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Abstract: The transformation of resource-exhausted urban land is an urgent problem for sustainable
urban development in the world today. Obtaining the urban land use type and analyzing the changes
in their land use can lead to better management of the relationship between economic development
and resource utilization. In this paper, a residual-intelligent module network was proposed to solve
the problems of low classification accuracy and missing objects edge information in traditional
computer classification methods. The classification of four Landsat-TM/OLI images from 1993–2020
for Jiaozuo city (the first batch of resource-exhausted cities in China) was realized by this method.
The results (overall accuracy was 98.61%, in 2020 images) were better than the comparison models
(support vector machine, 2D-convolutional neural network, hybrid convolution networks; overall
accuracy was 87.12%, 96.16%, 98.46%, respectively) and effectively reduced the loss of information on
the edge of the ground objects. On this basis, six main land use types were constructed by combining
field surveys and other methods. The characteristics and driving forces of spatial-temporal change in
land use were explored from the aspect of social, economic and policy factors. The results showed that
from 1993 to 2020 the cultivated land, forest land, water body and other land types in the study area
decreased by 690.97 km2, 57.54 km2, 47.04 km2 and 59.43 km2, respectively. The construction land
and bare land increased by 839.38 km2 and 15.57 km2, respectively. The transfer of land use types was
mainly from cultivated land to construction land, with a cumulative conversion of 920.95 km2 within
27 years. The driving forces of land use in the study area were analyzed by principal component
analysis (PCA) and regression analysis. The spatial-temporal evolution of land use types was affected
by policy changes, the level of social development and the adjustment in the economy, industry and
agriculture structure. The investment in fixed assets and per capita net income in rural areas were
the top two influencing factors and their cumulative contribution rate was 94.62%. The findings
of this study can provide scientific reference and theoretical support for land use planning, land
reclamation in mining areas, ecological protection and sustainable development in Jiaozuo and other
resource-exhausted cities in the world.

Keywords: remote sensing image; convolutional neural network; land use; driving force; resource depletion

1. Introduction

The dynamic information of land use/cover change (LUCC) reflects the essential
characteristics of the Earth’s surface [1]. With the development of the social economy,
LUCC has become the main form of showing human activities in the natural ecological
environment [2], and land use-related issues also appear in large numbers, such as loss
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and illegal occupation of arable land, soil pollution, rural residential land sprawl and so
on. LUCC may affect the primary conditions for sustaining livelihoods and the balance
of ecosystems, such as food production, climate regulation and biodiversity [3–5]. It
has attracted the attention of more and more national governments and international
organizations. Therefore, the monitoring of LUCC and the analysis of its causes have
become a hot topic.

Firstly, in the process of land use type surveying, the traditional survey methods need
to invest a lot of workforce and material resources, which is not conducive to efficient
monitoring [6]. Secondly, the long work cycle often makes the survey results lag behind,
which means it is difficult to meet the rapid development of the social economy. In recent
years, remote sensing technology has developed rapidly, with the characteristics of all-day
observation and rapid imaging. Randazzo et al. used maximum likelihood, minimum
distance, Mahalanobis distance and spectral angle mapping to analyze sentinel-2 images
from a small beach in the province of Messina; it is believed that the information about
surface coverage can be obtained by LULC mapping of images [7]. Wasniewski et al. used a
random forest algorithm for pixel-based land cover classification in Lodz Province, central
Poland, and obtained good results [8]. Through the observation of land cover, remote
sensing data are widely used to identify land use type [9]. The correct interpretation of
remote sensing data has become the focus of work, and the development of computer
programs has facilitated the interpretation. The automatic classification of remote sensing
images can be realized quickly by using machine learning methods [10]. Land classification
by computer technology instead of manual survey and visual interpretation has become
a new trend. For example, the support vector machine has an advantage over traditional
methods in the classification of remote sensing images [11]. After principal component
analysis of the extracted features, land classification is implemented using maximum
likelihood, which improves efficiency and achieves good accuracy [12]. Furthermore,
classification accuracy is further improved by fusing 26 variables for the random forest
method [13].

