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Abstract: High-resolution traffic data, comprising trajectories of individual road users, are of great
importance to the development of Intelligent Transportation Systems (ITS), in which they can be used
for traffic microsimulations and applications such as connected vehicles. Roadside laser scanning
systems are increasingly being used for tracking on-road objects, for which tracking-by-detection
is the widely acknowledged method; however, this method is sensitive to misdetections, resulting
in shortened and discontinuous object trajectories. To address this, a Joint Detection And Tracking
(JDAT) scheme, which runs detection and tracking in parallel, is proposed to mitigate miss-detections
at the vehicle detection stage. Road users are first separated by moving point semantic segmentation
and then instance clustering. Afterwards, two procedures, object detection and object tracking, are
conducted in parallel. In object detection, PointVoxel-RCNN (PV-RCNN) is employed to detect
vehicles and pedestrians from the extracted moving points. In object tracking, a tracker utilizing the
Unscented Kalman Filter (UKF) and Joint Probabilistic Data Association Filter (JPDAF) is used to
obtain the trajectories of all moving objects. The identities of the trajectories are determined from the
results of object detection by using only a certain number of representatives for each trajectory. The
developed scheme has been validated at three urban study sites using two different lidar sensors.
Compared with a tracking-by-detection method, the average range of object trajectories has been
increased by >20%. The approach can also successfully maintain continuity of the trajectories by
bridging gaps caused by miss-detections.

Keywords: high-resolution traffic data; tracking-by-detection; Joint Detection And Tracking; Joint
Probabilistic Data Association Filter; PointVoxel-RCNN

1. Introduction

Over the last several decades, the number of vehicles in cities has been increasing
greatly with the rapid development of urbanization, which has created more traffic issues
and increased the challenges in traffic management [1]. By providing trajectory-level data
of road users, high-resolution micro traffic data (HRMTD) are more important to traffic
safety and efficiency analysis than macro-level traffic information [2]. Vehicles are the
main targets for HRMTD acquisition. Detecting vehicles and obtaining their dynamics
and other information is a critical operation to create HRMTD [3]. Moreover, emissions
from on-road vehicles are widely regarded to be the main source of air pollution in urban
areas [4]. The study of vehicle emissions is therefore an important aspect for improving
air quality. The fundamental step to conduct vehicle emission study is to identify vehicles
and capture their dynamics. According to recent research, tracking of road users is the
fundamental means to acquire HRMTD [3,5,6]. Video cameras and 3D lidar sensors are
predominant devices to implement object tracking since traditional traffic sensors such as
loop detectors mainly provide macro traffic data including traffic flow rates, average speeds,
and occupancy [7]. Visual information from video cameras is richer, but the level of data
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accuracy is decreased by image distortion and resolution. Moreover, optical cameras are
easily affected by illumination [8]. Panoramic 3D lidar sensors scan the 360◦surroundings
at a high frequency. Objects in the scanning area can thereby potentially be detected and
tracked directly in 3D with high spatial accuracy and temporal resolution. Moreover, with
the ongoing development of lidar technology and increased ubiquity, the cost of such
sensors has dramatically decreased in recent years; therefore, such sensors are increasingly
being adopted in the field of traffic monitoring [9].

Roadside laser scanning systems can facilitate the generation of HRMTD. Most ex-
isting roadside lidar-based object tracking studies are based on a tracking-by-detection
strategy. Firstly, moving points in the raw lidar data are segmented from the background.
Secondly, these moving points are clustered into small groups. Every group represents
an individual road user. Thirdly, vehicles are extracted either by locating the lanes which
vehicles occupy [10], or by vehicle and non-vehicle classification among all determined
clusters [8,11]. Global Nearest Neighbor (GNN) [10] and Kalman filtering (KF) [2] are
commonly used methods in the final stage, namely vehicle tracking. It is acknowledged
that points on the objects being scanned become sparser when the objects are further from
the sensor; therefore, objects in the far scanning field become ‘low-observable’ because of
indistinguishable shapes. Additionally, occlusions from other objects or from the target
itself are common issues in object tracking from roadside laser scanning systems. The
clusters under occlusions are defected or totally missing. The absence of detections is
highly likely to occur in the above two situations. Tracking will thereby be affected in
the tracking-by-detection procedure: the coverage of object trajectories will be decreased
and/or the trajectory be interrupted.

The body of literature related to mitigating the dependence of tracking on detection in
roadside laser scanning systems is quite small. There are normally two strategies adopted
among the reported studies: (1) simultaneous detection and tracking; (2) tracking before
detection. In the first strategy, detection and tracking are either simultaneously performed
by transferring the points on the moving objects into the space-time coordinate system [9]
or improving detection performance using the information provided by tracking [12]. In
the second strategy [13,14], as part of the preprocessing, tracking is implemented before
knowing the identity of the clusters. The following classification is performed at a trajectory
level to utilize as much traffic information as possible. The aforementioned research has
mitigated the disadvantages of the traditional tracking-by-detection methods. Nevertheless,
work in [12–14] has mainly focused on object classification, regarding tracking as one of
the pre-processing operations [13,14], or the means to improve detection ability [12]. Thus,
there is still scope for further research into tracking. Although tracking plays a vital role
in [9], it focuses only on a single class (pedestrians), which is insufficient for large scale
HRMTD acquisition. In addition, there are difficulties transferring the methodology to
other classes such as vehicles.

