Flood Management, Characterization and Vulnerability Analysis Using an Integrated RS-GIS and 2D Hydrodynamic Modelling Approach: The Case of Deg Nullah, Pakistan
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Numerical Model
3.2. Overall View of the Research Approach
3.3. Flood Vulnerability Analysis
3.4. Multivariate Flood Vulnerability Classification
4. Results
4.1. Model Performance Evaluation
4.2. Model Performance Evaluation
4.2.1. Maximum Flood Depths
4.2.2. Maximum Flood Velocities
4.2.3. Flood Arrival Times
4.2.4. Flood Duration
4.2.5. Flood Recession Times
4.3. Flood Vulnerability Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shadmehri, T.A.; Doulabian, S.; Ghasemi, T.E.; Calbimonte, G.H.; Alaghmand, S. Large-scale flood hazard assessment under climate change: A case study. Ecol. Eng. 2020, 147, 105765. [Google Scholar] [CrossRef]
- Smith, D.I. Floods: Physical Processes and Human Impacts; Smith, K., Ward, R., Eds.; John Wiley & Sons: Chichester, UK, 1999. [Google Scholar]
- Dewan, T.H. Societal impacts and vulnerability to floods in Bangladesh and Nepal. Weather Clim. Extrem. 2015, 7, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, M.; Nyaupane, N.; Mote, S.R.; Kalra, A.; Ahmad, S. 2D Unsteady Flow Routing and Flood Inundation Mapping for Lower Region of Brazos River Watershed. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017; American Society of Civil Engineers: Reston, VA, USA, 2017; pp. 292–303. [Google Scholar]
- Thakur, B.; Parajuli, R.; Kalra, A.; Ahmad, S.; Gupta, R. Coupling HEC-RAS and HEC-HMS in Precipitation Runoff Modelling and Evaluating Flood Plain Inundation Map. In Proceedings of the World Environmental and Water Resources Congress 2017, Sacramento, CA, USA, 21–25 May 2017. [Google Scholar]
- FFC. Annual Flood Report 2017; Federal Flood Commission (FFC), Ministry of Water Resources, Government of Pakistan: Islamabad, Pakistan, 2017.
- Hashmi, H.N.; Siddiqui, Q.T.M.; Ghumman, A.R.; Kamal, M.A.; Mughal, H.R. A critical analysis of 2010 floods in Pakistan. Afr. J. Agric. Res. 2012, 7, 1054–1067. [Google Scholar]
- Ohlsson, L. Pakistan: IRIN Special Report on Water Crisis, Integrated Regional Information Network (IRIN). Available online: http://www.padrigu.gu.se/EDCNews (accessed on 31 May 2019).
- FFC. Annual Flood Report 2010; Federal Flood Commission (FFC), Ministry of Water & Power, Government of Pakistan: Islamabad, Pakistan, 2011.
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- IPCC, Climate Change. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Jansen, E., Overpeck, J., Briffa, K.R., Duplessy, J.C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W.R., Rahmstorf, S., et al., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Gronewold, N. Is the Flooding in Pakistan a Climate Change Disaster? Available online: http://www.scientificamerican.com/article/is-the-flooding-in-pakist/ (accessed on 31 May 2019).
