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Abstract: Remote Visible/Shortwave Infrared (VSWIR) imaging spectroscopy is a powerful tool
for measuring the composition of Earth’s surface over wide areas. This compositional informa-
tion is captured by the spectral surface reflectance, where distinct shapes and absorption features
indicate the chemical, bio- and geophysical properties of the materials in the scene. Estimating
this surface reflectance requires removing the influence of atmospheric distortions caused by water
vapor and particles. Traditionally reflectance is estimated by considering one location at a time,
disentangling atmospheric and surface effects independently at all locations in a scene. How-
ever, this approach does not take advantage of spatial correlations between contiguous pixels.
We propose an extension to a common Bayesian approach, Optimal Estimation, by introducing
atmospheric correlations into the multivariate Gaussian prior. We show how this approach can be
implemented as a small change to the traditional estimation procedure, thus limiting the additional
computational burden. We demonstrate a simple version of the technique using simulations and
multiple airborne radiance data sets. Our results show that the predicted atmospheric fields are
smoother and more realistic than independent inversions given the assumption of spatial correlation
and may reduce bias in the surface reflectance retrievals compared to post-process smoothing.

Keywords: imaging spectroscopy; atmospheric correction; spatial correlation; optimal estimation

1. Introduction

Remote Visible/ShortWave InfraRed (VSWIR) imaging spectroscopy is a powerful
tool for studying Earth science questions ranging from geology, to the cryosphere, to the
composition of terrestrial and aquatic ecosystems [1]. These instruments, such as the
Airborne Visible-Infrared Imaging Spectrometer—Next Generation, or AVIRIS-NG [2],
measure a full spectrum of reflected solar radiant intensity, from visible wavelengths
through the shortwave infrared, at every location in a scene. Such instruments are often
components on an orbiting satellite, such as in the PRISMA [3], EnMAP [4], EMIT [5],
CHIME [6], and DESIS [7] missions, but they can also be mounted in an aircraft, as in
this work and the HISUI [8] mission, to offer greater flexibility over when and where the
data are collected. The biophysical, geophysical, and chemical composition of the surface
induces absorption and emission (fluorescence) features which modify the spectral shape
of the measured radiance. These radiance shapes indicate what materials are present in
the spatial footprint of the spectrum. However, the intervening atmosphere also modifies
the radiance with various absorption and scattering processes along the light path from
the sun to the ground to the sensor. Consequently, analysts first remove the atmospheric
effects to estimate the intrinsic reflectance of the surface [9]. It is the resulting reflectance
spectrum, free from atmospheric influence, which is used in all subsequent studies of
surface composition.
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Estimating surface reflectance requires modeling how the atmosphere contributes
to the radiance measured at the sensor. Existing implementations of radiative transfer
models such as MODTRAN [10] and libRadtran [11] model the observation with variety of
parameters, including geometric terms like the sensor position and orientation, sun position,
and atmospheric terms such as the vertical distribution of water vapor and aerosols. These
codes then solve the equations of radiative transfer to predict the radiance that will be
measured at the sensor. The radiative transfer model acts as a nonlinear function which
predicts the radiance for a given surface and atmospheric state. The challenge then is to
invert this nonlinear model to estimate the most probable surface and atmospheric state
variables which might have produced the observation [12].

There are many algorithms for inverting the nonlinear physical model, such as those
based on the ATmosphere REMoval algorithm (ATREM; [13,14]). Atmospheric correction
algorithms can use look-up tables (LUTs) computed from the radiative transfer models
to determine which atmosphere best reproduces the observed radiance. The number of
possible atmosphere/surface combinations is large even with the LUTs, but dimension
reduction via principle components [15] effectively reduces the search space and allows for
maximum likelihood estimation. To better choose the atmospheric states, ref. [16] extend
the subspace model by selecting a set of “blackbody” pixels from a scene and optimizing
atmospheric coefficients over the set rather than for each radiance individually. This does
not model a varying atmospheric field, though, and the inversion proceeds one pixel at
a time.

In all previous imaging spectroscopy literature, the inversion models have computed
reflectance values on each pixel independently. In other words, they have either assumed
the latent surface and atmosphere states generating the measurements are spatially inde-
pendent, or they have obtained atmospheric terms first and then computed the surface
reflectances independently. This is reasonable for the surface variables given that the sur-
face materials change abruptly; for example, there is no reason to assume a tree should have
a surface state that correlates with a nearby asphalt road. Although there may be adjacency
effects, which are multiple scattering interactions induced by the atmospheric conditions
that correlate the radiance values for nearby pixels, these are high-order effects and we treat
them as negligible. But atmospheric variables like water vapor are smooth and vary con-
tinuously over space, and so nearby observations will have highly correlated atmospheric
states. By ignoring this correlation, preceding works have ignored powerful information
that can be used to improve the fidelity of both atmosphere and reflectance estimates.
A step in this direction is to assume a locally constant field, but previous works (e.g., [17])
did not simultaneously compute the combined surface and atmospheric state.

In this work we demonstrate the first ever joint inversion of multiple locations for
imaging spectroscopy, respecting the local correlations in the atmosphere. We focus on
qualitative improvements, uncertainty quantification, and scalability aspects of the spatial
inversion. Qualitatively, ignoring spatial correlations in atmospheric states is not prob-
lematic if the single-pixel atmospheric retrievals are accurate. This is the case in many
dry, homogeneous scenes. However, errors and ignored adjacency effects can become
significant in the case of high aerosol loads or high water vapor content, where systematic
retrieval uncertainties dependent on surface type can cause discontinuities in the retrieved
atmospheric field. While post-hoc smoothing via spatial prediction or Gaussian process
regression (kriging, e.g., [18]) can be applied after computing single-pixel retrievals [19],
the dependencies introduced by the non-linear forward model are completely ignored. As a
result, the reflectances still contain the error of the unsmoothed atmospheric components,
making a principled estimate of uncertainty in the state estimates problematic.

Uncertainty quantification (UQ) for surface retrievals has been developed under
the label of optimal estimation (OE; [20,21]). Modeling correlations across push-broom
measurements has been shown to improve variance measurements [22], but only recently
have the surface and atmosphere states been modeled jointly to decrease error while
simultaneously achieving UQ [23]. A similar approach is used in [24], although with
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multiband input data that includes multiple angles and polarization rather than a single
radiance measurement.

Here we propose to include the spatial correlation in the inversion itself, improving
the reflectance retrievals while allowing more appropriate reflectance uncertainties to be
propagated downstream. As in previous work [23], our method relies on a hierarchical
model in which the observed radiance is a noisy version of the true radiance, which in
turn is a nonlinear function of the state vector. The prior state vector is modeled as a
multivariate Gaussian with a covariance structure reflecting how the variables in a state
vector for a single location correlate with each other. Uniquely, we extend this covariance
into a cross-covariance matrix to represent spatial correlations in the atmospheric terms.
This transforms the multivariate Gaussian prior into a multivariate Gaussian process prior,
capturing the spatially smooth behavior of atmospheric fields.

Retrievals for multiple spatial locations have been investigated for other applications
under the OE framework. The approach has been implemented for multiple instruments
focused on aerosol retrievals from multi-angle observations [24,25] and for atmospheric
trace gas retrievals [26] with a simplified linear model. These applications share the general
strategy of exploiting spatial correlation in space for retrieval of atmospheric state variables.
In the current setting, the dimension of the surface state is substantially larger and is the
primary quantity of interest, requiring additional computational considerations.