However, the above methods are shallow learning methods, which have some short-
comings such as weak noise suppression ability, limited feature description ability, poor
generalization and so on [14–16]. They cannot satisfy a higher level of need. The appear-
ance of deep learning [17–22] makes it possible to solve the above problems. It has the
advantages of high classification accuracy, strong characteristic learning ability and good
robustness, and can overcome the defects of traditional methods [23–30]. By introducing
a residual connection into 2D-CNN, a deeper level convolution network is constructed,
and the accuracy is improved compared with the original 2D-CNN [31]. Furthermore, the
fusion squeezed excitation net (FuSENet), which selectively emphasizes the information
feature and suppresses the noise information, also achieves a higher classification effect [32].
Although the existing convolutional neural network methods have performed well to a
certain extent, they still have some shortcomings, such as the loss of edge information due
to multiple downsampling operations and impact on the quantitative analysis; the convo-
lution kernel with fixed size, shape and weight in the convolution network cannot adapt to
the variable geometric features of all remote sensing images [33]. Currently, researchers
are starting to introduce the graph convolution network (GCN) into remote sensing image
classification to obtain more efficient models. Qin et al. applied the convolution model
to hyperspectral image classification, realized cooperative training of labeled data and
unlabeled data by using a regular constraint, and achieved higher accuracy than traditional
convolution [34]. Wan et al. proposed a model based on dynamic graph and graph convo-
lution, and improved the model accuracy based on multi-scale [35]. The above convolution
models are simple and cannot deal with the geometric changes in the target region of
hyperspectral images flexibly. Therefore, there is still much room for further improvement.

Regarding the driving forces of land use change, previous studies mainly focused
on the analysis of the social factors and natural factors, such as population, economy,
policy, as well as temperature, precipitation, earthquakes, fires, floods and sudden natural
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disasters. In the tourist city of Pingtan Island, its special urban expansion policy played an
important role in land use change [36]. The different time periods of subway construction
had different influences on the surrounding land change [37]. Through selecting seven
land use types as species variables and using highly correlated socio-economic indicators
as environmental variables, Jiang et al. concluded that the largest factor affecting their
land change is the total amount of retail sales of social consumer goods [38]. Yu et al.
used the soil and water assessment tool (SWAT) model to study the impact of climate
change on the evolution of wetlands in the Xiliao River Basin [39]. Spatial factors such
as the distance between roads and residential areas, and natural disaster factors such as
fire also affected land use change [40]. Chirwa et al. examined the socio-economic drivers
of land cover change in terms of agricultural expansion, population growth and illegal
logging [41]. Imberno et al. used an econometric model to analyze cropland in different
regions and found that population was the main factor influencing cropland change [42].
In Puxian county of the Loess Plateau, the policy of returning farmland to forests was
the main driving force affecting the spatial and temporal changes in land [43]. The above
studies have obtained rich results, which provide valuable experiences for the follow-up
study on the driving factors of land cover change and land development in the study area.

Socio-economic and policy changes are considered as the important determinants
of land use change [40]. Jiaozuo is neither an economically developed area dominated
by human factors, nor an ecologically fragile area with few social activities, but a city in
transition from "resource depletion" to "green tourism". Convolutional neural networks
have some advantages in the classification of remote sensing images, and residual links
can solve the problem of gradient vanishing in deep networks. In such a context, in order
to save costs and ensure the accuracy of the quantity of each land use type, the residual-
intelligent module network was constructed to classify the remote sensing images in the
study area. This method takes a 3D convolution network as the main body and introduces
the famous “residual link” structure. The “intelligent module” adaptively recalibrates
the characteristic responses between channels by establishing interdependencies between
channels in each convolutional layer. On this basis, the spatial-temporal change in land
use and its driving factors in Jiaozuo were analyzed. The research results can provide a
valuable reference for land policy making and sustainable development of land resources
during the urban transition period in Jiaozuo.