Intending to enhance tracking performance to acquire higher quality HRMTD, a Joint
Detection And Tracking (JDAT) scheme is proposed in this paper. Moving points are firstly
extracted and road users are obtained via clustering. A tracker combining an Unscented
Kalman Filter (UKF) [15] and a Joint Probabilistic Data Association filter (JPDAF) [16] is
implemented on the obtained road user clusters without knowing the exact classes. In the
meantime, vehicles and pedestrians are detected by PointVoxel-RCNN (PV-RCNN) from
the moving point clouds. The trajectories are classified into vehicles and pedestrians by
identifying the representatives from the object detection results. The main objectives of the
research reported in this paper are as follows:

(1) Occlusions and data sparsity are the main challenges of roadside lidar data, causing
interruptions and shortened range of object trajectories. Thus, the first objective of
this paper is to increase object tracking ranges and improve trajectory continuity for
enhanced information extraction.

(2) As there are different kinds of on-road objects, it is useful to learn how object category
affects the maximum tracking range, which can also be influenced by the number
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of laser beams on the lidar sensor; therefore, the second objective of this paper is to
investigate how the object types/sizes and number of lidar beams practically affect
the trackable ranges in roadside lidar systems.

To achieve the above objectives, the proposed JDAT scheme keeps small segments that
are caused by occlusions or long distances for tracking so that the tracking ranges can be
increased and the trajectory continuity can be improved. The maximum tracking ranges
of four different types of on-road objects (bus, car, van, pedestrian) have been assessed. It
has also been proven that a higher number of beams can expect a longer tracking range in
general, via the comparison of two different lidar sensors (RS-LiDAR-32 and VLP-16).

2. Related Work

Tracking-by-detection is widely applied in current object tracking studies based on
video images, on-board lidar, as well as fixed lidar. The first section gives a brief review of
roadside lidar-based object tracking with tracking-by-detection schemes. Tracking-before-
detection is another object tracking strategy which has not been fully explored, especially
in the field of laser scanning. The related work is summarized in the second section.

2.1. Tracking-by-Detection

Most current lidar-based object tracking studies utilize a tracking-by-detection strategy
in which objects are detected before they are tracked. According to the methodology
exploited in object detection, existing tracking-by-detection related studies can be divided
into two subsequent categories.

In the first category [2,8,10,17,18], object detection is generally realized by an object
detection framework containing moving point detection, clustering and classification.
Object tracking is conducted by filtering methods. Several representative studies are
summarized as follows:

In the study presented by Zhao et al. [2] the background filtering algorithm involves
frame aggregation, point statistics, threshold learning, and real-time filtering. In the clus-
tering stage, a modified Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) clustering algorithm with adaptive MinPts value and searching radius is devel-
oped. After clustering, a reference point is selected to represent each cluster, which will
be used in the later procedures. A classification model based on BP-ANN is developed to
distinguish pedestrians and vehicles in the detection range. A discrete KF is used in the
tracking stage.

In the work of Zhang et al. [8] moving points are extracted by a Max-Distance algorithm
in the first instance. These are then clustered into individual objects via a Euclidean Cluster
Extraction algorithm. These objects are later classified into vehicles and non-vehicles by
traditional classification methods. A tracker composed of UKF and JPDAF is adopted in
the subsequent tracking stage.

Wu [9] developed an automatic 3D-Density-Statistics-Background-Filtering algorithm
to filter the background from the scene. A unique operation after background filtering is
lane identification, which aims to restrict the operation area to lanes. Consequently, the
remaining foreground points only belong to vehicles so that classification is no longer
needed. Subsequent procedures mainly comprise vehicle clustering, for which DBSCAN is
adopted, and continuous vehicle tracking. To realize continuous vehicle tracking, a point
is selected for each vehicle cluster and the GNN algorithm is applied to track the same
vehicle in different frames.

In the second strategy [19–23], objects are detected directly from original point clouds by
deep learning technologies and then tracked using either filtering or deep learning algorithms.

In two typical studies of the second strategy [19,20], two state-of-the-art 3D detec-
tors [20,21] are explored in the detection stage to obtain bounding boxes. Pre-trained
models from the KITTI 3D object detection benchmark [24] training set are adopted. In
the tracking stage, a 3D KF predicts the state of associated trajectories from the previous
frames to the current frame. Thereafter, a data association module based on the Hungarian
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algorithm [25] matches the predicted trajectories from the KF and detections in the current
frame. Afterwards, the KF updates the state of trajectories based on the matched detections.
Finally, a module is designed to manage the birth and death of the detected objects.

The tracker used in the above work was adopted by Shi, et al. [23] to obtain object
IDs of the 3D boxes generated from lidar data by an off-the-shelf 3D object detector, PV-
RCNN. SECOND was used as the 3D object detector in the proposed tracking system,
considering the detection speed and effect, by Wang et al. [26] A 3D KF was used in the
subsequent tracking module. Different from the above work, in which filtering algorithms
were adopted at the tracking stage, a deep learning based-method was used for data
association by Weng et al. [27] More specifically, a Graph Neural Network was applied to
multi-object tracking for the first time. Moreover, a novel feature interaction mechanism
was introduced to make the affinity matrix more discriminative.

