the three products
are roughly the same but with some differences. In the comparison for Jinchuan County,
the spatial resolution of GHI has an absolute advantage over the PV energy product in
this study and the irradiance product of PVGIS. However, the GHI data do not accurately
represent the normal solar radiation in a dry-hot valley. This is because the high resolution
of the GHI data is derived from the SRTM DEM data rather than from satellite data used to
calculate the cloud index or other data sources. The algorithm used in the solar radiation
datasets of the World Bank is the Solargis internal algorithm (https://solargis.com/docs/
methodology/solar-radiation-modeling (accessed on 13 December 2021)). In this algorithm,
the data sources used to calculate the cloud index are Meteosat (Meteorological Satellite),
GEOS (Geosynchronous Earth Orbit Satellite), MTSAT (Multi-Function Transport Satellite)
and Himawari satellite data sources, with spatial resolutions of 3–4 km. These cloud
data, with low resolution, cannot ascertain the cloud cover distribution in a dry-hot valley
area. Therefore, although the GHI data have a high resolution and can reflect more
topographic details, the distribution of PV energy is not accurate in areas with high spatial
variability clouds.

The three products perform differently in different regions, and it is difficult to de-
termine which product is the most accurate overall. However, the products in this study
accurately represent PV energy in areas with high spatial variability clouds, such as dry-hot
valleys. Dry-hot valleys are not uncommon in China and are mainly distributed in Panzhi-
hua City, Yunnan and Guizhou Provinces along the Jinsha, Yuanjiang, Nujiang and Nanpan
Rivers. These regions are important output regions of PV power. Therefore, accurate PV
energy distribution data are of great significance for planning PV power stations in these
regions. Our experiment proves that if the GLHCC cloud product is applied to a model for
other solar radiation products, the product accuracy is improved.

6. Conclusions

In this study, we produced 10-day, monthly, quarterly and yearly PV energy products
in China based on GLHCC cloud data, with a resolution of 1 km. Using the GLHCC
data in China, this paper created sunshine percentage data using a linear model. The
sunshine duration data and solar radiation data of 72 meteorological stations in China
were used for quarterly LSF to find the best fitting coefficients for four models. The Sen
Model was selected as the most suitable for estimating the PV energy in China through
error-checking. Using the sunshine percentage and Sen Model, combined with terrain
shielding, a reasonable estimation of the distribution of PV energy was obtained.

The cloud coverage product GLHCC used in this study, which has a higher resolution
and higher precision than other cloud products, produced high resolution and precision
PV energy distribution data. The consistency checking on three PV products showed that,
compared with the irradiance data from PVGIS, the PV data in this paper had a higher
spatial resolution, showing more local details. Compared to GHI data, with a resolution of
250 m, the data from our product more accurately represented the distribution of PV energy
in areas with high spatial-variability clouds. The annual distribution of PV energy in China
obtained in this study reflects the annual power generation potential of China, providing
an important reference for the location of PV power stations. The 10-day, monthly and
quarterly PV energy distribution products for China can be used to effectively evaluate
the PV energy during different periods of the year. The products provide a reference for
existing power stations to carry out peak regulation and energy storage and to supplement
wind power generation or hydroelectric power generation at appropriate times.

However, there are some deficiencies in this study. First, a relatively simple linear
model was adopted to generate sunshine percentage data based on cloud frequency data,

https://solargis.com/docs/methodology/solar-radiation-modeling
https://solargis.com/docs/methodology/solar-radiation-modeling


Remote Sens. 2022, 14, 2084 23 of 26

using the relationship between cloud cover and sunshine percentage in an ideal state.
Therefore, there is a certain error under real environmental and observational conditions.
Secondly, the size of a window used in calculating the terrain shielding factor is 3 × 3, the
distance range of which is small. Distant mountains that can shield an area are not included
in the range of calculation. In future studies, more accurate models will be needed to
determine the relationship between cloud cover and sunshine percentage and to calculate
multi-scale terrain shielding factors according to different distances.
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ANN Artificial Neural Network
ASR Astronomical Solar Radiation
CloudSat Cloud Detecting Satellite
DEM Digital Terrain Elevation Model
DIF Diffuse Horizontal Radiation
DNI Direct Normal Exposure
ELM Extreme Learning Machine
EOS Earth Observing System
GEOS Geosynchronous Earth Orbit Satellite
GHI Global Horizontal Irradiance
GLHCC Global Land High-resolution Cloud Climatology
GPR Gaussian Process Regression
GTI Global Radiation for Optimal Tilted Surfaces
IDW Inverse Distance Weighting
ISCCP International Satellite Cloud Climatology Project
LSF Least Squares Fit
MAE Mean Absolute Error
Meteosat Meteorological Satellite
MM Markov Model
MODIS Moderate-Resolution Imaging Spectroradiometer
MTSAT Multi-Function Transport Satellite
NASA National Aeronautics and Space Administration
NOAA National Oceanic and Atmospheric Administration
NSRDB National Solar Radiation Database
OPTA Optimal Tilt of Photovoltaic Modules
PATMOS-X Pathfinder Atmospheres—Extended
PV Photovoltaic
PVGIS Photovoltaic Geographic Information System
PVOUT Photovoltaic Power Potential
RF Random Forest
RMSE Root Mean Square Error
SRTM Shuttle Radar Topography Mission
SVM Support Vector Machine
TEMP Air Temperature 2 m above ground
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