2. Materials and Methods
2.1. Study Area

Jiaozuo City (35◦10′–35◦21′ N, 113◦4′–113◦26′ E) is located in the northwestern part
of Henan Province, People’s Republic of China, and has a long history as a major area of
early Chinese activities. Covering an area of about 4071.1 km2, Jiaozuo has a permanent
population of about 3,521,100 (7th national population census, 2020). The territory has
a relatively complete range of landforms, ranging from the foot of the North Taihang
Mountains River to the banks of the South Yellow River, followed by mountains, hills, plains
and tidal flats. The types of land resources developed and utilized in the city are cultivated
land, forest land, industrial and commercial land, traffic land, housing land and so on.
Jiaozuo has a temperate continental monsoon climate, with ample sunshine conditions, four
distinct seasons. The annual average temperature is ranging 12.9 ◦C–14.7 ◦C, the annual
average sunshine time is 379 h, the solar and thermal resources are sufficient, the annual
average precipitation is about 650 mm, which can meet the growth of wheat, corn and
other crops [44]. In addition, Jiaozuo is rich in mineral resources, (mainly coal) and is one
of China’s top 10 coal and three fire clay bases.

In March 2008, The National Development and Reform Commission of the People’s
Republic of China issued the “Notice on Printing and Distributing the List of the First Batch
of Resource-Exhausted Cities” (no. 712, Development and Reform Office, 2008); Jiaozuo
was listed as the country’s first resource-exhausted city [45].
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In recent years, Jiaozuo has struggled to transform its status as a resource-exhausted
city. With the vigorous implementation of environmental protection and green development
policies, the tertiary sector of the economy has developed vigorously, the air quality has
gradually improved and the emission of polluting gases has been significantly reduced.
Good results have been achieved in the reclamation of coal mining subsidence areas and
the ecological management of mines. Figure 1 shows the administrative location map of
Jiaozuo and the remote sensing true color map based on a Landsat/OLI image in 2020.

Figure 1. Location and satellite image of the study area: (a) Map of Jiaozuo; (b) True Color Image
of Jiaozuo.

2.2. Data Source

In this study, four periods of Landsat remote sensing images (1993, 2003, 2011 and
2020) were collected. The resolution was 30 meters and the cloud coverage was less than
5%. Data were from geospatial data cloud sites, http://www.gscloud.cn/search (accessed
on 15 March 2021). Since the study area has short sowing periods in June and October, the
cultivated land is exposed. This can distinguish the farmland from other vegetation and
has no obvious impact on the classification of other land features. As a result, images from
both periods were selected. Four remote sensing images were preprocessed by radiometric
calibration, atmospheric correction, geometric correction and image registration [46]. The
study area was extracted using vector boundaries, and the socio-economic data were
obtained from the Jiaozuo Statistical Yearbook.

In the selection of training samples, firstly, according to the national land cover classi-
fication standard [47,48] and the actual situation of the study area, there were six land use
types. Woodland (refers to land where trees, bamboos, shrubs and coastal mangroves grow),
bare land (refers to land with little vegetation cover), cultivated land (refers to land where
crops are grown), construction land (refers to land where buildings and structures are built),
water body (refers to land waters, mudflats, ditches, swamps, hydraulic structures, etc.)
and other land (other than the above land types) were determined by means of visual inter-
pretation. The symbol of remote sensing image interpretation is shown in Table 1. Then, a
certain size of patch was radially extended to the surrounding area by a pixel point on the
original image, and the land type of the selected center pixel was taken as the land type
label of the patch. Each type of land use type had more than 100 samples. In order to reduce
the spectral variability of similar land features caused by surface slope and the orientation
of the sensors, the NDVI (Normalized Difference Vegetation Index), NDWI (Normalized
Difference Water Index) and NDBI (Normalized Difference Building Index) were used as
characteristic variables to improve the classification accuracy. The calculation method of
the three indexes is shown in Equations (1)–(3). Finally, the present land use map in Jiaozuo
combined with field survey was used as a reference for post-classification processing.

NDVI = (NIR− R)/(NIR + R) (1)

http://www.gscloud.cn/search
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NDWI = (G− NIR)/(G + NIR) (2)

NDBI = (SWIR− NIR)/(SWIR + NIR) (3)

where: Equations (1)–(3) are the calculation formula of NDVI, NDWI, NDBI in turn. NIR is
near-infrared band, R is red band, G is green band, SWIR is short-wave infrared band.

