Resolution-Sensitive Added Value Analysis of CORDEX-CORE RegCM4-7 Past Seasonal Precipitation Simulations over Africa Using Satellite-Based Observational Products
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area
2.2. Data and Method
3. Results
3.1. Evaluation Results for DJF Season
3.2. Evaluation Results for MAM Season
3.3. Evaluation Results for JJA Season
3.4. Evaluation Results for SON Season
3.5. Unified Season, Sub-Area and Resolution-Based Results
4. Discussion
5. Conclusions
- At high-resolution, pixels with at least 10% improvement by the CORDEX-CORE RegCM4-7 downscaling approach represent 20 to 60% of the overall African domain depending on the driving GCM and the season.
- The results obtained at low resolution mostly show an increase in the improvement coverage, with at most 8% spatial coverage reduction for cases where a decrease is observed as compared to high-resolution findings.
- A relatively high improvement coverage of NorESM1-M downscaled results is found for nearly all seasons and climate zones, with West Africa, Central Africa, and Southern East Africa showing the overall best performances for all seasons and driving GCMs.
- The results appear to be mostly influenced by the RCMs internal physics, with a typical highlight over sub-regions where fine-scale features-driven AV is expected. A better or nearly similar AV pattern is also observed at low resolution, suggesting an enhancement of the driving GCMs by sub-grid processes resolved by the RCM physics.
- Observational uncertainty is found to have a significant influence, as one should have expected, given observational data scarcity over Africa.
- For the first attempt to produce RCM data at a resolution similar to common satellite-based products resolution, the AV results are relatively good. They feature the potential of dynamical downscaling tools in filling resolution and quality gaps between GCMs and remotely sensed technology-based datasets.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giorgi, F. Producing actionable climate change information for regions: The distillation paradigm and the 3R framework. Eur. Phys. J. Plus 2020, 135, 435. [Google Scholar] [CrossRef]
- Gutowski, W.J.; Ullrich, P.A.; Hall, A.; Leung, L.R.; O’Brien, T.A.; Patricola, C.M.; Arritt, R.W.; Bukovsky, M.S.; Calvin, K.V.; Feng, Z.; et al. The Ongoing Need for High-Resolution Regional Climate Models: Process Understanding and Stakeholder Information. Bull. Am. Meteorol. Soc. 2020, 101, E664–E683. [Google Scholar] [CrossRef] [Green Version]
- Laprise, R.; de Elía, R.; Caya, D.; Biner, S.; Lucas-Picher, P.; Diaconescu, E.; Leduc, M.; Alexandru, A.; Separovic, L. Challenging some tenets of Regional Climate Modelling. Meteorol. Atmos. Phys. 2008, 100, 3–22. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef] [Green Version]
- Tapiador, F.J.; Navarro, A.; Moreno, R.; Sánchez, J.L.; García-Ortega, E. Regional climate models: 30 years of dynamical downscaling. Atmos. Res. 2020, 235, 104785. [Google Scholar] [CrossRef]
- Di Luca, A.; de Elía, R.; Laprise, R. Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations. Clim. Dyn. 2012, 38, 1229–1247. [Google Scholar] [CrossRef] [Green Version]