- Sajjad, A.; Lu, J.; Chen, X.; Chisenga, C.; Saleem, N.; Hassan, H. Operational Monitoring and Damage Assessment of Riverine Flood-2014 in the Lower Chenab Plain, Punjab, Pakistan, Using Remote Sensing and GIS Techniques. Remote Sens. 2020, 12, 714. [Google Scholar] [CrossRef] [Green Version]
- Tayyab, M.; Zhang, J.; Hussain, M.; Ullah, S.; Liu, X.; Khan, S.N.; Baig, M.A.; Hassan, W.; Al-Shaibah, B. GIS-Based Urban Flood Resilience Assessment Using Urban Flood Resilience Model: A Case Study of Peshawar City, Khyber Pakhtunkhwa, Pakistan. Remote Sens. 2021, 13, 1864. [Google Scholar] [CrossRef]
- Sidek, L.M.; Chua, L.H.C.; Azizi, A.S.M.; Basri, H.; Jaafar, A.S.; Moon, W.C. Application of PCSWMM for the 1-D and 1-D–2-D Modeling of Urban Flooding in Damansara Catchment, Malaysia. Appl. Sci. 2021, 11, 9300. [Google Scholar] [CrossRef]
- Santillan, J.R.; Amora, A.M.; Makinano-Santillan, M.; Marqueso, J.T.; Cutamora, L.C.; Serviano, J.L.; Makinano, R.M. Assessing the impacts of flooding caused by extreme rainfall events through a combined geospatial and numerical modeling approach. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 1271–1278. [Google Scholar] [CrossRef] [Green Version]
- Dasallas, L.; Lee, S.; Dasallas, L.; Lee, S. Topographical Analysis of the 2013 Typhoon Haiyan Storm Surge Flooding by Combining the JMA Storm Surge Model and the FLO-2D Flood Inundation Model. Water 2019, 11, 144. [Google Scholar] [CrossRef] [Green Version]
- Asare-Kyei, D.; Forkuor, G.; Venus, V. Modeling Flood Hazard Zones at the Sub-District Level with the Rational Model Integrated with GIS and Remote Sensing Approaches. Water 2015, 7, 3531–3564. [Google Scholar] [CrossRef] [Green Version]
- Al Baky, M.A.; Islam, M.; Paul, S. Flood Hazard, Vulnerability and Risk Assessment for Different Land Use Classes Using a Flow Model. Earth Syst. Environ. 2020, 4, 225–244. [Google Scholar] [CrossRef] [Green Version]
- Santillan, J.R.; Marqueso, J.T.; Makinano-Santillan, M.; Serviano, J.L. Beyond Flood Hazard Maps: Detailed Flood Characterization with Remote Sensing, GIS and 2D Modelling. ISPRS—Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLII-4/W1, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Skilodimou, H.D.; Bathrellos, G.D.; Alexakis, D.E. Flood Hazard Assessment Mapping in Burned and Urban Areas. Sustainability 2021, 13, 4455. [Google Scholar] [CrossRef]
- Su, X.; Shao, W.; Liu, J.; Jiang, Y.; Wang, K. Dynamic Assessment of the Impact of Flood Disaster on Economy and Population under Extreme Rainstorm Events. Remote Sens. 2021, 13, 3924. [Google Scholar] [CrossRef]
- Hagen, E.; Lu, X.X. Let us create flood hazard maps for developing countries. Nat. Hazards 2011, 58, 841–843. [Google Scholar] [CrossRef]
- Psomiadis, E.; Diakakis, M.; Soulis, K.X. Combining SAR and Optical Earth Observation with Hydraulic Simulation for Flood Mapping and Impact Assessment. Remote Sens. 2020, 12, 3980. [Google Scholar] [CrossRef]
- Albu, L.M.; Enea, A.; Iosub, M.; Breaban, I.G. Dam Breach Size Comparison for Flood Simulations. A HEC-RAS Based, GIS Approach for Drăcșani Lake, Sitna River, Romania. Water 2020, 12, 1090. [Google Scholar] [CrossRef]
- Tahsin, S.; Medeiros, S.C.; Hooshyar, M.; Singh, A. Optical Cloud Pixel Recovery via Machine Learning. Remote Sens. 2017, 9, 527. [Google Scholar] [CrossRef] [Green Version]
- Di Baldassarre, G.; Schumann, G.; Bates, P.D. A technique for the calibration of hydraulic models using uncertain satellite observations of flood extent. J. Hydrol. 2009, 367, 276–282. [Google Scholar] [CrossRef]