Methods to retrieve both surface and atmospheric components during the process
of atmospheric correction have appeared outside of the OE framework as well. These
nonprobabilistic methods emphasize multiband observations from instruments such as
MODIS and MISR, in which a small set of representative wavelengths are measured
to determine a surface bidirectional reflectivity factor (BRF) rather than a full surface
reflectance profile for classification. The BRF is used for atmospheric correction to estimate
vapor or aerosols, as described in [27]. Multiple measurements at different angles can be
blocked together as in the Multiangle implementation of atmospheric correction (MAIAC)
of [28], but the MAIAC method estimates the surface and atmospheric coefficients in turn
rather than jointly and does not explicitly model smoothly varying aerosols.

The remainder of this article is organized as follows. Section 2 reviews the method,
starting from the nonlinear, independent surface retrieval model. Section 2.5 introduces the
spatially correlated version of the model and some considerations for scalability. Section 3
has a simulation study and shows applications to real data, followed by a discussion in
Section 4 and concluding remarks in Section 5.

2. Method
2.1. Optimal Estimation of Surface Reflectance

A representative radiance spectrum, and its associated reflectance, appear in Figure 1.
The radiance spectrum represents energy incident at the detector per unit wavelength per
solid angle per unit area, in units of µW nm−1 sr−1 cm−2. Sharp dips at 940, 1140, 1380
and 1880 nm represent the influence of absorbing atmospheric gases H2O, O2, O3, CO2,
and CH4. The reflectance spectrum at right, showing the spectrum of a vegetated pixel, is
comparatively smooth. Roughly speaking, it represents the ratio of light leaving the target
over the light hitting the target, which is an intrinsic property of the surface. The deepest
absorption features at 1380 and 1880 nm are not plotted; atmospheric gas absorption in these
wavelengths is so strong that the atmosphere is opaque and it is not possible to estimate the
surface reflectance. Mathematically, a single radiance observation y is a vector of intensity
values corresponding to a set of wavelengths as measured by a remote sensor. The satellite
radiance can be expressed as a function of the surface reflectance according to a forward
model that takes into account atmospheric and physical effects, y ≈ f (x). We denote the
joint surface and atmosphere state x, which combines the reflectance xs with additional
components corresponding to atmospheric conditions xh. Optimal estimation [21] refers to
the inversion of the forward model to compute the surface reflectance x given remotely
sensed observations y and a prior assumption on x in a Bayesian context.
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Figure 1. Representative radiance and reflectance spectra. Red, green, and blue lines indicate visible
color channels.

In this work, the additional components are aerosol optical depth (AOD) and col-
umn water vapor. The deterministic forward model is at the heart of the surface re-
trieval process and is briefly reviewed (Section 2.2) before describing the baseline retrievals
(Section 2.3) and the details of the statistical model that will be relevant for our method-
ology (Section 2.4). This section is a summary of the statistical analysis described in
Thompson et al. [23], which contains many additional details.

2.2. Forward Model and Uncertainty

The forward model is a nonlinear function describing the processes of absorption
and scattering of light by atmospheric gases, particulates and clouds, and reflection by
an underlying surface, and is referred to as the radiative transfer model (RTM). The true
physical model is complicated, so many simplifying assumptions are used, such as treating
surfaces as Lambertian (isotropic) rather than describing them using a bidirectional re-
flectance distribution function. Since there are many parameters to the RTM, optimization
over all possible combinations is infeasible. Instead, a look-up table of optical coefficients is
calculated in advance. This table, indexed by the atmospheric state, allows a fast calculation
of the forward model in each channel [12]. Typical LUT values for our work follow a coarse
grid of AOD values of [0.01, 0.1, 0.33, 0.66, 1.0] across H2O vapor levels of [1.0, 1.5, 2] g/cm2,
solved at each grid point via DISORT. Emulation is an emerging and promising alternative
to a coarse LUT [29,30], but not taken advantage of in this work. Sensor elevations vary
from 3000 to 6000 feet above ground, with ground elevation ranging from 8 to 1500 feet
above sea level. The viewing zenith angle is set to 0 and the solar azimuth set to 180 degrees.
Wavelengths range from 350 to 2520 nm with the REPTRAN fine band parameterization.
Standardized “mid latitude” atmospheres for winter or summer are applied to all data and
simulations. For a full description of the forward model assumptions, we refer the reader
to previous work [31].

Uncertainties in the radiance prediction include instrument-related uncertainty such as
measurement noise, as well as errors in atmospheric properties such as aerosol absorption
or scattering. In the following experiments, we use the libRadtran radiative transfer
library [11] with the ISOFIT inversion package [23]. This allows us to focus on the specific
innovations of this paper, the prior specification and the optimization procedure.

2.3. Baseline Optimal Retrievals

As mentioned in the introduction, the baseline retrieval model assumes that any
one observed radiance y with dimension 425 is a nonlinear function of a latent state
x of dimension 427, independent of any nearby data: y = f (x) + ε. The cardinality
425 represents the number of wavelengths that the AVIRIS-NG sensor can detect within
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the range of interest, while the latent state x includes the two atmospheric parameters.
The forward model function f (·) described in the previous section is an approximation to
the true physical system with higher-order complexities relegated to a Gaussian error term.
The state x is given a Gaussian prior to provide a tractable posterior x|y when combined
with a linear approximation for the non-linear forward model:

p(y|x) ∼ N( f (x), Sε), p(x) ∼ N(µ, Sa),

p(x|y) ∝ p(y|x)p(x).

The prior p(x) is discussed in the next section. The likelihood variance term for a
single observation Sε can be attributed to instrument noise and unobserved variables.

The optimal state vector x̂ is understood to be the retrieved vector that maximizes the
posterior density p(x|y), given prior assumptions and observations y. Negating, taking a
logarithm, and dropping constants of the posterior yields a minimization problem with
respect to a cost function Q(x) ∝ − log p(x|y) + constant:

Q(x) = (x− µ)>S−1
a (x− µ) + (y− f (x))>S−1

ε (y− f (x)). (1)

The optimal estimate for the cost function Q can be found with the Newton-Raphson
algorithm, which is an iterative method with update steps

x(`+1) = x(`) − [∇2
xQ]−1∇xQ. (2)

However, the Hessian is expensive to compute. The linear approximation mentioned
earlier is detailed in Appendix A.1 and results in a Gauss-Newton algorithm that yields an
inexpensive update step of the form

x(`+1) = µ + [S−1
a + K>S−1

ε K]−1[K>S−1
ε K(x(`) − µ)− K>S−1

ε (y− f (x(`))]

= µ + ∆LM.
(3)

In practice an additional diagonal term is added to the inverse term for better performance,
so the Gauss-Newton algorithm becomes a Levenberg-Marquardt algorithm [32].

When the iterations converge to some state x?, the converged value represents the
posterior mode, which can also be viewed as the mean of a Gaussian approximation to the
posterior at the mode. The uncertainty is approximated with

S? = [S−1
a + K>? S−1

ε K?]
−1. (4)

The posterior is then approximated with the distribution N(x?, S?), where the optimal
estimate is x? with uncertainty S?.

2.4. Prior

In preparation for our spatial methodology, we detail the prior used for the baseline
optimal estimation procedure. Recall that the prior state contains a surface state xs and an
atmosphere state xh. The baseline method inverts each radiance measurement indepen-
dently, and further assumes that the surface and atmosphere states are independent. This
is represented with block diagonal covariances Ss, Sh that make up a prior multivariate
normal distribution:

N
([

xs
xh

]
,
[

Ss 0
0 Sh

])
= N(µ, Sa).