- Di Luca, A.; de Elía, R.; Laprise, R. Challenges in the Quest for Added Value of Regional Climate Dynamical Downscaling. Curr. Clim. Chang. Rep. 2015, 1, 10–21. [Google Scholar] [CrossRef]
- Sørland, S.L.; Schär, C.; Lüthi, D.; Kjellström, E. Bias patterns and climate change signals in GCM-RCM model chains. Environ. Res. Lett. 2018, 13, 074017. [Google Scholar] [CrossRef]
- Rummukainen, M. Added value in regional climate modeling. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 145–159. [Google Scholar] [CrossRef]
- Giorgi, F.; Jones, C.; Asrar, G. Addressing climate information needs at the regional level: The CORDEX framework. World Meteorol. Organ. Bull. 2009, 58, 175. [Google Scholar]
- Jones, C.; Giorgi, F.; Asrar, G. The Coordinated Regional Downscaling Experiment: CORDEX, an International Downscaling Link to CMIP5. CLIVAR Exch. 2011, 16, 34–39. [Google Scholar]
- Gutowski, J.W.; Giorgi, F.; Timbal, B.; Frigon, A.; Jacob, D.; Kang, H.S.; Raghavan, K.; Lee, B.; Lennard, C.; Nikulin, G.; et al. WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev. 2016, 9, 4087–4095. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Gutowski, W.J. Coordinated Experiments for Projections of Regional Climate Change. Curr. Clim. Chang. Rep. 2016, 2, 202–210. [Google Scholar] [CrossRef] [Green Version]
- Teichmann, C.; Jacob, D.; Remedio, A.R.; Remke, T.; Buntemeyer, L.; Hoffmann, P.; Kriegsmann, A.; Lierhammer, L.; Bülow, K.; Weber, T.; et al. Assessing mean climate change signals in the global CORDEX-CORE ensemble. Clim. Dyn. 2020, 57, 1269–1292. [Google Scholar] [CrossRef]
- Ciarlo, J.M.; Coppola, E.; Fantini, A.; Giorgi, F.; Gao, X.J.; Tong, Y.; Glazer, R.H.; Torres Alavez, J.A.; Sines, T.; Pichelli, E.; et al. A new spatially distributed added value index for regional climate models: The EURO-CORDEX and the CORDEX-CORE highest resolution ensembles. Clim. Dyn. 2020, 57, 1403–1424. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Jacob, D.; Teichmann, C.; Abba Omar, S.; Ashfaq, M.; Ban, N.; Bülow, K.; Bukovsky, M.; Buntemeyer, L.; et al. The CORDEX-CORE EXP-I initiative: Description and highlight results from the initial analysis. Bull. Am. Meteorol. Soc. 2021, 103, E293–E310. [Google Scholar] [CrossRef]
- Dosio, A.; Panitz, H.J.; Schubert-Frisius, M.; Lüthi, D. Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: Evaluation over the present climate and analysis of the added value. Clim. Dyn. 2015, 44, 2637–2661. [Google Scholar] [CrossRef] [Green Version]
- Gibba, P.; Sylla, M.B.; Okogbue, E.C.; Gaye, A.T.; Nikiema, M.; Kebe, I. State-of-the-art climate modeling of extreme precipitation over Africa: Analysis of CORDEX added-value over CMIP5. Theor. Appl. Climatol. 2019, 137, 1041–1057. [Google Scholar] [CrossRef]
- Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53, 5833–5858. [Google Scholar] [CrossRef] [Green Version]
- Gnitou, G.T.; Tan, G.; Ma, T.; Akinola, E.O.; Nooni, I.K.; Babaousmail, H.; Al-Nabhan, N. Added value in dynamically downscaling seasonal mean temperature simulations over West Africa. Atmos. Res. 2021, 260, 105694. [Google Scholar] [CrossRef]