2.2. Tracking-before-Detection

Tracking-before-detection is normally adopted to track low-observable objects which
are easily overlooked in traditional tracking-by-detection schemes, or to reduce the com-
plexity or remove the constraints on certain object categories in existing technologies.

As described by Tong et al. [28] by making full use of the raw radar data, a tracking-
before-detection strategy is suitable for the detection and tracking of low-observable objects.
A classical Probabilistic Hypothesis Density filter, with a ‘standard’ multi-target measure-
ment model, is proposed in this work to deal with the multi-target tracking-before-detection
problem. Moreover, an efficient segmentation mask-based tracker, which associates pixel-
precise masks reported by the segmentation, is presented by Ošep et al. [29]. This approach
utilizes semantic information whenever available for classifying objects at track level, while
retaining the capability to track generic unknown objects in the absence of such information.
Mitzel and Leibe [30] proposed a novel tracking-before-detection method that can track both
known and unknown object categories in very challenging video sequences of street scenes.
Gonzalez et al. [31] raised a track-before-detect framework for multibody motion segmen-
tation based on vehicle monocular vision sensors. The contribution of this work relies on a
tightly coupled tracking-before-detection strategy intended to reduce the complexity of ex-
isting multibody structure from motion approaches. To remedy fragmented trajectories due
to detection failures in the tracking-by-detection framework, a novel detection-by-tracking
method that prevents trajectory interruption was proposed by Chen et al. [32] Based on this
method, an object’s accurate 3D bounding box can be recovered according to the tracking
results in the situation of occlusions and missed detections.

The aforementioned object tracking methods based on the tracking-by-detection strat-
egy have been confirmed to be efficient in certain aspects; however, they are not qualified to
provide more detailed HRMTD due to the negative influence from the object detection pro-
cess. Moreover, although tracking-before-detection has great potential to detach tracking
from detection, the current small number of approaches for either radar or video sensors
cannot be directly applied to lidar sensors; therefore, there is still much potential for object
tracking from laser scanning systems, especially roadside sensors.

3. Methodology

As shown in Figure 1, there are three main stages in the proposed methodology:
segmentation as a pre-processing operation; tracking of all the moving objects; trajectory
classification intended to categorize the trajectories into vehicles, pedestrians, and others.
The three stages are explained as follows.
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3.1. Segmentation

Moving points detection and clustering are two main operations to segment the
moving objects from the original point cloud. Moving points are detected by the Max–
Distance strategy [9]. According to the operating principle of the laser scanner, each laser
beam rotates in a circle repeatedly with a proper angular resolution [33]. A point named
as Pi×j is obtained when the ith laser beam is directed at the azimuth angle j. The distance
of this point to the laser scanner can be denoted as Di×j. The laser beam is not supposed
to pass through the static background (Ri×j

b ); therefore, the furthest point at (i, j) with the

distance of Di×j
max should locate at the background. If Di×j < Di×j

max, Pi×j is on a moving

object (Ri×j
m ), as can be seen in Equation (1). The background of each test site is constructed

by determining the furthest point at every location in Ri×j. The construction is expected
to be implemented during a certain time period when there are only a small number of
moving objects.

Pi×j ∈

 Ri×j
m , i f D

i×j
< Di×j

max

Ri×j
b , i f D

i×j
= Di×j

max

i ∈ (1, 2, . . . , n), j ∈ (0, 360◦ ) (1)

The Euclidean Cluster Extraction (ECE) algorithm is used to group points on the same
moving object. One parameter that greatly matters in the clustering process is the minimum
cluster size S1. Small clusters with few points in the far scanning field are supposed to be
maintained because the following object tracking step aims to associate all visible clusters
in the scanning region so that tracking can continue to the maximum extent. According to
the datasets exploited in this work, S1 is set to 5. The ECE algorithm is illustrated in the
following steps:

• Create a Kd-tree representation of the point cloud dataset, P.
• Set up an empty list of clusters, C, and a queue of points requiring processing, Q.
• For every point pi in P, the following operations will be undertaken:

(1) Add pi to Q.
(2) For every point pk in Q, search the neighboring points in a sphere with radius

r < d. Then check each neighboring point to see if it has already been processed,
if not, add it to Q.

(3) If all points in Q have been processed, add Q to C and reset Q to empty.

• Terminate when all the points in P have been processed and included in C.

3.2. Object Tracking

After segmentation, clusters belonging to the same object in successive frames are
supposed to be associated to retrieve the trajectory. A tracker utilizing UKF as the initial
function and JPDAF as the association algorithm is adopted in the tracking flow to provide
trajectories of the objects. It is noteworthy that all the segmented moving objects are
tracked without knowing the specific categories. The state and measurement equations are
as Equation (2). The final state update equation is given as Equations (3) and (4).

xk+1 = f (xk, uk, t) + wk
zk = h(xk, t) + vk

(2)

A constant-velocity UKF is first initialized, which estimates the state of a vehicle by a
nonlinear stochastic equation. In constant-velocity motion, the state vector of a vehicle is
defined as x = [x ; vx ; y ; vy].