The surface state components for a single radiance measurement can co-vary, as can
the atmospheric state components; two prior states xi, xj at different locations are however
totally independent. Allowing different pixels to have co-varying atmospheric states will
involve a cross-covariance function and is the focus starting with Section 2.5.
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Natural and man-made materials have different reflectance profiles, so there are
multiple prior means µk = [xs,k, xh]

> and variances Sa,k, k = 1, . . . , κ to take this into
account. Note that there is a single global prior mean and variance for the atmospheric
components. At the first iteration of the optimization routine, a heuristic algebraic inversion
is used to estimate the reflectance, and then the closest prior is selected in an ad-hoc way
using a Euclidean distance ||x(`) − xa,k|| or Mahalonobis distance:

d(k) = ||x(`) − µk||2S−1
a,k

= (x(`) − µk)
>S−1

a,k (x(`) − µk). (5)

This prior is then fixed for subsequent iterations, and the optimization proceeds as
outlined in Algorithm 1. For example, if the estimated reflectance at the first iteration is
closest by distance to vegetation compared to concrete, water, or mud, a prior representing
vegetation is used for computing the posterior until convergence. Although it is possible to
update the prior with every iteration, this may prevent convergence. The parameters for
the different priors are estimated with field observations made at Santa Barbara (UCSB) in
California, USA and Hawaii, USA, see [23] for details. Ideally the prior could be computed
with data from all over the world to account for the variety of vegetation and materials,
which may lead to improved accuracy for both spatial and surface estimates. For the
purpose of this work, the local data is adequate because our results are based on data
collected in the same region.

Algorithm 1: Simplified Optimal Spatial Inversion.

Data: Radiance values {y}, RTM terms, Spatial parameters {ν, ρ, σ2, (latx, longx)}
Result: Predicted reflectances {x?}
for each block of n radiance value(s) do

initialize x(0) using an inexpensive guess;
assign best prior N(µk, Sa,k) at each pixel, see (5);
populate cross-correlations in prior covariance Sa;
repeat

compute forward estimate f (x(`)) for each pixel and concatenate ;
compute block error y− f (x(`)), uncertainty Sε, and Jacobian K;
perform block update step x(`+1) = µ + ∆LM from (3);

until convergence;
end

2.5. Naive Spatial Retrieval Structure

Extending the original model to a spatial model requires working with multiple
observations at once. Following the notation earlier, let y = yi ∈ Rd denote a single
measurement and y ∈ Rnd denote a collection of n concatenated measurements. Likewise
for the state vector, let x ∈ Rnp denote the set of state vectors to be retrieved with prior
mean µ. In this notation, the spatial model takes the form

y|x ∼ Nnd( f (x), Sε),

x ∼ Nnp(µ, S̃a),

where Sε = In ⊗ Sε, S̃a = In ⊗ Sa, µ = En ⊗ µ all represent Kronecker product expan-
sions of their non-spatial counterparts, and En = (1, . . . , 1)> is an n-dimensional column
vector of ones. Note that f (x) = ( f (x1), f (x2) . . .)> is applying the forward model to
each corresponding state term. Each location may have a different prior for the surface
component as described in Section 2.4, but for clarity we drop the k index from µk, Sa,k. As
written, the model does not yet have spatial (cross-) correlations and S̃a is block diagonal.
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We introduce these correlations with off-diagonal elements, illustrated as follows for an
example with n = 3:

S̃a =



Ss 0 0 0 0 0
0 Sh 0 0 0 0
0 0 Ss 0 0 0
0 0 0 Sh 0 0
0 0 0 0 Ss 0
0 0 0 0 0 Sh

→ Sa =



Ss 0 0 0 0 0
0 Sh 0 D12 0 D13
0 0 Ss 0 0 0
0 D12 0 Sh 0 D23
0 0 0 0 Ss 0
0 D13 0 D23 0 Sh

.

We simplify the model by assuming the off diagonal blocks are all diagonal matrices,
Dij = diag(C(xi,h1 , xj,h1), C(xi,h2 , xj,h2), . . .) where C(xi,h1 , xj,h1) denotes the covariance of
the first atmospheric variable xh1 with itself at locations i and j. The off diagonal blocks
could be full matrices, allowing for the different atmospheric parameters to influence
each other. Estimating these cross-correlation parameters is feasible at a coarse scale with
existing data sets [33], but is challenging and beyond the scope of this work.

To be precise, let I denote the set of indices corresponding to the diagonal atmospheric
components in the off-diagonal blocks of the prior cross covariance matrix, Sa, so that in
our n = 3 case,

(Sa)I =

 Sh D12 D13
D12 Sh D23
D13 D23 Sh

.

We can precisely specify the covariance matrix for a particular atmospheric variable.
Denote the covariance for component k at locations i, j as C(xi,hk

, xj,hk
) = Ck,ij. Then the

covariance matrix for the kth atmopsheric component across all locations, xhk
, is

(Sa)Ik =

Ck,11 Ck,12 Ck,13
Ck,21 Ck,22 Ck,23
Ck,31 Ck,32 Ck,33

 = C(xhk
, xhk

).

In our situation, we only have two spatial atmospheric components, with (Sa)I1 =
SH2O and (Sa)I2 = SAOD.

Concatenating the state and observed vectors and performing joint inference on the
larger vector is a natural way to spatially extend a model, but may be inefficient for large
samples, because we must invert the nd× nd prior covariance Sa as shown in (4). In the
next section, we modify the specification to take advantage of the limited spatial structure.

2.6. Efficient Implementation

As described in Section 2.5, our spatial structure is restrictive in that each spatially cor-
related component only (spatially) interacts with itself and does not have cross-correlation
with any other component. This independence can be exploited for scalability by writing
the gradient descent step in terms of the non-spatial surface component for one pixel and
the set of all atmospheric components. As before, let x denote the concatenated version
of the latent state vector. For the update step shown in Equation (2) with α ≈ [∇2

xQ]−1

representing the constant matrix that results from the Levenberg-Marquardt approximation
in (A3), we have

x(`+1) = x(`) − α∇Q(x(`)) (6)

with concatenated gradient term

∇Q(x) = S−1
a (x− µ) + K>x S−1

ε (y− f (x)),

where Kx and Sε are block diagonal. Hence, for pixel i,

(∇Q(x))i = (S−1
a (x− µ))i + K>xi

S−1
εi (yi − fi(x)),
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where (S−1
a (x− µ))i denotes the subvector of components corresponding to the ith state

vector. A key observation is that this subvector only depends on the ith surface components
S−1

s,i (xs,i − µs,i), and atmospheric components (S−1
H2O(xH2O − µH2O))i and (S−1

AOD(xAOD −
µAOD))i. In other words, retrieving the ith state vector under spatial atmospheric effects
does not cost much more than a non-spatial retrieval if the number of spatial components is
small in comparison to the surface components. Furthermore, the block diagonal approach
maintains some parallelizability of the original model. However, the block diagonal
trick for efficiency does not carry over to estimating the posterior variance of the state
vectors. This is because the block diagonal prior exploits the independence of the surface
and atmospheric priors, while the forward model induces additional correlations in the
posterior, see Equation (4).

2.7. Complexity

The computational complexity of our spatial procedure varies depending on the stage
of the algorithm. Using the previous notation, the worst-case cost is O(n3 p3) due to the
estimation of the posterior variance term shown in Equation (4). The problem is simple:
although the matrices S−1

a , K and S−1
ε can be written as block diagonal, the independent

blocks of atmospheric and surface components in S−1
a are correlated in KS−1

ε K, so we are
forced to invert the entire matrix of dimension np× np. In contrast, the worst case cost of
the individual pixel inversions is O(np3), since we perform n inversions of a p× p matrix.