- Gnitou, G.T.; Tan, G.; Niu, R.; Nooni, I.K. Assessing past climate biases and the added value of cordex-core precipitation simulations over Africa. Remote Sens. 2021, 13, 2058. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Klotter, D.A. Assessing the reliability of satellite and reanalysis estimates of rainfall in equatorial Africa. Remote Sens. 2021, 13, 3609. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Klotter, D.; Zhou, L.; Hua, W. Validation of satellite precipitation estimates over the Congo Basin. J. Hydrometeorol. 2019, 20, 631–656. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A.; Pinto, I.; Lennard, C.; Sylla, M.B.; Jack, C.; Nikulin, G. What Can We Know About Recent Past Precipitation Over Africa? Daily Characteristics of African Precipitation From a Large Ensemble of Observational Products for Model Evaluation. Earth Space Sci. 2021, 8, 8. [Google Scholar] [CrossRef]
- Dieng, D.; Cannon, A.J.; Laux, P.; Hald, C.; Adeyeri, O.; Rahimi, J.; Srivastava, A.K.; Mbaye, M.L.; Kunstmann, H. Multivariate Bias-Correction of High-Resolution Regional Climate Change Simulations for West Africa: Performance and Climate Change Implications. J. Geophys. Res. Atmos. 2022, 127, 127. [Google Scholar] [CrossRef]
- Dike, V.N.; Shimizu, M.H.; Diallo, M.; Lin, Z.; Nwofor, O.K.; Chineke, T.C. Modelling present and future African climate using CMIP5 scenarios in HadGEM2-ES. Int. J. Climatol. 2015, 35, 1784–1799. [Google Scholar] [CrossRef]
- Zebaze, S.; Jain, S.; Salunke, P.; Shafiq, S.; Mishra, S.K. Assessment of CMIP5 multimodel mean for the historical climate of Africa. Atmos. Sci. Lett. 2019, 20, 20. [Google Scholar] [CrossRef] [Green Version]
- Diaconescu, E.P.; Laprise, R. Can added value be expected in RCM-simulated large scales? Clim. Dyn. 2013, 41, 1769–1800. [Google Scholar] [CrossRef] [Green Version]
- Washington, R.; Harrison, M.; Conway, D.; Black, E.; Challinor, A.; Grimes, D.; Jones, R.; Morse, A.; Kay, G.; Todd, M. African climate change: Taking the shorter route. Bull. Am. Meteorol. Soc. 2006, 87, 1355–1365. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Chang. 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Zhao, Q.; Yu, L.; Du, Z.; Peng, D.; Hao, P.; Zhang, Y. An Overview of the Applications of Earth Observation Satellite Data: Impacts and Future Trends. Remote Sens. 2022, 14, 1863. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. RegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 2011, 4, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Zanchettin, D.; Rubino, A.; Matei, D.; Bothe, O.; Jungclaus, J.H. Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim. Dyn. 2013, 40, 1301–1318. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Nisancioglu, K.; Bentsen, M.; Tjiputra, J.; Bethke, I.; Yan, Q.; Risebrobakken, B.; Andersson, C.; Jansen, E. Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci. Model Dev. 2012, 5, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Elguindi, N.; Giorgi, F.; Turuncoglu, U. Assessment of CMIP5 global model simulations over the subset of CORDEX domains used in the Phase I CREMA. Clim. Chang. 2014, 125, 7–21. [Google Scholar] [CrossRef]