Table 1. Remote sensing interpretation signatures of land use types in Jiaozuo city.

Land Use Type Remote Sensing Image Characteristics Interpretive Marker

Woodland Appearing red in the Nir, R and G bands Mostly in the northern mountains.

Bare land Bright color in true color band Distributed on the periphery of construction land
and cultivated land.

Construction land Dark purple in the Nir, R and G bands Mostly surrounded by arable land.

Cultivated land Appearing red in the Nir, R and G bands Distributed throughout the study area, the largest area.

Water body Blue or black in in the Nir, R and G bands Linear distribution, the characteristics are obvious.

Other land Mostly brown in true color band Concentrated in mountainous and overgrown areas.

2.3. Methods

In this manuscript, a mixed convolution network model based on the fusion of super-
pixels is proposed for land classification, which aims to overcome the problems of low
classification accuracy and missing edge information.

2.3.1. Hybrid Convolution Network Incorporating Super-Pixel Segmentation

The convolutional neural network consists of an input layer, a convolution layer, a
pooled layer, an activation function and a fully connected layer. The image is fed into the
model through the input layer, and the convolution core in the convolution layer checks
the input data to extract the features. The extracted features are sampled in the pool layer
to remove the feature redundancy and retain the important features. Finally, the activation
function is adopted and the weighted result is obtained by back propagation through the
weight value. The following is how feature extraction works

Vxyz
ij = f

(
∑ ∑Pi−1

p=0 ∑Qi−1
q=0 ∑Ri−1

r=0 Wpqr
ijm V(x+p)(y+q)(z+r)

(i−1)m + bij

)
(4)

where i represents the current number of layers; Vxyz
ij represents the output of the j-th

feature map (x, y, z) of the i-th layer; m is the number of feature maps connected to the
i− 1-th layer; Wpqr

ijm is the weight of the (p, q, r) position in the m-th feature; bij is the bias;
f is the activation function. Pi, Qi and Ri are the length, width and height of the 3D
convolution kernel.

A super-pixel is a small area composed of a series of adjacent pixels with similar color,
brightness, texture and other characteristics. These small areas retain useful information
about the image. In general, the boundary information of the object in the image is not
destroyed. The complexity of image processing can be effectively reduced by using a small
number of super-pixels instead of a large number of pixels to express image features [49].

In this method, Simple Linear Iterative Clustering (SLIC) algorithm is used to segment
super-pixel image, which is based on K-means idea. In the process, a 5-dimensional vector
(L, A, B, x, y) is composed of (L, A, B) color values and (x, y) coordinates of each pixel, and
then a distance metric is constructed from the 5-dimensional eigenvector.

Firstly, the algorithm generates K seed points, calculates the similarity of pixels in a
particular area with the seed as the center, classifies each pixel and obtains K initial super-
pixels. Then, it calculates the average vector value of the pixel points in the K super-pixels,
and obtains the K cluster centers again. Then, the similarity of pixels in a certain size area
centered on the seed is calculated, and each pixel is classified to obtain K super-pixels,
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update the cluster center and iterate again. Finally, the K cluster centers do not change and
achieve convergence. The algorithm accepts a parameter K, which is used to determine
the number of pre-segmented super-pixels. Assuming the original image has N pixels,
then each super-pixel is divided into about N/K pixels. The side length of each super-pixel
is approximate

S = [N/K]ˆ0.5 (5)

The algorithm takes a cluster center every S pixel and uses the 2S×2S around the clus-
ter center as the search space. This procedure is used to identify more similar points in the
region with the cluster center, and finally complete the super-pixel segmentation operation.

Then, the result of super-pixel segmentation is convolved to obtain a feature map of
W × H × B × C (W and H are the width and height of the feature graph, respectively, B is
the number of bands, C is the number of channels). By merging the B dimension and the C
dimension to form a volume of W × H × (B × C), the two-dimensional convolution layer
is input. Finally, the feature graph is transformed into a one-dimensional vector by flatten
layer and the class information is output by the Softmax activation function. Figure 2 shows
the schematic diagram of the entire model.

Figure 2. Schematic diagram of model structure.