However, if we are only interested in the posterior mean and approximate or pre-
compute the Hessian term α of Equation (6), the spatial model can have a cheaper update
compared to the aggregate cost for the individual pixels. Letting s denote the number
of spatial components, we have complexity O(n(p − s)3 + n3s) per update step versus
the O(np3) for one update across independent pixels. Subtracting the two complexity
terms, we see that when n2 < (p3 − (p− s)3)/2, or when the total number of pixels in
the block is not too large, the spatial model has a lower cost since we have exploited the
component-wise independence.

For example, in our simulation study we consider a nine pixel block inversions (n = 9)
of roughly 400-dimensional prior states per pixel (p = 400), with two of the dimensions
being atmospheric components (s = 2). Estimating the spatial posterior mean for a nine-
pixel block then costs less than the individual means, given the term α. To be clear, in this
work we did not approximate the Hessian term in a way that reduces complexity.

Methods for significantly reducing the cubic complexity (from O(n3) to nearly O(n))
could be applied at multiple levels of the model and are explored in the Discussion as
directions for future work.

2.8. Other Practical Considerations

Spatial models introduce additional parameters and effects that are not present for the
original independent inversion procedure. For example, a common choice for the spatial
correlation function and the one applied in this work is a Matérn covariance, which has
a smoothness and range parameter. We provide one standard approach for estimating
the Matérn parameters based on maximum likelihood in Appendix A.2, which we use in
our application to real data. Some parameter choices lead to less stable computation than
others; for example, using large range and smoothness parameters imply more strongly
correlated components, which can lead to covariance matrices that are degenerate for the
available machine precision. For our scenarios of interest, we have found that Matérn
smoothness values near 1.5 and ranges between 500 and 1000 m are physically reasonable
and numerically stable choices for the atmospheric components for the data collected
by AVIRIS-NG. While using lower smoothness and range values are guaranteed to be
stable, combinations of significantly higher values (such as smoothness of 3 and/or range
of 5000 m) are expected to fail and are not recommended unless combined with other
techniques that improve stability, such as a low rank approximation.
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There are other, subtle effects that arise from the interplay between the data, the radia-
tive transfer model (RTM), and the spatial correlation. Extreme values and sharp transitions
in the atmosphere are smoothed by the spatial prior, and whether or not this smoothing is
appropriate can depend on the source of the extreme values. For a point source of pollution
(factory) or RTM convergence issues, the smoothing may increase error, while discrepancies
from noise or smoke filled scenes may benefit from smoothing. A full accounting is beyond
the scope of this work and we simply recommend the use of our model when it is safe to
assume that the atmospheric components vary smoothly.

Post-hoc smoothing, or smoothing all of the atmospheric predictions after inversion
as a post processing step, is a practically attractive smoothing approach that is decoupled
from the radiative transfer model and hence fast and easy to implement. It inherits some of
the issues of the spatial prior, in that parameters need to be estimated and smoothing may
not always be appropriate, but fails to account for all of the correlations introduced by the
RTM that are captured with a spatial prior. This results in lower predictive performance in
a majority of cases and is illustrated in the next section.

3. Results
3.1. Simulation Study

In this section, we present results of a simulation study, in which individual retrievals
and their smoothed counterparts are compared to joint spatial retrievals. The simulation
procedure consists of three high-level steps (Algorithm 2):

1. Sample multiple surface reflectance states of vegetation, the most common of the
priors described in Section 2.4. The atmospheric states are correlated according to
their predetermined orientation following the technique outlined in Section 2.5.

2. Simulate noisy AVIRIS-NG instrument radiance measurements corresponding to
the sampled joint state using the built-in methods and configuration of the ISOFIT
code [23]; the noise model is described in Section 2.2.

3. Invert the simulated radiance measurements according to the implementation outlined
in Section 2.6. Setting prior cross-pixel covariances to 0 results in individual retrievals
as a special case.

For post-hoc smoothing, there is an additional post-processing step in which the
independent estimates for the atmospheric components are treated as noisy samples from
a latent smooth field; the noise is assumed to follow the posterior variance as computed by
the individual inversions. This post-processed smooth field is estimated by kriging and
uses the true data-generating covariance as a prior, which is the best-case scenario and
better than could be expected in reality.

The input pixels are given evenly spaced locations with gaps 1/n fixed according to
the number of pixels n for the 1D case. The 2D case uses a regular grid of

√
n×
√

n pixels on
the unit square. The spatial covariance function was taken to be Matérn with smoothness
ν = 1.5 and range parameter values of ρ1D = 3 for the 1D case and ρ2D = 9 for the 2D
case, to account for the greater distance between points. For context, the Matérn covariance
generalizes more common choices like the exponential covariance (Matérn ν = 0.5) and
squared exponential covariance (Matérn ν = ∞); an intermediate value like ν = 1.5 is more
realistic according to our analysis (see Appendix A.2). The variance parameters for the
atmospheric components are 0.5 g2cm−4 for water vapor and 0.2 for AOD.
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Algorithm 2: Simulation Procedure: generate n pixels, compute correlated radi-
ances, and invert. Repeat miter times.

Data: miter, {(µk, Sa,k)}, f (·), n
for i in 1, 2, . . . , miter do

concatenate n priors and fill cross correlations;
sample a vector x = [x1, . . . , xn] from the concatenated prior for n joint states;
simulate n noisy correlated radiance measurements [y1, . . . , yn] = f (x);
invert {yj}n

j=1 individually or as a block using Algorithm 1 with correct

covariance parameters;
end

While the sampled data were taken from a distribution with a realistic mean and
covariance, it is important to note that there was no attempt to measure the realism of
the samples themselves. Over a few hundred wavelengths, it is possible that many small
variations accumulate to yield a simulated reflectance that is unlike any real surface.
Furthermore, a realized latent atmospheric state could correspond to extreme conditions
that require unique configuration. As a result, both inversion methods were prone to failing
at individual points, adding noise to all of the simulated results. For example, out of five
pixels, the second pixel may fail to converge; the resulting total error for the method across
the five pixels would be larger, as the retrieved surface reflectance values may diverge
for particular wavelengths and atmospheric components concentrate on boundary values.
Under a spatial model, this error is then spread to the nearby points. To remedy the issue,
we truncated the realizations to realistic values of [1.5, 2] g cm−2 for vapor and [0.01, 0.1]
for aerosol optical depth. These values are also similar to conditions under which real data
is collected, so simulation results can better inform expectations with real data. Reducing
the variance for the atmospheric components also helped avoid extreme realizations.

Figures 2–4 illustrate the qualitative improvements that are possible with a spatial
prior. While the independent inversions are at times closer to the truth, they may exhibit
large oscillations that are avoided by the spatial retrievals due to the imposed correlation.
In this way, the spatial inversions are more realistic. The post-hoc smoothing significantly
improves upon the estimates of the independent inversions and yields results that are
similar to the spatial prior in their realism. However, the smoothing cannot overcome large
bias effects from the independent inversions.

Figure 2. Inversions of simulated data showing the water vapor (units of g/cm2) and aerosol optical
depth estimates across 10 pixels in 1D. The retrieved fields are more realistic for spatial (Spatial_Post)
than for individual retrievals (Posterior). The post-hoc smoothing (Smooth_Post) can improve the
individual retrievals but cannot overcome the bias.
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Figure 3. Inversions of simulated data showing the aerosol optical depth estimates across 9 pixels on
a 3× 3 grid. The spatial prior is more accurate than the independent inversions and comparable to
post-hoc smoothing.