Where xk is the state at step k; f is the state transition function, uk is the control on
the process. The motion may be affected by random noise perturbations wk. h is the
measurement function that determines the measurements as functions of the state. Typical
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measurements are position and velocity or some functions of these, which can also include
noise represented by vk.

Zi
k = h(χi

k/k−1) i = 0, . . . , 2L (3)

X̂k|k = X̂k|k−1 + Kkvk (4)

In the UKF-JPDAF-based tracking procedure, the confirmation threshold, normally used
to confirm a track and specified as [M, N], is critical to the tracking range. A track is confirmed
if it recorded at least M hits in the last N updates. Thus, the first M-1 clusters of an object
will not be assigned to the corresponding track based on the parameter definition. To avoid
missing any potential targets, the confirmation threshold in this work is set to [1, 3].

Moving objects in this work mainly refer to vehicles, pedestrians, cyclists, motorcy-
clists, and false alarms (e.g., trees and bushes moving in wind). According to practice,
trajectories of any false alarms should be relatively short; therefore, to reduce false alarms
in the subsequent trajectory classification, trajectories with lengths shorter than a certain
threshold L are removed after tracking.

3.3. Object Detection Based on PV-RCNN

Although traditional classifiers perform well when the clusters of targeted objects are
extracted, selecting distinguishable hand-crafted features is a laborious task that somewhat
depends on personal experience. Fortunately, the widely and fast developing deep learning
technologies provide comprehensive features for the objects through learning mechanisms.
PV-RCNN is a recently proposed 3D object detection network that has integrated the ad-
vantages of prevalent point-based methods and voxel-based methods. Moreover, according
to Shi et al. PV-RCNN performs well using KITTI data [34] Considering that the difference
between data used in KITTI and in this study is primarily the data density, it is anticipated
that PV-RCNN will also work well here. More specifically, PV-RCNN is operated on the
processed lidar scans containing only moving points in order to remove false alarms.

The PV-RCNN framework is trained end-to-end by the self-created training dataset
with the training loss that is the sum of the following three losses: the region proposal loss
Lrpn, keypoint segmentation loss Lseg, and the proposal refinement loss Lrcnn. The three
losses are summed with equal loss weights. A Grid search algorithm is adopted in the
training process to determine the optimum value for the most important hyperparameters
such as batch-size, epoch and voxel-size [35].

The original PV-RCNN algorithm was trained by samples of three classes including
cars, pedestrians and cyclists from KITTI data; however, in our case, cyclists are not
considered as a single class because the number of occurrences in the collected lidar data
is extremely small. Therefore, a two-class training dataset is created using the third-party
point cloud labelling software, Supervisely [36].

3.4. Trajectory Classification

After tracking, clusters of the same object have been associated across successive
frames; however, not all of them are needed in the trajectory classification process because
they belong to the same category. Since larger clusters are more distinguishable than those
with smaller sizes in a trajectory, they can act as representatives of the trajectory that will
be fed into the classifier, such that the negative influence from the low-observable clusters
can be minimized.

By identifying the categories of the representatives according to the results of object
detection, the category of the corresponding trajectory can be determined. One attribute of
the representatives is the ID of the original lidar frame from which the representative is
extracted. As PV-RCNN is operated on frames that only contain moving points abstracted
from the corresponding original lidar frame, the category of the representatives can be
easily traced from the detection results by their frame IDs. If at least p (a ratio) of the total
number (n) of representatives are classified as one of the classes in the detection results, the
trajectory is allocated into that class.
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4. Experimental Results and Analysis
4.1. Datasets

The tests conducted in this research employ two different lidar sensors. The first
is a RS-LiDAR-32, a panoramic instrument from RoboSense. The sensor has a scanning
radius of up to 200 m and is designed for various applications such as autonomous vehicles,
robotics, and 3D mapping. It has 32 laser beams and collects data at a speed of 640,000 pts/s.
The scanning frequency is set to 10 Hz in our tests. It covers a 360◦ horizontal FOV and a
40◦ vertical FOV with 15◦ upward and 25◦ downward looking angles. The second sensor is
a Velodyne VLP-16, with 16 laser beams and a maximum scanning range of 100 m. The
vertical field of view of the instrument is 30◦ with 15◦ upward, and 15◦ downward, look
angles. The scanning frequency is also set to 10 Hz in our experiments.

Three different study sites were chosen in Newcastle upon Tyne, UK, to test the
proposed method under real-world traffic conditions. At the first site (Figure 2a), a RS-
LiDAR-32 lidar sensor was setup along a straight road near a traffic light controlled
pedestrian crossing. The lidar sensor was c. 4 m away from the first of two traffic lanes. At
the second site (Figure 2b), a VLP-16 lidar sensor was set up at a road intersection. The lidar
sensor was c. 4.5 m away from the first of multiple lanes. Study Site 3 was at a roundabout
with busy traffic, where a VLP-16 was installed but with a shorter distance of c.2 m to the
nearest lane (Figure 2c).
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Figure 2. Three study sites used in this research: (a) Study Site 1: a single straight section of Claremont
Road running through Newcastle University campus; (b) Study Site 2: a junction of the Great North
Road and St Mary’s Place in Newcastle upon Tyne; (c) Study Site 3: a crossroad of Clayton Road and
Osborne Road in the region of Jesmond, Newcastle upon Tyne.