- Schober, B.; Hauer, C.; Habersack, H. A novel assessment of the role of Danube floodplains in flood hazard reduction (FEM method). Nat. Hazards 2015, 75, 33–50. [Google Scholar] [CrossRef]
- Ruiz-Bellet, J.L.; Balasch, J.C.; Tuset, J.; Barriendos, M.; Mazon, J.; Pino, D. Historical, hydraulic, hydrological and meteorological reconstruction of 1874 Santa Tecla flash floods in Catalonia (NE Iberian Peninsula). J. Hydrol. 2015, 524, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, S.; Jobe, A.; Thakur, B.; Kalra, A.; Ahmad, S. Flood Damage Reduction in Urban Areas with Use of Low Impact Development Designs. In Proceedings of the World Environmental and Water Resources Congress 2018, Minneapolis, MN, USA, 3–7 June 2018; American Society of Civil Engineers: Reston, VA, USA, 2018; pp. 52–61. [Google Scholar]
- Quiroga, V.M.; Kure, S.; Udo, K.; Mano, A. Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. RIBAGUA—Rev. Iberoam. Agua 2016, 3, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Gilles, D.; Young, N.; Schroeder, H.; Piotrowski, J.; Chang, Y.-J.; Gilles, D.; Young, N.; Schroeder, H.; Piotrowski, J.; Chang, Y.-J. Inundation Mapping Initiatives of the Iowa Flood Center: Statewide Coverage and Detailed Urban Flooding Analysis. Water 2012, 4, 85–106. [Google Scholar] [CrossRef]
- Ahmadisharaf, E.; Kalyanapu, A.J.; Chung, E.-S. Evaluating the Effects of Inundation Duration and Velocity on Selection of Flood Management Alternatives Using Multi-Criteria Decision Making. Water Resour. Manag. 2015, 29, 2543–2561. [Google Scholar] [CrossRef]
- Awadallah, M.O.M.; Juárez, A.; Alfredsen, K. Comparison between Topographic and Bathymetric LiDAR Terrain Models in Flood Inundation Estimations. Remote Sens. 2022, 14, 227. [Google Scholar] [CrossRef]
- Al Amin, M.B.; Sarino; Haki, H. Floodplain simulation for Musi River using integrated 1D/2D hydrodynamic model. MATEC Web Conf. 2017, 101, 05023. [Google Scholar] [CrossRef] [Green Version]
- Elkhrachy, I. Flash Flood Water Depth Estimation Using SAR Images, Digital Elevation Models, and Machine Learning Algorithms. Remote Sens. 2022, 14, 440. [Google Scholar] [CrossRef]
- Liu, Z.; Merwade, V.; Jafarzadegan, K. Investigating the role of model structure and surface roughness in generating flood inundation extents using one- and two-dimensional hydraulic models. J. Flood Risk Manag. 2019, 12, e12347. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, E. Two-dimensional hydrodynamic modelling for urban flood risk assessment using unmanned aerial vehicle imagery: A case study of Kirsehir, Turkey. J. Flood Risk Manag. 2018, 12, e12499. [Google Scholar] [CrossRef]
- Alivio, M.B.T.; Puno, G.R.; Talisay, B.A.M. Flood hazard zones using 2d hydrodynamic modeling and remote sensing approaches. Glob. J. Environ. Sci. Manag. 2019, 5, 1–16. [Google Scholar] [CrossRef]
- Naeem, B.; Azmat, M.; Tao, H.; Ahmad, S.; Khattak, M.U.; Haider, S.; Ahmad, S.; Khero, Z.; Goodell, C.R. Flood Hazard Assessment for the Tori Levee Breach of the Indus River Basin, Pakistan. Water 2021, 13, 604. [Google Scholar] [CrossRef]
- Papaioannou, G.; Varlas, G.; Terti, G.; Papadopoulos, A.; Loukas, A.; Panagopoulos, Y.; Dimitriou, E. Flood Inundation Mapping at Ungauged Basins Using Coupled Hydrometeorological–Hydraulic Modelling: The Catastrophic Case of the 2006 Flash Flood in Volos City, Greece. Water 2019, 11, 2328. [Google Scholar] [CrossRef] [Green Version]