Figure 4. Inversions of simulated data showing the water vapor estimates (units of g/cm2) across
9 pixels on a 3× 3 grid. The spatial field better represents the truth; smoothing cannot overcome the
bias in the independent estimates.

The mean square error is an unreliable indicator for inversion quality in the sense
that highly variable components can inflate the MSE. Instead, we measure how closely the
posterior mean reflects the true (prior) distribution with an ad-hoc “prior score”, and we
quantify the predictive performance with the log score. The prior score simply estimates the
log likelihood of the posterior mean given the prior, logN (x?|µa, Sa). Since the post-hoc
smoothing does not change the prior, we do not compute the prior score for that case.
The log score [34] is a proper score (e.g., [35]) that reflects how likely the simulated true
data x were under the estimated (Gaussian) predictive distribution, logN (x|x?, S?). It is
important to note that the atmospheric components make up only two variables compared
to the roughly 400 components of the reflectance per pixel inversion, so any improvements
in log or prior scores are expected to be relatively small.

Figure 5a,b illustrate the prior score for the miter = 25 simulated realizations each of
1D and 2D pixel arrays. In most cases, the posterior is closer to the prior for the spatial case,
resulting in a better prior score and implying that the spatial model better represents the
data, as expected. For the 2D case, the difference is smaller, because of the greater inherent
variability of a 2D field and the larger maximum distances between points.

Figure 6 illustrates how the spatial inversion usually has better predictive performance
compared to the individual inversions. The second set of boxes represent the difference
between the spatial prior log scores and the post-hoc smoothing. Although the median is
roughly unchanged, the other percentiles are inflated. The inflated lower percentile for the
2D log score difference suggests that when the individual estimates are not severely biased,
the smoothing can drastically improve the predictive performance. However, when the
individual estimates are biased, which is more often the case due to the positive median
difference, the post-hoc smoothing cannot beat the smoothing induced with a spatial prior.
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(a) (b)

Figure 5. Prior score plots for 25 simulated realizations. The posterior estimates for the spatial model
are usually closer to their priors than the independent models. The effect is weaker for the 2D case,
suggesting that the improvement tends to be most pronounced with highly correlated data. (a) Prior
score results for a 1D array of 10 pixels. (b) Prior score results for a 2D grid of 9 pixels.

Figure 6. The top box plots show the difference in log score between the spatial and independent
models across 25 simulations. The (25%, 50%, 75%) quantile values are (21.8, 52.8, 69.1) for the 1D
case and (−19.2, 10.4, 39.6) for the 2D case. The two lower box plots show the difference in log
score between the spatial and smoothed independent model. Quantiles are (−37.9, 91.8, 128.0) and
(−3326.4, 16.9, 67.3) for 1D and 2D respectively. Note the discontinuous x-axis.

3.2. Application to Real Data

We apply the spatial inversion to three sets of remotely sensed data from AVIRIS-
NG. The current implementation of the inversion software, ISOFIT, produces pixelwise-
independent estimates of surface reflectance and the two atmospheric components of water
column vapor and aerosol optical thickness or depth (AOD), see Section 2.3. Measurements
were taken by plane from 5 to 10 km altitude and were orthocorrected for plane movement.

Before applying the methodology to real data, we estimate the covariance parameters
of the spatial model with a field of water vapor measurements estimated by the independent
inversion procedure on an unrelated data set in India. Our chosen parameter values for
both water vapor and aerosols were: a range ρ = 750 m, smoothness ν = 1.5, a nugget
effect of 0.001 and variance σ2 = 1. The procedure and justification for this choice are
presented in Appendix A.2.

The first data set we consider is a validation measurement taken at Ivanpah Playa in
California, USA on 28 March 2017 at about 5:30 p.m. Ideally the data set would consist
of AVIRIS-NG observations along with multiple simultaneous measurements of in situ
aerosols and water vapor over the region, which would allow for validation of the method
as in [23]. Since a data set like this does not currently exist, the Ivanpah data set with
just a single, area-wide measurement for the aerosols and vapor is the best available
alternative. The weather conditions for the measurement are extremely uniform and clear,
so we perform a spatial inversion to determine if the noise in the atmospheric components
is smoothed.

The results of the validation show that the atmospheric components can have slightly
less bias under the spatial model, but the effect is practically insignificant. The in situ
measured aerosol optical thickness and water vapor are roughly 0.043 and 0.88, respectively.
The estimates for aerosols shown in Figure 7 vary from 0.01 to 0.012, which underestimates
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the in-situ measurement of 0.043, but in practice the difference is negligible as AOD values
up to 0.05 correspond to extremely clear skies. The water vapor measurements are nearly
identical and uniformly valued at 0.67 for all methods, which also underestimates the
in situ measurements of 0.88. Such differences of 0.2 g cm−2 are not unrealistic, since the
in situ measurement carries its own uncertainty and the optical absorption path of the two
instruments is different. Together, this validation study confirms that a spatial model does
no harm and can help lower the overall error of the aerosol estimates, but the spatial error
for such homogeneous scenes is negligible.

Figure 7. The aerosol optical depth prediction for validation data at Ivanpah. The predictions are
effectively identical, but the spatial retrievals are closer to the in situ measurement of 0.043.

The next data set we explored was measured on 25 June 2014 at roughly 7:30 p.m.
local time over Cuprite Hills in Nevada, USA. Here we have a swath of 50 × 150 pixels
and perform individual, 1 × 5 pixel inversions, and 2 × 2 pixel inversions, with the spatial
inversions using the same Matérn parameters (1.5, 0.75) as the previous data set. The choice
of 1 × 5 and 2 × 2 pixels helps illustrate the difference between a 1-dimension, push-broom
type of correlation versus a 2-dimensional correlation. We find very little difference in the
surface reflectance across pixels shown in Figure 8. There is a mild scaling effect that occurs
with the spatial versions, which we attribute to the different results for the atmospheric
components, but the shape is consistently characteristic of soil with minerals. The results
for atmospheric water vapor shown in Figure 9 show that the spatial models provide a
smoothing effect that reduces the noisy estimates of the independent inversions. The aerosol
optical thickness in Figure 10 has a similar story, where the spatial values tend to be lower
and smoother than the independent inversion, which has stronger gradients between
pixels. The fourth subfigure of Figure 10 shows reflectance for an arbitrary wavelength and
suggests that the aerosols detected by all methods are influenced by the land reflectance,
with the independent inversions more strongly influenced compared to the spatial methods.

Our last data set was collected over Yolo in California, USA on the outskirts of Sacra-
mento, California on 7 September 2020 at about 7 p.m. The conditions for this data set
were smoky: wildfires had increased the amount of aerosols in the atmosphere and varying
amounts of smoke are visible in the color images of the scene. We invert a coarse grid over
the entire scene to see if the recovered aerosol states can capture the smoothly varying field
suggested by the imagery. The full swath is about 2500 × 500 pixels, so we subsample
every 25th pixel with a buffer from the edges to get 94 × 16 inversions.
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Figure 8. The surface reflectance profiles are nearly identical for the Cuprite data, with scaling
changes due to the estimation of atmospheric parameters. This suggests that independent inversions
may be overestimating reflectance. Pixels 105, 254, and 255 are adjacent and the reflectance can be
interpreted as a percent, so at a particular wavelength a reflectance of 0.4 means 40% of the incoming
radiant energy is reflected.