“Intelligence module” consists of two convolution layers and a residual link. The role
is to adaptively recalibrate the feature responses between channels by establishing inter-
dependencies between channels at each convolutional layer. It can selectively emphasize
the informative feature and suppress the noise feature, making the model perform better.
It is well known that when the number of network layers increases to a certain number,
the training accuracy will not continue to increase with the network layer number but will
decrease. Therefore, a residual link is introduced (Figure 3). By adding a jump connection
network structure between the input and the output, the output can obtain the original
data of the input, solve the problem of gradient vanishing and further improve the learning
performance of the network. The structure is shown in Figure 4.
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Figure 3. Residual Learning Module.

Figure 4. Structure diagram of intelligent module.

In Figure 3, x is the input of the residuals module; H(x) is the output of the residuals
learning module with short connections; F(x) is the output of the residuals without short
connections. CONVBN represents convolution and batch normalization operations, and
RELU defines activation functions. The input–output relationship of the residual learning
module is as follows

H(x) = F(x) + x (6)

where H(x) can be understood as the sum of the input x and the residual mapping F(x).
The yellow operation results from the normal convolution Y, (assuming the size is

W × H × CN). The first step is to create a branch for “Squeeze” operation. The featured
graph is transformed into an actual number and the dimension into a 1 × 1 × CN, similar
to the pooling operation under the global sensory field. The number of channels in the
process remains constant. This is followed by the second step, the “Excitation” operation.
It generates weights for each channel and applies them to the original feature channel. The
size of the output Y’ is still W × H × CN, but the importance of each channel has changed.
In this way, some feature channels can be reused. This module can improve the learning
ability of the model, and only a few parameters need to be calculated. In the convolution
part of the whole model, the dilated convolution is used to expand the receptive field and
it can reduce the information loss caused by the downsampling operation.

The reason for choosing this model instead of the traditional automatic computer
image classification method is that:

(1) The traditional machine learning classification method belongs to the shallow level
model, which has simple structure, the weak ability of noise suppression and the limited
ability of feature description. Therefore, traditional methods often have low classification
accuracy and cannot meet the needs of follow-up research.

(2) The standard convolutional neural network model cannot adapt to the geometric
changes in remote sensing images because of the loss of small and linear objects in the
image due to the downsampling. The result of classification cannot be used to calculate
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the quantitative relationship of land use types, and it is not helpful to describe the spatial-
temporal change in land use. Thus, it is not suitable for Jiaozuo, where the land use types
are complex and fragmented. Consequently, the above method was selected in this study.

2.3.2. Other Related Methods

Land use dynamic index: Under the comprehensive influence of natural and social
factors, the quantity change of each land use type is different in different periods. Land
use dynamic index can quantitatively reflect the rate of regional land use change and the
difference in land use change in different periods. It plays an active role in predicting
future land use change trends [50]. One of the land use dynamic indices of the calculation
Equation (4) is as shown

K =
Nb − Na

Na
× 1

T
× 100% (7)

where K is the dynamic of a particular land use type; Na and Nb are the area at the beginning
and end of the study for a particular land type, respectively; T is the study period.

Information entropy of land use structure: The information entropy of land use
structure can reflect the orderliness of the land use system. The higher the entropy value,
the weaker the orderliness, and the system is unstable and unfavorable to development.
The calculation equations are as follows

H = −∑n
i Pi ln Pi (8)

E = H/ ln n (9)

D = 1− J (10)

where H is the entropy of land use structure information; E is the degree of equilibrium,
reflecting the degree of equilibrium of land use in a region; D is the degree of dominance,
reflecting the extent to which one or several land use types dominate the land types in
the region; Pi is the proportion of a land use type in the whole study area; the sum of
equilibrium degree and dominance degree is 1 [51].