A dataset containing 3184 vehicles and 1563 pedestrians was created from 763 lidar
frames collected at Study Site 1. 360 vehicles and 368 pedestrians from 63 frames composed
the test split. The remainder of the dataset is divided into train split and validation split at
a ratio of 7:3.

4.2. Experiment Settings
4.2.1. Segmentation

The background of each test site is constructed prior to moving point extraction.
Background construction is normally conducted by successive frames in a certain time
interval when the number of moving objects is as small as possible. In our experiments,
for each of the three study sites, 100 successive frames in a quiet period were selected to
perform background construction.

In clustering, there are three important parameters: the minimum cluster size S1, the
maximum cluster size S2, and the minimum distance d between two clusters. At three study
sites of this research, the minimum distance between two vehicles is around 1.5 m, and the
minimum distance between a pedestrian and a vehicle is around 1.8 m; therefore, d is set to
1 m in the tests. The cluster size is dependent on the number of beams of the sensors, and
thus needs to be adjusted for different sensors. According to comprehensive statistics, the
largest vehicle cluster contains around 6000 points from RS-LiDAR-32, so S2 = 6500. Since
the point density is much lower from the VLP-16, the value is smaller: S2 = 5500. Small
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clusters with few points in the far scanning field are supposed to be maintained because the
following object tracking step is aimed to associate all the visible clusters in the scanning
region so that tracking can be continued to the maximum extent. According to the datasets
from three study sites, S1 is set to 5.

4.2.2. Object Detection and Tracking

As for PV-RCNN, the entire network was trained with batch size 4, learning rate 0.01,
for 100 epochs on a NVIDIA GeForce RTX 3090 GPU, which took around 8 h in terms of
processing time.

Some important parameters in the tracking stage are specified in Table 1. These param-
eters are involved in the three stages of tracking including initialization, data association,
and track management. The description, setting, and justification for each parameter is
shown in the table. ‘Initialization threshold’ is used to start a new track. If the association
probability of a detection within the assignment gate is lower than the threshold, a new
track will be generated. This parameter is usually set as a scalar in [0, 1]. In this study, the
default value of 0.1 in the JPDAF algorithm was assigned to this parameter. ‘Confirmation
threshold’ is a parameter to confirm a track and is normally specified as [M, N]. A track is
confirmed if it records at least M hits in the last N updates. Thus, the first M-1 clusters of an
object are not assigned to the corresponding track. To avoid missing any potential targets,
the confirmation threshold in this study was set to [1, 3]. ‘Assignment threshold’ is the
pivotal parameter in data association. It controls the range within which the detections are
assigned to tracks, namely, the assignment gate. If the value is too small, some detections
that should be assigned to a track might be overlooked. Otherwise, there will be false
assignments. In this study, it was empirically set to 4 m, considering both the average
vehicle speed and lidar sensor frame rate. There are two parameters in track management
worth mentioning: the first is ‘Deletion threshold’, which is used to delete a track. It is
normally set as [P, R], which means a confirmed track will be deleted if it is not assigned to
any detection in P of the last R tracker updates. The default value in the JPDAF algorithm
is [5, 5] and this value was adopted in this study. The other parameter is ‘Length threshold’,
a parameter used to delete trajectories that do not belong to road users. It was set as 3 m
according to experiments and practice.

Table 1. Parameter settings used in tracking stage.

Procedure Parameter Description Setting Basis of Setting

Initialization

Initialization threshold Threshold to initialize a track 0.1 Default

confirmation threshold Threshold for track
confirmation [1, 3] Experiment

Data association Assignment threshold Detection assignment
threshold [4 m, Inf] Practice and empirical

knowledge

Track management
Deletion threshold Threshold for track deletion [5, 5] Default

Length threshold Threshold to delete a
non-vehicle trajectory 3 m Experiment and practice

4.2.3. Trajectory Classification

Further experimentation is necessary to determine the optimum parameters in trajec-
tory classification. n is the number of representatives of a trajectory, whereas p is the ratio
of representatives identified as vehicles to all the representatives. Six cases have been tested
with different values (n = (10, 20, 30), p = (0.5, 0.6, 0.7, 0.8)) to decide the optimal n and p in
terms of the classification performance of the trajectories which is measured by the F1 score.
According to Figure 3, the classification performance is optimum when n = 30 and p = 0.5.
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Figure 3. Classification performance with different n and p values. n is the number of representatives
of a trajectory; p is the ratio of representatives identified as vehicles to n.