Figure 9. The water vapor (units of g/cm2) estimates are noticeably smoother under the spatial
models. The predicted fields are qualitatively more realistic and are a principled alternative to
post-hoc smoothing.
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Figure 11 shows a comparison of the independent and a 2 × 2 inversion. While the
H2O predictions were nearly identical, the aerosol field was significantly smoothed. There
are a few areas in the spatial model that appear to be outliers but may be explained as the
spatial model spreading the effect of large individual pixel values for the aerosols. It is
expected that inverting a larger collection of pixels simultaneously (for example, 10 × 10)
will result in the large values being spread out even more and higher overall estimates for
the aerosol field. Combined with the results of the validation data at Ivanpah, the spatial
model may counteract or provide lower bias for atmospheric components compared to
independent inversions.

Figure 10. For the Cuprite dataset, the aerosol optical depth prediction is susceptible to the surface
state prediction (bottom right), but smoothing with a spatial prior decreases the noise. The top
left figure shows inversions done 1 pixel at a time, compared to stripes of 1 × 5 pixels in the top
right figure and squares of 2 × 2 pixels in the bottom left figure. The bottom right figure shows
topography visible at a single wavelength, 1600 nm.

Figure 11. A retrieved aerosol field under a spatial model is smoother than the independent retrievals
and spreads out large estimates.

4. Discussion

We illustrated the mathematical details and addressed the basic computation chal-
lenges that arise when performing spatial retrievals with the introduction of cross-correlation
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with a Gaussian process prior. The block independent implementation we chose is both
simple and allows for straightforward parallelization, but can exhibit a computational
complexity that is cubic in cardinality of the block. Our simulations showed that a spatial
radiative transfer model offers a better log score when compared to the non-spatial ver-
sion. In particular, the log score plot reveals that most simulations benefit from a spatial
approach, but in some cases the simple techniques perform very well. With real satellite
data, we demonstrated how the spatial model can offer qualitatively improved retrievals
with lower perceived error in the the atmospheric components. However, we note that the
estimates of surface reflectance were not significantly affected.

Although we do not have spatially varying situ measurements to compute accuracy
scores for real data, we showed that the spatial model does provide additional smoothing
to the atmospheric components, resulting in more realistic predictions for the atmospheric
state across space. We also noticed a consistent trend in which the spatial models show
slightly less bias in the atmospheric components. This is particularly important when
comparing to post smoothing methods, which can greatly improve individual atmospheric
estimates but cannot overcome bias. Future work would benefit from a true verification
data set, which could be used to generate more realistic simulated sets of surface pixels.
The atmospheric component of the simulations could be made far more sophisticated by
leveraging meteorological models.

While we recommend this methodology for cases where the atmosphere is not ideal,
more simulation and data analysis would be needed to quantify the range of atmospheric
conditions under which there is a significant advantage for our method. We showed how
very clear atmospheric conditions such as those in the Ivanpah data set do not get any
practical benefit. Data sets under very smoky or moist atmospheres show more potential,
but at present they are less common and need to be collected under different combinations.
This analysis should also elucidate what size and shape pixel block is best. For example,
very large pixel blocks may induce too much smoothing when there are sharp changes in
atmospheric conditions. Alternatively, choosing blocks that consist of a smaller number of
spread out pixels could increase the chance of having contrasting surfaces that may better
reveal the atmospheric state as oppose to a more uniform set of surfaces. These myriad
tasks were beyond the scope of this work.

From a development point of view, a next step is to apply one of the many spatial
approximations to allow for efficient, simultaneous inversion of larger data sets. Inducing
sparsity in precision matrices (e.g., [36–38]) or low-rank approaches [39–41] stand out as
the best options. The correlation structure could also be extended to include quantities
such as elevation or terrain effects, rather than just latitude and longitude, to take into
account possible discontinuities or interactions between topography and the atmosphere.
From an application point of view, essentially any inversion that involves smoothly varying
components can be extended with this methodology. One special case is exoplanet surface
analysis, in which the exoplanet surface is expected to have some type of atmosphere
and even a very simple atmospheric model may lead to improved retrievals. Alternately,
a spatial model for the local atmosphere offers telluric corrections on upward-looking ob-
servation time series of exoplanet spectra from a ground-based spectrometer. The “surface”
of interest may be a star, and the local atmosphere can be modeled as a 1-D Gaussian
Markov system where belief propagation gives a tractable exact solution. Correlations over
the temporal domain can be included as well if there are multiple reflectances measured
over time.

In addition to using approximations for the spatial prior, further speed-ups might
be obtained by GP emulation of the forward model after dimension reduction via active
subspace on the latent state and functional PCA on the observations. The data model may
be improved by considering the radiance measurement as a count, implying a Poisson or
generalized linear model where the variance is equal to the mean, rather than a Gaussian
model. An alternative is to assume a log Gaussian model for the observations, which would
avoid some of the additional computational burden of a Poisson model.
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Aside from improving the efficiency of the algorithm, the model itself could be mod-
ified to account for adjacency effects, which are assumed negligible in this work. Given
a priori knowledge or an initial run to determine that surface states are of similar nature,
the reflectance of those locations can be re-estimated with correlated surfaces. This correla-
tion between surfaces could be combined with that atmospheric correlations to take into
account all possible local correlations.

5. Conclusions

In this work we showed how to account for spatial correlations in retrievals of surface
reflectance from imaging spectroscopic measurements. The standard methodology inverts
a single radiance measurement to estimate surface reflectance and atmospheric states of
aerosols and water vapor. By directly modeling the physical correlations of the atmospheric
components, we can invert multiple measurements simultaneously and borrow strength
from nearby locations to get more robust predictions of the non-spatial reflectances. In con-
trast, kriging or post-processing the fields to create smoothness does not take into account
the dependencies between variables induced by the nonlinear model and would result in
inaccurate fields.
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ATREM Atmosphere Removal
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UQ Uncertainty Quantification
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Appendix A. Appendix/Proofs

Appendix A.1. Iterative Optimization

The optimization algorithm iteratively solves for the value x that minimizes a cost,
Q(x) = ‖y− f (x)‖2, by using the approximation f (x) ≈ f (x0) + J · (x − x0), where we
have denoted the Jacobian J = f ′(x0). Differentiating with respect to x and setting to
0 gives the Gauss-Newton update of x− x0 = (J> J)−1 J>(y− f (x0)). Substituting (J> J)−1

with (J> J + Dγ)−1, where Dγ is a positive diagonal matrix specified later, results in a
Levenberg-Marquardt update.
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In our context, the cost function is slightly more general:

Q(x) = − log p(x|y) ∝
1
2
(x− µ)S−1

a (x− µ) +
1
2
(y− f (x))S−1

ε (y− f (x)) + constant

∝‖(x− µ)S−1/2
a ‖2 + ‖(y− f (x))S−1/2

ε ‖2.

Substituting the second order approximation f (x) ≈ f (x0) + K0(x− x0) where K0 =
∂ f (x)

∂x

∣∣
x0

and noting the Jacobian now has two terms, we initially follow a Gauss-Newton
algorithm as follows. Starting from a rearranged cost,

Q(x) ≈
∥∥∥∥∥
[(

y
0

)
−
(

f (x0) + K0(x− x0)
−x + µ

)][
S−1/2

ε 0
0 S−1/2

a

]∥∥∥∥∥
2

,

the Jacobian can be thought of as a coefficient vector J applied to a residual vector R:

J =

[
K>0 S−1/2

ε

−S−1/2
a

]
, R =

[
x− x0
x− µ

]
.