Land use change maps and transfer matrix: This can be used to study the mutual
transformation and spatial distribution of land use types, and reveal the law of its evolution.
We use the map algebra method to obtain the land use change mapping in a specific period,
and, furthermore, obtain the land use transfer matrix that can quantitatively reflect the
source and destination of each land use type, and its equations are

M = M1 × 10 + M2 (11)

Sij =


S11 S12 · · · S1n
S11 S11 · · · S2n
· · · · · · · · · · · ·
Sn1 Sn2 · · · Snn

, Di = ∑n
j=1 Sij − Sii, Dj = ∑n

i=1 Sij − Sjj (12)

where M is the land use change mapping raster within the study section; M1 and M2 are the
raster values of land use mapping attributes at the beginning and end of the study period,
respectively; Sij represents the land type i to the land type j of the area. Di represents the
study period; i , the area of land use reduction by land type; Dj represents the area of j
the area of increased type of land use.

3. Results

The above model was used to classify land use in the four phases of images in the
study area and compared with existing classification models such as SVM (support vector
machine), 2D-CNN(2D convolutional neural network), and hybridSN (hybrid convolutional
network). The overall accuracy (OA) and kappa coefficients of different models based on
the 2020 dataset are shown in Table 2.
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Table 2. Classification precision table of each model.

SVM 2D-CNN HybridSN R-IMNet *

OA/% 87.12 96.16 98.46 98.61
Kappa 0.82 0.94 0.97 0.98

Note: * denotes the model of this paper, IM refers to intelligent module.

Based on the classification results of the model, the field survey is carried out to correct
the doubtful points of the results. The final accuracy evaluation results are shown in Table 3.
It meet the requirements of follow-up analysis.

Table 3. The classification accuracy in the different years.

1993 2003 2011 2020

OA/% 94.35 98.49 99.09 98.61
Kappa 0.92 0.98 0.99 0.98

To verify the advantages of this model in reducing the information loss of linear objects
and objects edge, we selected an area with more road information based on the image of
Jiaozuo in 2020. The results were compared with SVM, 2D-CNN and HybridSN, as shown
in Figure 5.

Figure 5. Classification maps of typical region. (a) True Color Image; (b) Land use ground truth;
(c) 2D-CNN; (d) HybridSN; (e) SVM; (f) R-IMNet.

It can be seen that the poor classification of the 2D-CNN and HybridSN algorithm,
the information loss of the edge information of the objects and the line-like small objects
were very severe. In particular, 2D-CNN causes the most significant loss of the edge
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information of ground objects. As shown in the Ellipse Mark, the road information was
almost completely lost, and the boundary between the construction land and the cultivated
land was blurred. The classification results from the HybridSN model were improved, but
there was still a gap compared with the model in this paper. In addition, SVM performed
better than 2D-CNN and HybridSN in controlling the confusion of the edge information of
objects, but it also showed a slight loss of road information. However, SVM was inferior to
R-IMNet in noise control. Overall, R-IMNet has more advantages in reducing information
loss of linear objects, objects edge and noise control.

3.1. Land Use Change

The land use classification maps of Jiaozuo City in 1993, 2003, 2011 and 2020 are shown
in Figure 6. The map clearly reflects the land use patterns of the study area in different
periods. It can be seen that the land use types in the study area changed significantly in
the four periods. Over nearly 30 years from 1993 to 2020, the area of construction land
increased significantly, and the area of cultivated land decreased continuously. Each land
use type evolved alternately, among which a large amount of bare land appeared in 2011,
the area of water bodies and other land uses changed relatively slowly.

In order to reflect the quantitative relationship and change intensity of land use types,
the basic data of land use in the study area were acquired by Arcgis10.2 software based
on the results of the 4-stage classification. Based on the Equations (7)–(10), the dynamic
index of land use type change, the information entropy of land use structure, the degree of
equilibrium and the degree of superiority were obtained. The results are shown in Table 4.

From Table 4, the basic landscape of Jiaozuo included woodland, cultivated land and
construction land from 1993 to 2020, accounting for 90% of the total area in the four periods.
Figure 7 showed the proportion of land use structures in the four periods in the study
area. The cultivated land (red part in Figure 7) was the main type of land use. The area
proportion reached 56.12%, 54.32%, 45.70% and 38.74%, respectively, and ranked first in the
study area. Except for the special situation in 2011, bare land was distributed sporadically
among other land use types, and water body was mainly distributed among the rivers in
the southern part of the study area, accounting for a small proportion, 2.18%, 1.37%, 1.48%
and 1%, respectively.