4.3. Results and Analysis
4.3.1. Detection Results

The results of PV-RCNN detection at Study Site 1 are shown in Figure 4 and Table 2.
Recall, precision, and F1 are adopted to evaluate the detection results. As can be seen from
Table 2, F1 of vehicle is 10% higher than that of pedestrian. There is no significant difference
between recall values of the two classes, but the precision of vehicle is much higher than
that of pedestrian. The worse results for pedestrians can be explained by the limitation
of PV-RCNN, where an insufficient number of key points may harm the performance of
objects with small sizes [33].
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Figure 4. PV-RCNN detection results at Study Site 1: (a) ground truth; (b) detection results.

Table 2. Detection results from PV-RCNN.

Class Total Number Recall (%) Precision (%) F1 (%)

Vehicle 182 74.7 83.4 78.8
Pedestrian 146 72.6 65.4 68.8

4.3.2. Trajectory Classification Results

The results of trajectory classification at Study Site 1 are shown in Figure 5 and Table 3.
There are 20 vehicle trajectories and 45 pedestrian trajectories obtained from the test data.
Fourteen vehicle trajectories and 42 pedestrian trajectories have been correctly identified,
resulting in recall values of 70% and 93.3%, respectively. The recall of a vehicle is low due
to a misclassification of short trajectories that is located too far from the lidar sensor. The
precision values of the two classes do not show big differences (82.4% of vehicle and 87.5%
of pedestrian). The resulting F1 of the vehicle is 75.7%, and of pedestrians, it is 90.3%.
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Table 3. Trajectory classification results by JDAT.

Class Ground Truth Recall (%) Precision (%) F1 (%)

Vehicle 20 70.0 82.4 75.7
Pedestrian 45 93.3 87.5 90.3

4.3.3. Comparison with Tracking-by-Detection Method

In tracking-by-detection methods, tracking is implemented after the objects are detected.
Fifteen vehicle examples from three study sites are used to compare the tracking-by-detection
method with the proposed method, with regard to both the range and the continuity of the
trajectories. The maximum tracking ranges of two commonly used lidar sensors are further
measured. The trajectories of these vehicle examples are shown in Figures 6 and 7, and the
statistics for ranges from the first nine examples are displayed in Table 4.
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Table 4. Comparison between the tracking-by-detection method and JDAT regarding the range of
vehicle trajectories.

Study Sites
Vehicle

Examples

Tracking-by-Detection JDAT Ground Truth Comparison

Start
Frame

End
Frame N1

Start
Frame

End
Frame N2

Start
Frame

End
Frame N N1/N

(%)
N2/N
(%)

N1/N2
(%)

1
1 777 849 73 743 849 107 741 849 109 67.0 98.2 68.2
2 878 967 90 875 976 102 865 991 127 70.9 80.3 88.2
3 4880 4971 92 4871 4979 109 4863 4996 134 68.7 81.3 84.4

2
4 4221 4274 54 4219 4284 66 4219 4302 84 64.3 78.6 81.8
5 9110 9163 54 9100 9173 74 9100 9181 82 65.9 90.2 73.0
6 9105 9162 58 9104 9174 71 9104 9185 82 70.7 86.6 81.7

3
7 0 20 21 0 34 35 0 34 35 60.0 100 60.0
8 766 836 71 766 858 93 766 858 93 76.3 100 76.3
9 926 977 52 926 987 62 926 987 62 83.9 100 83.9

Mean 69.7 90.6 77.5

• Ranges of the trajectories

Nine vehicles travelling across the entire scanning region are used to compare the two
methods. For each vehicle, two trajectories are obtained from the two methods, individually.
The start and the end frame of each trajectory are recorded in Table 4, as is the total number
of frames the trajectory covers, which is denoted as N1 for the tracking-by-detection method
and N2 for the proposed method. By checking the vehicle clusters from the original data,
the corresponding ground truth (the number of frames is denoted as N in Table 4), which
refers to the frames where the vehicle actually exists, can be obtained and regarded as the
reference to compare the performance of two methods. N1/N, N2/N are used as indices
for comparison.

From a qualitative perspective, Figure 6, trajectories from the proposed method appear
longer than those from the tracking-by-detection method. The differences mainly lie in one
(examples 1, 4, 6, 7, 8, 9) or two ends (examples 2, 3, 5) of the trajectories, which is in line
with the assumption that low-observable clusters in the far field are very likely to be absent
in the tracking-by-detection method. From a quantitative perspective, seen through the
comparison results in Table 4, the proposed method outperforms the tracking-by-detection
method, except for examples 2, 3, 4 and 6, as N2/N can be over 90%, with several values
even reaching 100%. The highest N1/N value from the tracking-by-detection method is
only 83.9%. The lowest N1/N value is 60% in example 7, indicating that nearly half of the
clusters are missing. Even though this is an extreme example, it indeed happens when the
classifier is not properly trained. The proposed method is effective for improving such
situations, as demonstrated where N1/N has increased from 60% to 100% in example 7.
The tracking ranges of nine vehicles are shown in Table 4, which further demonstrates the
ability of JDAT to increase trajectory ranges. N1/N2 is used to directly compare the two
methods. The average value of N1/N2 is 77.5%, which means the proposed method has
increased the trajectory range by 22.5%.
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• Continuity of trajectories

Six vehicle examples, denoted as vehicle examples 10–15 from the three study sites
(10 and 11 from Study Site 1, 12 and 13 from Study Site 2, 14 and 15 from Study Site 3), are
used to demonstrate that the proposed method has the ability to bridge the trajectory gaps
caused by misdetections from the tracking-by-detection method.