The residual is represented by two different reference points: the expansion point x0
and the prior mean µ. It is not obvious how to plug the Jacobian and residual terms into
the Gauss-Newton update step, so we manually compute the gradient of the loss,

∇xQ = S−1
a (x− µ)− K>0 S−1

ε (y− f (x0)− K0(x− x0)), (A1)

and set it to zero and collect terms to get the update step. We denote the Hessian as
P0 = [S−1

a − K>0 S−1
ε K0].

(S−1
a − K>0 S−1

ε K0)x =S−1
a µ + K>0 S−1

ε (y− f (x0) + K0x0)

P0x =[S−1
a µ + K>0 S−1

ε K0x0 + K>0 S−1
ε (y− f (x0))]

x =P−1
0 [S−1

a µ + K>0 S−1
ε K0(x0 − µ + µ) + K>0 S−1

ε (y− f (x0))]

x1 := x =µ + P−1
0 [K>0 S−1

ε K0(x0 − µ) + K>0 S−1
ε (y− f (x0))]

(A2)

The iteration continues with x1 as the next expansion point. For arbitrary iteration
`+ 1 around x(`), we recover the update step shown in Section 2.3

x(`+1) = µ + [S−1
a − K>` S−1

ε K`]
−1[K>` S−1

ε K`(x(`) − µ) + K>` S−1
ε (y− f (x(`)))] (A3)

where K` =
∂ f (x)

∂x |x(`) . The likelihood that corresponds to the first order approximation is

y|x, x(`) ∼ N
(

f (x(`)) + K`(x− x(`)), Sε

)
.

Recalling that the prior is p(x) = N(µ, Sa), it is simple to show that each step of the
algorithm as shown in Equation (A3) is the posterior expectation:

x(`+1) = E(x|x(`), y),

where the posterior is π(x|y, x(`)) ∝ p(y|x, x(`))p(x). To improve performance, the diagonal
term Dγ = γDiag(S−1

a ) may be added to the Hessian, resulting in a Levenberg-Marquardt
algorithm. This Hessian approximation is represented as α in Equation (6).

Appendix A.2. Parameter Estimation

We estimated Matérn smoothness and range parameters for water vapor using mea-
surements collected by AVIRIS-NG over Desalpar in India on 25 March 2018 at roughly
7 a.m. We used a cross-validation-type procedure in which we maximize the predictive
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likelihood (related to the log score) of a set of test points given a posterior computed from a
set of training points. The data set was roughly 3000 by 500 pixels, so we used a training set
lattice of 300 by 50 pixels (subsampling every tenth pixel) and a test set defined by offsetting
the training set by five pixels. Given the cubic complexity when computing likelihoods for
a Gaussian process, we utilize the GPVecchia package to perform efficient (linear in sample
size, [38]) computation of the likelihood with a nearest-neighbor approximation.

The estimation of both range and smoothness parameters simultaneously was unstable,
so we iteratively optimized the parameters one at a time until the change in each parameter
value was less than a threshold, one percent in our case. Initializing the procedure with
smoothness 1.5, range 5 (measured in pixels), with variance fixed to 1, and a nugget
(representing noise) of 0.01, we converged to a range of 146.49 pixels and smoothness of
1.411. The pixel size for this data set is recorded as 5 m, hence the range can be interpreted
as about 750 m. Since the Matérn covariance has a very efficient form for smoothness
values of 1.5, we rounded to that value for all computations. For simplicity, we assumed
the aerosol field to have the same spatial covariance parameters.

References
1. Space Studies Board; National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet: A Decadal

Strategy for Earth Observation from Space; National Academies Press: Washington, DC, USA, 2019.
2. Chapman, J.W.; Thompson, D.R.; Helmlinger, M.C.; Bue, B.D.; Green, R.O.; Eastwood, M.L.; Geier, S.; Olson-Duvall, W.; Lundeen,

S.R. Spectral and radiometric calibration of the next generation airborne visible infrared spectrometer (AVIRIS-NG). Remote Sens.
2019, 11, 2129. [CrossRef]

3. Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al.
The PRISMA imaging spectroscopy mission: Overview and first performance analysis. Remote Sens. Environ. 2021, 262, 112499.
[CrossRef]

4. Guanter, L.; Kaufmann, H.; Segl, K.; Foerster, S.; Rogass, C.; Chabrillat, S.; Kuester, T.; Hollstein, A.; Rossner, G.; Chlebek, C.; et al.
The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens. 2015, 7, 8830–8857. [CrossRef]

5. Connelly, D.S.; Thompson, D.R.; Mahowald, N.M.; Li, L.; Carmon, N.; Okin, G.S.; Green, R.O. The EMIT mission information
yield for mineral dust radiative forcing. Remote Sens. Environ. 2021, 258, 112380. [CrossRef]

6. Nieke, J.; Rast, M. Towards the copernicus hyperspectral imaging mission for the environment (CHIME). In Proceedings of
the Igarss 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE:
Piscataway, NJ, USA, 2018; pp. 157–159.

7. Alonso, K.; Bachmann, M.; Burch, K.; Carmona, E.; Cerra, D.; De los Reyes, R.; Dietrich, D.; Heiden, U.; Hölderlin, A.; Ickes,
J.; et al. Data products, quality and validation of the DLR earth sensing imaging spectrometer (DESIS). Sensors 2019, 19, 4471.
[CrossRef] [PubMed]

8. Yokoya, N.; Iwasaki, A. Hyperspectral and multispectral data fusion mission on hyperspectral imager suite (HISUI). In
Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, VIC, Australia,
21–26 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 4086–4089.

9. Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote
sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [CrossRef]

10. Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; Van Den Bosch, J. MODTRAN® 6: A major upgrade of the MODTRAN®

radiative transfer code. In Proceedings of the 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing (WHISPERS), Lausanne, Switzerland, 24–27 June 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–4.

11. Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.;
et al. The libRadtran software package for radiative transfer calculations (version 2.0. 1). Geosci. Model Dev. 2016, 9, 1647–1672.
[CrossRef]

12. Thompson, D.R.; Guanter, L.; Berk, A.; Gao, B.C.; Richter, R.; Schläpfer, D.; Thome, K.J. Retrieval of atmospheric parameters and
surface reflectance from visible and shortwave infrared imaging spectroscopy data. Surv. Geophys. 2019, 40, 333–360. [CrossRef]

13. Gao, B.C.; Montes, M.J.; Li, R.R.; Dierssen, H.M.; Davis, C.O. An atmospheric correction algorithm for remote sensing of bright
coastal waters using MODIS land and ocean channels in the solar spectral region. IEEE Trans. Geosci. Remote Sens. 2007,
45, 1835–1843. [CrossRef]

14. Thompson, D.R.; Gao, B.C.; Green, R.O.; Roberts, D.A.; Dennison, P.E.; Lundeen, S.R. Atmospheric correction for global mapping
spectroscopy: ATREM advances for the HyspIRI preparatory campaign. Remote Sens. Environ. 2015, 167, 64–77. [CrossRef]

15. Healey, G.; Slater, D. Models and methods for automated material identification in hyperspectral imagery acquired under
unknown illumination and atmospheric conditions. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2706–2717. [CrossRef]