From 1993 to 2020, the area of bare land and construction land showed an increasing
trend, increasing by 15.57 km2 and 839.38 km2, respectively. Construction land area
increased by a large margin, reaching 145.52%, and its growth rate was 5.39%. During
the 27 years, the change rates of bare land at three time points were 9.73%, 13.95% and
−7.64%, showing a rapid increase followed by a sharp decrease. During 2011–2020, the
change rate of bare land was −7.64%, with a trend of maintaining a continuous decline.
Woodland, cultivated land, water body and other land decreased by 57.54 km2, 690.97 km2,
47.04 km2 and 59.43 km2, respectively. Among them, the water body decelerated fastest,
and reduced the amplitude the most, −2.01% and −54.28%, respectively. During the study
period, the cultivated land area maintained a decreasing trend, the rate of reduction was
−0.32%, −1.98% and −1.69%, respectively, and the total area ratio decreased by 17.38%.
However, the areas of woodland, water body and other land all experienced brief increases.

From the information entropy of land use structure, this increased from 1.24 to 1.30 in
Jiaozuo from 1993 to 2003. It indicated that the land use in the study area was in a state
of rapid change and the instability of the whole system increased during this period. By
2011, the entropy had risen to 1.33. The increase in the information entropy was mainly
due to the rapid development of Jiaozuo City over the past 18 years, with a high degree of
disorder in various industries. In 2020, the entropy value decreased to 1.31, but it was still
higher than that in 1993 and 2003. This was due to the initial effect adjusting the industrial
structure in Jiaozuo, the standardization of land use and the partial orderly development of
the fundamental land use change [52,53]. Between 2003 and 2020, the entropy dominance of
the study area was less than 0.3, reflecting the low power of the dominant local utilization
type—cultivated land. Throughout the study period, the land use equilibrium degree of
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Jiaozuo was kept at about 0.7. This indicates that the homogeneity of the land use structure
was at a high level. The regional landscape advantage was not different, and there was no
apparent advantage landscape type.

Figure 6. Land use maps of Jiaozuo city.
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Table 4. Statistical table of land type change data from 1993 to 2020.

Wood
Land

Bare
Land

Construction
Land

Cultivated
Land

Water
Body

Other
Land

Entropy
Value

Degree of
Equilibrium

Degree of
Dominance

1993 Acreage /km2 776.79 51.15 576.80 2230.44 86.66 252.28
1.24 0.69 0.31Percentage /% 19.55 1.29 14.51 56.12 2.18 6.35

2003 Acreage /km2 592.68 100.94 635.28 2158.85 54.48 431.85
1.30 0.73 0.27Percentage /% 14.91 2.54 15.99 54.32 1.37 10.87

1993–2003 Land use dynamics −2.37 9.73 1.01 −0.32 −3.71 7.12 - - -

2011 Acreage /km2 600.54 213.61 1161.34 1816.23 58.71 123.66
1.33 0.74 0.26Percentage /% 15.11 5.38 29.22 45.70 1.48 3.11

2003–2011 Land use dynamics 0.16 13.95 10.35 −1.98 0.97 −8.92 - - -

2020 Acreage /km2 719.25 66.72 1416.18 1539.47 39.62 192.85
1.31 0.73 0.27

Percentage /% 18.10 1.68 35.64 38.74 1.00 4.85

2011–2020 Land use dynamics 2.20 −7.64 2.44 −1.69 −3.61 6.22 - - -

1993–2020 Land use dynamics −0.27 1.13 5.39 −1.15 −2.01 −0.87 - - -

Figure 7. Land use structure in Jiaozuo.

3.2. Land Use Change Maps and Transfer Matrix

To further reflect the spatial change and quantitative relationship of the land use
types in the study area, the maps of land use transition matrix and its change were made
in 1993–2003, 2003–2011 and 2011–2020 according to formulas (11) and (12). The results
are shown in Table 5, Table 6, Table 7 and Figure 8. In the three study periods, there
were 36 types of map units. That is, every kind of utilization experienced a process of
turning in and turning out. The total areas transferred were 1317.93 km2, 1237.91 km2 and
1237.35 km2, respectively. The transfer between cultivated land and construction land was
the biggest. Although the area of water body varied considerably compared with itself, it
only accounted for 1% to 2% of the study area. Thus, it was not analyzed.
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Table 5. Land use transfer matrix of Jiaozuo City from 1993 to 2003 (km2).