- Garcia, M.; Juan, A.; Bedient, P. Integrating Reservoir Operations and Flood Modeling with HEC-RAS 2D. Water 2020, 12, 2259. [Google Scholar] [CrossRef]
- Tariq, M.A.U.R.; Farooq, R.; van de Giesen, N. A Critical Review of Flood Risk Management and the Selection of Suitable Measures. Appl. Sci. 2020, 10, 8752. [Google Scholar] [CrossRef]
- Cutter, S. Vulnerability to Environmental Hazards. Progress Human Geogr. 1996, 20, 529–532. [Google Scholar] [CrossRef]
- Mitchell, J. Urban disasters as indicators of global environmental change: Assessing functional varieties of vulnerability. In Proceedings of the Symposium on Disaster Reduction and Global Environmental Change, Federal Foreign Office, Berlin, Germany, 20–21 June 2002. [Google Scholar]
- Merz, B.; Thieken, A.H.; Gocht, M. Flood Risk Mapping at the Local Scale: Concepts and Challenges; Springer: Dordrecht, The Netherlands, 2007; pp. 231–251. [Google Scholar]
- Salami, R.O.; von Meding, J.K.; Giggins, H. Vulnerability of human settlements to flood risk in the core area of Ibadan metropolis, Nigeria. Jamba 2017, 9, 371. [Google Scholar] [CrossRef] [PubMed]
- Pistrika, A.; Tsakiris, G.; Nalbantis, I. Flood Depth-Damage Functions for Built Environment. Environ. Process. 2014, 1, 553–572. [Google Scholar] [CrossRef] [Green Version]
- Citeau, J.M. A New Flood Control Concept in the Oise Catchment Area: Definition and Assessment of Flood Compatible Agricultural Activities. In Proceedings of the FIG Working Week 2003, Paris, France, 13–17 April 2003. [Google Scholar]
- Balijepalli, C.; Oppong, O. Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas. J. Transp. Geogr. 2014, 39, 145–155. [Google Scholar] [CrossRef]
- Hussain, M.S.; Lee, S. The regional and the seasonal variability of extreme precipitation trends in Pakistan. Asia-Pacific J. Atmos. Sci. 2013, 49, 421–441. [Google Scholar] [CrossRef]
- Faisal, M.; Muzammil, M.; Azam, M.I.; Yaseen, M.; Abbas, T.; Nabi, G. Flood Hazard Mapping and Risk Zoning of the Nullah Deg, Pakistan Using Hydraulic Simulation Model (a Case Study). Sci. Int. 2015, 27, 6459–6464. [Google Scholar]
- Faisal, M. Assessment of Flood Inundation Using Hydraulic Simulation Model; University of Engineering and Technology: Lahore, Pakistan, 2015. [Google Scholar]
- USACE-HEC. HEC RAS River Analysis System 2D Modelling User’s Manual Version 5.0; Hydrologic Engineering Center, United States Corps of Engineer: Davis, CA, USA, 2016.
- Yang, L.; Meng, X.; Zhang, X. SRTM DEM and its application advances. Int. J. Remote Sens. 2011, 32, 3875–3896. [Google Scholar] [CrossRef]
- Dang, N.M.; Babel, M.S.; Luong, H.T. Evaluation of food risk parameters in the Day River Flood Diversion Area, Red River Delta, Vietnam. Nat. Hazards 2011, 56, 169–194. [Google Scholar] [CrossRef]
- Kreibich, H.; Piroth, K.; Seifert, I.; Maiwald, H.; Kunert, U.; Schwarz, J.; Merz, B.; Thieken, A.H. Is flow velocity a significant parameter in flood damage modelling? Nat. Hazards Earth Syst. Sci. 2009, 9, 1679–1692. [Google Scholar] [CrossRef]
- Lea, D.; Yeonsu, K.; Hyunuk, A. Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water 2019, 11, 2048. [Google Scholar] [CrossRef] [Green Version]
- Horritt, M.S.; Di Baldassarre, G.; Bates, P.D.; Brath, A. Comparing the performance of a 2-D finite element and a 2-D finite volume model of floodplain inundation using airborne SAR imagery. Hydrol. Process. 2007, 21, 2745–2759. [Google Scholar] [CrossRef]
- Horritt, M.S.; Bates, P.D. Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 2002, 268, 87–99. [Google Scholar] [CrossRef]