16. Acito, N.; Diani, M.; Corsini, G. Coupled subspace-based atmospheric compensation of LWIR hyperspectral data. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 5224–5238. [CrossRef]

http://doi.org/10.3390/rs11182129
http://dx.doi.org/10.1016/j.rse.2021.112499
http://dx.doi.org/10.3390/rs70708830
http://dx.doi.org/10.1016/j.rse.2021.112380
http://dx.doi.org/10.3390/s19204471
http://www.ncbi.nlm.nih.gov/pubmed/31618940
http://dx.doi.org/10.1016/j.rse.2006.03.002
http://dx.doi.org/10.5194/gmd-9-1647-2016
http://dx.doi.org/10.1007/s10712-018-9488-9
http://dx.doi.org/10.1109/TGRS.2007.895949
http://dx.doi.org/10.1016/j.rse.2015.02.010
http://dx.doi.org/10.1109/36.803418
http://dx.doi.org/10.1109/TGRS.2019.2897498


Remote Sens. 2022, 14, 2183 20 of 20

17. Guanter, L.; Del Carmen González-Sanpedro, M.; Moreno, J. A method for the atmospheric correction of ENVISAT/MERIS data
over land targets. Int. J. Remote Sens. 2007, 28, 709–728. [CrossRef]

18. Cressie, N. Statistics for Spatial Data, Revised Edition; John Wiley & Sons: New York, NY, USA, 1993.
19. Thompson, D.R.; Kahn, B.H.; Brodrick, P.G.; Lebsock, M.D.; Richardson, M.; Green, R.O. Spectroscopic Imaging of Sub-Kilometer

Spatial Structure in Lower Tropospheric Water Vapor. Atmos. Meas. Tech. 2021, 14, 2827–2840. [CrossRef]
20. Rodgers, C.D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev.

Geophys. 1976, 14, 609–624. [CrossRef]
21. Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; Volume 2.
22. Mouroulis, P.Z. Spectral and spatial uniformity in pushbroom imaging spectrometers. In Proceedings of the Imaging Spectrometry

V. International Society for Optics and Photonics, Denver, CO, USA, 18–23 July 1999; Volume 3753, pp. 133–141.
23. Thompson, D.R.; Natraj, V.; Green, R.O.; Helmlinger, M.C.; Gao, B.C.; Eastwood, M.L. Optimal estimation for imaging

spectrometer atmospheric correction. Remote Sens. Environ. 2018, 216, 355–373. [CrossRef]
24. Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized

inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations.
Atmos. Meas. Tech. 2011, 4, 975–1018. [CrossRef]

25. Xu, F.; Diner, D.J.; Dubovik, O.; Schechner, Y. A correlated multi-pixel inversion approach for aerosol remote sensing. Remote
Sens. 2019, 11, 746. [CrossRef]

26. Hobbs, J.; Katzfuss, M.; Zilber, D.; Brynjarsdóttir, J.; Mondal, A.; Berrocal, V. Spatial retrievals of atmospheric carbon dioxide
from satellite observations. Remote Sens. 2021, 13, 571. [CrossRef]

27. Diner, D.J.; Martonchik, J.V.; Kahn, R.A.; Pinty, B.; Gobron, N.; Nelson, D.L.; Holben, B.N. Using angular and spectral shape
similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sens. Environ. 2005, 94, 155–171.
[CrossRef]

28. Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J. Multiangle implementation of atmospheric
correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. Atmos. 2011, 116. [CrossRef]

29. Servera, J.V.; Rivera-Caicedo, J.P.; Verrelst, J.; Muñoz-Marí, J.; Sabater, N.; Berthelot, B.; Camps-Valls, G.; Moreno, J. Systematic
Assessment of MODTRAN Emulators for Atmospheric Correction. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–17. [CrossRef]

30. Brodrick, P.G.; Thompson, D.R.; Fahlen, J.E.; Eastwood, M.L.; Sarture, C.M.; Lundeen, S.R.; Olson-Duvall, W.; Carmon, N.; Green,
R.O. Generalized radiative transfer emulation for imaging spectroscopy reflectance retrievals. Remote Sens. Environ. 2021,
261, 112476. [CrossRef]

31. Thompson, D.R.; Braverman, A.; Brodrick, P.G.; Candela, A.; Carmon, N.; Clark, R.N.; Connelly, D.; Green, R.O.; Kokaly, R.F.;
Li, L.; et al. Quantifying uncertainty for remote spectroscopy of surface composition. Remote Sens. Environ. 2020, 247, 111898.
[CrossRef]

32. Ranganathan, A. The levenberg-marquardt algorithm. Tutoral LM Algorithm 2004, 11, 101–110.
33. Kinne, S. The MACv2 aerosol climatology. Tellus B Chem. Phys. Meteorol. 2019, 71, 1–21. [CrossRef]
34. Gneiting, T.; Raftery, A.E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 2007, 102, 359–378.

[CrossRef]
35. Gneiting, T.; Katzfuss, M. Probabilistic forecasting. Annu. Rev. Stat. Appl. 2014, 1, 125–151. [CrossRef]
36. Lindgren, F.; Rue, H.; Lindström, J. An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic

partial differential equation approach. J. R. Stat. Soc. Ser. B 2011, 73, 423–498. [CrossRef]
37. Nychka, D.W.; Bandyopadhyay, S.; Hammerling, D.; Lindgren, F.; Sain, S.R. A multi-resolution Gaussian process model for the

analysis of large spatial data sets. J. Comput. Graph. Stat. 2015, 24, 579–599. [CrossRef]
38. Katzfuss, M.; Guinness, J. A general framework for Vecchia approximations of Gaussian processes. Stat. Sci. 2021, 36, 124–141.

[CrossRef]
39. Quiñonero-Candela, J.; Rasmussen, C.E. A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res.

2005, 6, 1939–1959.
40. Banerjee, S.; Gelfand, A.E.; Finley, A.O.; Sang, H. Gaussian predictive process models for large spatial data sets. J. R. Stat. Soc. Ser.

B 2008, 70, 825–848. [CrossRef] [PubMed]
41. Katzfuss, M.; Cressie, N. Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets. J. Time Ser. Anal.

2011, 32, 430–446. [CrossRef]

http://dx.doi.org/10.1080/01431160600815525
http://dx.doi.org/10.5194/amt-14-2827-2021
http://dx.doi.org/10.1029/RG014i004p00609
http://dx.doi.org/10.1016/j.rse.2018.07.003
http://dx.doi.org/10.5194/amt-4-975-2011
http://dx.doi.org/10.3390/rs11070746
http://dx.doi.org/10.3390/rs13040571
http://dx.doi.org/10.1016/j.rse.2004.09.009
http://dx.doi.org/10.1029/2010JD014986
http://dx.doi.org/10.1109/TGRS.2021.3071376
http://dx.doi.org/10.1016/j.rse.2021.112476
http://dx.doi.org/10.1016/j.rse.2020.111898
http://dx.doi.org/10.1080/16000889.2019.1623639
http://dx.doi.org/10.1198/016214506000001437
http://dx.doi.org/10.1146/annurev-statistics-062713-085831
http://dx.doi.org/10.1111/j.1467-9868.2011.00777.x
http://dx.doi.org/10.1080/10618600.2014.914946
http://dx.doi.org/10.1214/19-STS755
http://dx.doi.org/10.1111/j.1467-9868.2008.00663.x
http://www.ncbi.nlm.nih.gov/pubmed/19750209
http://dx.doi.org/10.1111/j.1467-9892.2011.00732.x

	Introduction
	Method
	Optimal Estimation of Surface Reflectance
	Forward Model and Uncertainty 
	Baseline Optimal Retrievals 
	Prior 
	Naive Spatial Retrieval Structure 
	Efficient Implementation 
	Complexity
	Other Practical Considerations

	Results
	Simulation Study
	Application to Real Data 

	Discussion
	Conclusions
	Appendix/Proofs 
	Iterative Optimization 
	Parameter Estimation 

	References