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring. U.S. Geol. Surv. Data Ser. 2014, 832, 4. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.-P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Adler, R.F.; Sapiano, M.R.P.; Huffman, G.J.; Wang, J.J.; Gu, G.; Bolvin, D.; Chiu, L.; Schneider, U.; Becker, A.; Nelkin, E.; et al. The Global Precipitation Climatology Project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere 2018, 9, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacob, D.; Elizalde, A.; Haensler, A.; Hagemann, S.; Kumar, P.; Podzun, R.; Rechid, D.; Remedio, A.R.; Saeed, F.; Sieck, K.; et al. Assessing the Transferability of the Regional Climate Model. Atmosphere 2012, 3, 181–199. [Google Scholar] [CrossRef] [Green Version]
- Remedio, A.R.; Teichmann, C.; Buntemeyer, L.; Sieck, K.; Weber, T.; Rechid, D.; Hoffmann, P.; Nam, C.; Kotova, L.; Jacob, D. Evaluation of new CORDEX simulations using an updated köppen-trewartha climate classification. Atmosphere 2019, 10, 726. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A.; Jury, M.W.; Almazroui, M.; Ashfaq, M.; Diallo, I.; Engelbrecht, F.A.; Klutse, N.A.B.; Lennard, C.; Pinto, I.; Sylla, M.B.; et al. Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Clim. Dyn. 2021, 57, 3135–3158. [Google Scholar] [CrossRef]
- Kreienkamp, F.; Paxian, A.; Früh, B.; Lorenz, P.; Matulla, C. Evaluation of the empirical–statistical downscaling method EPISODES. Clim. Dyn. 2019, 52, 991–1026. [Google Scholar] [CrossRef] [Green Version]
- Lucas-Picher, P.; Argüeso, D.; Brisson, E.; Tramblay, Y.; Berg, P.; Lemonsu, A.; Kotlarski, S.; Caillaud, C. Convection-permitting modeling with regional climate models: Latest developments and next steps. Wiley Interdiscip. Rev. Clim. Chang. 2021, 12, e731. [Google Scholar] [CrossRef]
Data Type | Name | Institution | Resolution |
---|---|---|---|
Ground and satellite-blended observations | CHIRPSv2.0 | Climate Hazard Group of the University of California, Sancta Barbara | 0.25° × 0.25° |
Ground, satellite, and sounding-blended observations | GPCPv2.3 | University of Maryland | 2.5° × 2.5° |
Global Climate Model (GCM) | HadGEM2-ES | Met Office Hadley Centre (MOHC) | 1.25° × 1.85° |
Global Climate Model (GCM) | MPI-ESM-MR | Max Plank Institute for Meteorology (MPI-M) | 1.8653° × 1.875° |
Global Climate Model (GCM) | NorESM1-M | Norwegian Climate Centre (NCC) | 1.8947° × 2.5° |
Reanalysis | ERA-Interim | European Centre for Medium-Range Weather Forecasts (ECMWF) | 0.75° × 0.75° |
Regional Climate Model (RCM) | RegCM4-7 | Abdus Salam International Center for Theoretical Physics (ITCP) | 0.22° × 0.22° |
HadGEM2-ES | RegCM4-7 (HadGEM2-ES) | MPI-ESM-MR | RegCM4-7 (MPI-ESM-MR) | NorESM1-M | RegCM4-7 (NorESM1-M) | ENSEMBLE_GCM | RegCM4-7 (ENSEMBLE-GCM) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HR | LR | HR | LR | HR | LR | HR | LR | HR | LR | HR | LR | HR | LR | HR | LR | |
DJF | ||||||||||||||||
BIAS | −0.09 | −0.43 | 1.72 | 1.88 | 0.18 | −0.4 | 1.77 | 2.01 | −0.42 | −0.62 | −0.01 | 0.03 | −0.11 | −0.49 | 1.16 | 1.31 |
RMSE | 6.17 | 1.52 | 9.71 | 3.63 | 6.81 | 1.72 | 10.44 | 3.51 | 5.19 | 2.15 | 7.16 | 2.49 | 5.73 | 1.54 | 8.24 | 2.47 |
MAM | ||||||||||||||||
BIAS | −0.38 | −0.52 | 0.69 | 0.39 | 0.04 | −0.51 | 0.36 | 0.42 | 0 | −0.01 | 0.59 | 0.38 | −0.11 | −0.35 | 0.55 | 0.4 |
RMSE | 3.67 | 1.39 | 5.69 | 2.08 | 4.04 | 1.49 | 6.36 | 2.37 | 3.88 | 1.56 | 6.58 | 2.2 | 3.56 | 1.24 | 5.37 | 1.72 |