In vehicle example 10 at Study Site 1, the trajectory from the tracking-by-detection
method (left in Figure 7a) is chopped into two at the front end due to a short-time occlusion.
Moreover, the corresponding trajectory from the proposed method (right in Figure 7a) is
successive because clusters that are lost in the tracking-by-detection method are retained
on the trajectory. In vehicle example 11 at Study Site 1, the trajectory from the tracking-by-
detection method is divided into three parts from the rear end (blue, green and red in the
left in Figure 7b) because some low-observable clusters are missing after vehicle detection.
The problem is avoided in the proposed method and a continuous trajectory is generated
(right in Figure 7b).

With regard to example 12 from Study Site 2 (Figure 7c), there is a slight occlusion
at the beginning, and several affected clusters are overlooked in the detection stage in
the tracking-by-detection method, resulting in interruption to the trajectory. Nevertheless,
tracking proceeds smoothly from the beginning to the end in the proposed method. Vehicle
example 13 at Study Site 2 is turning right. During a certain period, the vehicle clusters
become too weak for the classifier due to self-occlusion. Thus, for a short moment, tracking
using the tracking-by-detection method is suspended before the clusters are recovered. As
a result, two trajectories are generated, seen as the left figure in Figure 7d. Although, there
is no such problem in the proposed method because those low visible clusters are assigned
to the trajectory directly in the tracking stage and they do not contribute to the subsequent
trajectory classification.

Vehicles 14 and 15 from Study Site 3 both suffer from occlusions caused by other
vehicles. As for vehicle 14, occlusion is severe, and the affected clusters only appear to be
blurred boundaries. Accordingly, tracking is paused for around 1.5 s in the tracking-by-
detection method (left in Figure 7e); however, there is no negative influence in the proposed
method, as can be concluded from the integral trajectory in Figure 7e. In terms of vehicle
15 from Study Site 3, despite discontinuous occlusions, tracking is conducted without any
resistance in the proposed method. Unfortunately, tracking in the tracking-by-detection
method is interrupted twice, generating a trajectory that is cut into three pieces from the
rear end (blue, black, and red in the right sub-figure in Figure 7f).

From the aforementioned comparisons based on 15 vehicle examples from three
different study sites, it can be concluded that moving object trajectories from the JDAT
method are more extensive than corresponding ones from the tracking-by-detection method.
Moreover, the trajectory gaps resulting from the tracking-by-detection method can be
stitched by the JDAT method, thereby improving the continuity of vehicle trajectories.

4.3.4. Maximum Tracking Range

It is of high practical significance to measure the maximum tracking ranges of different
on-road objects. Object trajectories are classified into vehicles and pedestrians according to
the detection results from PV-RCNN. Due to data limitations, it is impossible to further
classify vehicles into different classes by PV-RCNN. A Random Forest classifier is thereby
adopted to classify vehicles into buses, cars, and vans. Two lidar sensors installed at Study
Site 1 and Study Site 2 are separately adopted to assess the maximum tracking ranges of
the four adopted object categories.

The following observations can be obtained from Table 5:

• From a general perspective, the maximum tracking range of pedestrian is shorter than
• that of vehicles including bus, car, and van. At Study Site 1, the maximum tracking

range of pedestrian is the shortest among all the categories because it has the smallest
object size. Although, at Study Site 2, the maximum tracking range of pedestrian
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is longer than that of car because two pedestrians were walking together and were
tracked as one object.

• In terms of vehicles, the maximum tracking range of car is shorter than that of van
and bus due to smaller object size.

• For car, van, and pedestrian, the maximum tracking range at Site 1 is longer than that
at Site 2 because a sensor with more laser beams is adopted at Site 1. For buses, the
sensor can ‘see’ through a straight open road branch at Site 2, whereas at Site 1, bushes
and trees occlude some of the beams when they attempt to spread further (seen as
Figure 2). Therefore, buses can be tracked for longer at Site 2.

Table 5. Maximum tracking range of two different lidar sensors for different object categories.

Study Sites Road Condition Sensor Type
Maximum Tracking Range(m)

Bus Van Car Pedestrian

1 Straight section RS-LiDAR-32 109.5 111.3 98.2 91.8
2 Intersection VLP-16 112.39 49.26 38.16 48.50

It can be concluded from the above observations that the size of objects and the number
of laser beams matter greatly in the determination of maximum tracking range.

The algorithm proposed by Wu et al. [37] filters the background by dividing the space
into grids with equal size and only considers points within 60 m; therefore, the maximum
object detection range can only reach 60 m. Based on this background filtering algorithm,
vehicles with a max distance of 29.1 m from the lidar sensor could be detected and tracked
by Wu [10]. Another background construction algorithm has increased vehicle detection
range to 100 m [33]. The above works are all based on a VLP-16 lidar sensor. In another
proposed tracking-by-detection procedure [8], the tracking ranges with two different lidar
sensors, RS-LiDAR-32 and VLP-16, are 45 m and 18 m, respectively. Compared with the
above works, object tracking range using the proposed method has reached 111.3 m by
RS-LiDAR-32 and 112.4 m by VLP-16. The above comparison is summarized in Table 6.