- Shustikova, I.; Domeneghetti, A.; Neal, J.C.; Bates, P.; Castellarin, A. Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex topography. Hydrol. Sci. J. 2019, 64, 1769–1782. [Google Scholar] [CrossRef]
- Musolino, G.; Ahmadian, R.; Xia, J. Enhancing pedestrian evacuation routes during flood events. Nat. Hazards 2022, 2022, 1–25. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Skilodimou, H.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Suitability estimation for urban development using multi-hazard assessment map. Sci. Total Environ. 2017, 575, 119–134. [Google Scholar] [CrossRef]
- Saunders, W.S.A.; Kilvington, M. Innovative land use planning for natural hazard risk reduction: A consequence-driven approach from New Zealand. Int. J. Disaster Risk Reduct. 2016, 18, 244–255. [Google Scholar] [CrossRef] [Green Version]
- Panagopoulos, G.P.; Bathrellos, G.D.; Skilodimou, H.D.; Martsouka, F.A. Mapping Urban Water Demands Using Multi-Criteria Analysis and GIS. Water Resour. Manag. 2012, 26, 1347–1363. [Google Scholar] [CrossRef]
Location No. | Longitude (E) | Latitude (N) |
---|---|---|
1 | 74°53′12.97″ | 32°18′39.65″ |
2 | 74°51′55.39″ | 32°14′15.79″ |
3 | 74°48′1.75″ | 32°22′22.1″ |
Hazard Level | Depth (m) | Velocity (m/s) | Duration (h) | Arrival Time (h) |
---|---|---|---|---|
Very low | <0.50 | <1 | <20 | <14 |
Low | 0.50–1.0 | 1–2 | 20–40 | 14–28 |
Medium | 1.0–2.0 | 2–3.8 | 40–60 | 28–42 |
High | 2.0–5.0 | 3.8–5.8 | 60–80 | 42–56 |
Extreme | >5.0 | >5.8 | >80 | 56–70 |
Sr. No. | Important Locations | Road Networks | |||
---|---|---|---|---|---|
ID on Map | Name of Location | ID on Map | Name of Road | Length of Road (km) | |
1 | 1 | Kamalpur Bajwa | A | Pasrur road | 29.0 |
2 | 2 | Seowal | B | Chawinda road | 28.5 |
3 | 3 | Dullam Kahalwan | C | Gujranwala-Pasrur | 19.1 |
4 | 4 | Shahzada | D | Pasrur-Zafarwal | 16.6 |
5 | 5 | Kotli Haji Pur | E | Narowal road | 20.3 |
6 | 6 | Ahmad Abad | F | Kalasawala road | 16.3 |
7 | 7 | Dodha | G | Muridke road | 12.1 |
8 | 8 | Talwandi Bhindran | H | MirakPur road | 16.2 |
9 | 9 | Satrah Sandhuan | I | Nonar road | 6.5 |
10 | 10 | Pasrur | J | Daska road | 10.2 |
11 | 11 | Chawinda | |||
12 | 12 | Zafarwal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Wang, X.; Waseem, M.; Zaman, M.; Aziz, F.; Khan, R.Z.N.; Ashraf, M. Flood Management, Characterization and Vulnerability Analysis Using an Integrated RS-GIS and 2D Hydrodynamic Modelling Approach: The Case of Deg Nullah, Pakistan. Remote Sens. 2022, 14, 2138. https://doi.org/10.3390/rs14092138
Ahmad I, Wang X, Waseem M, Zaman M, Aziz F, Khan RZN, Ashraf M. Flood Management, Characterization and Vulnerability Analysis Using an Integrated RS-GIS and 2D Hydrodynamic Modelling Approach: The Case of Deg Nullah, Pakistan. Remote Sensing. 2022; 14(9):2138. https://doi.org/10.3390/rs14092138
Chicago/Turabian StyleAhmad, Ijaz, Xiuquan Wang, Muhammad Waseem, Muhammad Zaman, Farhan Aziz, Rana Zain Nabi Khan, and Muhammad Ashraf. 2022. "Flood Management, Characterization and Vulnerability Analysis Using an Integrated RS-GIS and 2D Hydrodynamic Modelling Approach: The Case of Deg Nullah, Pakistan" Remote Sensing 14, no. 9: 2138. https://doi.org/10.3390/rs14092138
APA StyleAhmad, I., Wang, X., Waseem, M., Zaman, M., Aziz, F., Khan, R. Z. N., & Ashraf, M. (2022). Flood Management, Characterization and Vulnerability Analysis Using an Integrated RS-GIS and 2D Hydrodynamic Modelling Approach: The Case of Deg Nullah, Pakistan. Remote Sensing, 14(9), 2138. https://doi.org/10.3390/rs14092138