JJA | ||||||||||||||||
BIAS | −1.82 | −1.56 | 0.77 | −0.26 | −0.8 | −0.66 | 0.54 | 0.3 | −1.47 | −0.87 | −086 | −0.58 | −1.36 | −1.03 | 0.15 | −0.18 |
RMSE | 2.35 | 2.22 | 3.62 | 2.38 | 2.08 | 1.51 | 2.66 | 2.14 | 2.16 | 2.21 | 2.75 | 2.14 | 2.08 | 1.78 | 2.69 | 1.67 |
SON | ||||||||||||||||
BIAS | −0.78 | −0.64 | 2.83 | 1.24 | 0.14 | 0.08 | 0.96 | 0.99 | −0.71 | −0.48 | −0.27 | 0.07 | −0.45 | −0.35 | 1.17 | 0.76 |
RMSE | 2.78 | 1.97 | 4.25 | 2.69 | 2.62 | 1.62 | 3.63 | 2.52 | 2.18 | 1.89 | 2.45 | 1.92 | 2.3 | 1.44 | 2.83 | 1.71 |
Negative AVC | Non-Significant AVC | Positive AVC | |||||
---|---|---|---|---|---|---|---|
HR | LR | HR | LR | HR | LR | ||
DJF | RegCM4-7(HadGEM2-ES) | 65.22% | 52.08% | 5.67% | 26.36% | 29.1% | 21.56% |
RegCM4-7(MPI-ESM-MR) | 52.26% | 53.73% | 4.24% | 7.45% | 43.5% | 38.82% | |
RegCM4-7(NorESM1-M) | 46.41% | 43.4% | 5.05% | 0% | 48.55% | 56.6% | |
RegCM4-7(ENSEMBLE_GCM) | 62.05% | 60.55% | 2.32% | 2.77% | 35.63% | 35.68% | |
MAM | RegCM4-7(HadGEM2-ES) | 68.16% | 75.43% | 3.66% | 0% | 28.18% | 24.57% |
RegCM4-7(MPI-ESM-MR) | 63.86% | 56.28% | 5.26% | 5% | 30.89% | 38.72% | |
RegCM4-7(NorESM1-M) | 52.4% | 41.18% | 3.96% | 0.37% | 43.65% | 58.45% | |
RegCM4-7(ENSEMBLE_GCM) | 54.7% | 51.6% | 5.05% | 1.23% | 40.25% | 47.17% | |
JJA | RegCM4-7(HadGEM2-ES) | 64.47% | 53.52% | 1.6% | 1.16% | 33.94% | 45.32% |
RegCM4-7(MPI-ESM-MR) | 48.32% | 32.3% | 4.35% | 0% | 47.33% | 67.7% | |
RegCM4-7(NorESM1-M) | 30.37% | 26.66% | 9.65% | 14.25% | 59.98% | 59.09% | |
RegCM4-7(ENSEMBLE_GCM) | 49.65% | 41.04% | 4.36% | 0.42% | 45.99% | 58.53% | |
SON | RegCM4-7(HadGEM2-ES) | 61.52% | 49.14% | 2.52% | 4.3% | 35.96% | 46.56% |
RegCM4-7(MPI-ESM-MR) | 73.86% | 77.47% | 3.44% | 0% | 22.71% | 22.53% | |
RegCM4-7(NorESM1-M) | 37.98% | 37.2% | 3.09% | 0.13% | 58.93% | 62.67% | |
RegCM4-7(ENSEMBLE_GCM) | 57.48% | 55.54% | 2.32% | 0.09% | 40.19% | 44.37% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnitou, G.T.; Tan, G.; Hongming, Y.; Nooni, I.K.; Lim Kam Sian, K.T.C. Resolution-Sensitive Added Value Analysis of CORDEX-CORE RegCM4-7 Past Seasonal Precipitation Simulations over Africa Using Satellite-Based Observational Products. Remote Sens. 2022, 14, 2102. https://doi.org/10.3390/rs14092102
Gnitou GT, Tan G, Hongming Y, Nooni IK, Lim Kam Sian KTC. Resolution-Sensitive Added Value Analysis of CORDEX-CORE RegCM4-7 Past Seasonal Precipitation Simulations over Africa Using Satellite-Based Observational Products. Remote Sensing. 2022; 14(9):2102. https://doi.org/10.3390/rs14092102
Chicago/Turabian StyleGnitou, Gnim Tchalim, Guirong Tan, Yan Hongming, Isaac Kwesi Nooni, and Kenny Thiam Choy Lim Kam Sian. 2022. "Resolution-Sensitive Added Value Analysis of CORDEX-CORE RegCM4-7 Past Seasonal Precipitation Simulations over Africa Using Satellite-Based Observational Products" Remote Sensing 14, no. 9: 2102. https://doi.org/10.3390/rs14092102
APA StyleGnitou, G. T., Tan, G., Hongming, Y., Nooni, I. K., & Lim Kam Sian, K. T. C. (2022). Resolution-Sensitive Added Value Analysis of CORDEX-CORE RegCM4-7 Past Seasonal Precipitation Simulations over Africa Using Satellite-Based Observational Products. Remote Sensing, 14(9), 2102. https://doi.org/10.3390/rs14092102