Table 6. Comparison of developed method with other works in terms of Maximum Tracking Range.

Method Sensor Type Maximum Tracking Range (m)

[36] VLP-16 60
[9] VLP-16 29

[32] VLP-16 100
[7] VLP-16, RS-LiDAR-32 18, 45

Proposed method VLP-16, RS-LiDAR-32 112, 111

5. Discussion

An advanced 3D object detection network, PV-RCNN, has been applied in this research.
The performance of pedestrians was worse than vehicles according to the inference that the
limited number of key points may harm the performance of objects with small sizes [34],
which is also the reason why enlarging the number of training samples for the pedestrian
class by adding KITTI data did not demonstrate any improvement. Vehicles were first
detected by PV-RCNN, and later fine-grain classified into different categories using a RF
classifier. This was undertaken with the consideration that discriminating vehicles from
other objects first and further classifying them into different categories can usually provide
better performance. It would be interesting to apply PV-RCNN as a multi-class detector
when more training data is obtained. Further trials aim at adapting the network to make it
directly operate on object proposals. PV-RCNN was operated using moving points, and it
has also been tested with original lidar data to provide comprehensive comparisons.

There are three main sections in the proposed framework (as seen in Figure 1 in the
manuscript): moving object segmentation, joint object detection and tracking, trajectory
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classification. Moving object segmentation is a pre-processing procedure which removes
the irrelevant background and helps to reduce the number of false alarms. Object tracking
and detection are performed in parallel, so tracking is not affected by detection, and
therefore, the quality of trajectories is improved. As only representative clusters are used to
identify the category of the trajectory from the detection results, the accuracy of trajectory
classification is increased accordingly.

In the segmentation stage, empirical parameters include the minimum cluster size
S1, the maximum cluster size S2, the minimum distance d between two clusters. Distance
d between two vehicles would not vary greatly in different traffic situations. S1 and S2
are dependent on the sensor. Assuming the dataset covers all kinds of on-road objects,
point density, which is affected by the type of sensor used, would be the only factor that
influences the values of S1 and S2. It can be conducted statistically according to the dataset.
In the object detection stage, there are no parameters that are dependent on the sensor. In
the object tracking stage, parameter settings are shown in Table 1 of the manuscript. As can
be seen from the table, only the assignment threshold is related to lidar sensor. In this study,
it was set to 4 m considering both the maximum vehicle speed and lidar sensor frame rate.
Given that the lidar frame rate is normally fixed at 10 Hz, the parameter does not need to
change in a typical urban environment.

The input of the JDAT framework is original lidar data and the output are trajectories of
vehicles and pedestrians. Detection and tracking are performed in parallel in the framework.
In a similar work where joint object detection and tracking are also performed [38], the
realization of parallelism relies on an object detection and a correlation network. The object
correlation network is only part of the object tracking procedure, which means detection
and tracking are not performed completely in parallel. Although object tracking in the JDAT
framework is not based on advanced deep learning strategies, it is totally independent from
object detection, which makes it more flexible and capable of generating higher quality
outcomes such as trajectories with wider ranges and enhanced continuity.

The effectiveness of the proposed method has been assessed by both qualitative and
quantitative analysis of various examples from different traffic scenes. Point cloud data
has been processed to show the maximum tracking range of different object categories
from two commonly used lidar sensors. Four widely existing on-road object categories,
bus, car, van, and pedestrian, have been considered in the process. Other moving object
categories in cities such as trucks, cyclists, and motorcyclists are not distinguished due
to data limitations. Determining the maximum tracking ranges of these four categories
provides installation guidance for real-world multi-lidar utilization.

6. Conclusions

A JDAT framework based on roadside lidar is proposed in this paper. Object detection
and tracking are conducted in parallel when moving objects are segmented from the
original point cloud by moving point detection and clustering. Trajectory classification
is subsequently implemented to separate object trajectories into vehicles and pedestrians.
Only dominant clusters regarded as representatives of each trajectory contribute to the
classification procedure. Comprehensively evaluated by datasets from three study sites
with two different lidar sensors, the presented framework shows potential to provide
enhanced HRMTD by improving the quality of road user trajectories. The trajectory
range has been extended by 22.5% based on object examples from different scenes; the
continuity of the trajectories has been enhanced by bridging gaps arising from the absence
of clusters. Moreover, the maximum effective tracking ranges of four different on-road
object categories (bus, car, van, pedestrian), using the proposed methodology, have been
evaluated. The research conducted thus far has some recognized limitations, primarily:
trajectory discontinuity caused by persistent heavy occlusion could not be resolved as the
proposed method can only optimize trajectories under partial occlusions; different weather
conditions were not taken into account because all tests were conducted on days with fine
weather; therefore, in future research, the utilization of multiple sensors is proposed to
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address issues related to heavy occlusions. It is also necessary to analyze the influence of
different adverse weather conditions on effective tracking range to provide comprehensive
quantitative information for practical application.
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