Wood Land Bare Land Construction Land Cultivated Land Water Body Other Land Roll-Out Total

Wood land 495.50 42.05 48.70 98.71 9.98 81.84 281.28
Bare land 15.08 3.15 6.59 18.30 0.28 7.71 47.96

Construction land 29.10 10.06 330.68 160.76 6.99 39.21 246.12
Cultivated land 42.99 34.30 201.89 1729.59 15.02 206.65 500.85

Water body 4.38 0.69 29.24 10.80 21.16 20.38 65.49
Other land 5.63 10.70 18.18 140.67 1.05 76.05 176.23
Roll-in total 97.18 97.8 304.6 429.24 33.32 355.79 1317.93

Table 6. Land use transfer matrix of Jiaozuo City from 2003 to 2011 (km2).

Wood Land Bare Land Construction Land Cultivated Land Water Body Other Land Roll-Out Total

Wood land 455.40 83.98 35.14 7.03 7.99 3.14 137.29
Bare land 25.28 26.34 28.70 15.95 0.47 4.21 74.61

Construction land 15.99 14.83 539.30 48.15 8.28 8.74 95.99
Cultivated land 67.73 43.65 344.14 1641.82 13.90 47.59 517.01

Water body 6.26 1.56 21.37 2.65 18.00 4.64 36.48
Other land 29.87 43.25 192.70 100.64 10.07 55.32 376.53
Roll-in total 145.13 187.27 622.05 174.42 40.71 68.32 1237.91

Table 7. Land use transfer matrix of Jiaozuo City from 2011 to 2020 (km2).

Wood Land Bare Land Construction Land Cultivated Land Water Body Other Land Roll-Out Total

Wood land 481.44 13.52 56.29 40.51 1.34 7.44 119.10
Bare land 139.83 11.43 37.56 15.01 0.84 8.94 202.18

Construction land 68.78 19.22 881.73 120.66 9.92 61.03 279.61
Cultivated land 14.68 19.55 374.92 1317.96 6.14 82.98 498.27

Water body 9.83 0.59 21.42 6.42 16.08 4.37 42.63
Other land 4.69 2.39 44.26 38.91 5.31 28.09 95.56
Roll-in total 237.81 55.27 534.45 221.51 23.55 164.76 1237.35

As shown in Table 5, during the decade of 1993–2003, the total amount of cultivated
land transferred to the other five kinds of land was 500.85 km2. Among them, construction
land and other land transfer was the most, 201.89 km2 and 206.65 km2, respectively. They
account for more than 90% of the area transferred from cultivated land. However, during
this decade, the area of cultivated land transferred in reached 429.24 km2, while the actual
area transferred out was only 71.61 km2, and the actual transferred area of construction
land was only 58.48 km2. This was due to the slow pace of urbanization in Jiaozuo between
1993 and 2003, and the main land use types were basically in a balanced state. The actual
area of forest land transferred out was the largest, ranking first in the net change of land
use in the study area, with 184.1 km2, of which 98.71 km2 was converted into cultivated
land, accounting for 53.61%. At the end of the last century, illegal quarrying, logging and
blind reclamation were severe in the mountainous areas of northern Jiaozuo. This resulted
in a large number of vegetation-covered mountains being exposed [54]. Although the
area of cultivated land was increased, it seriously damaged the ecological environment
of forest areas. Furthermore, it increases the frequency of local geological disasters, and
accelerates the progress of regional ecological environment deterioration. Between 1993 and
2003, the net transfer of other land use was 179.56 km2, mainly converted from cultivated
land and woodland. It reflected that the local awareness of intensive and economic land
use was not strong, and the protection of cultivated land was neglected while reclaiming
and cultivating.
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Figure 8. Land use transfer map for Jiaozuo 1993–2020.

During 2003–2011, the change in woodland was relatively moderate, while the change
in construction land was the most drastic, with 622.05 km2 transferred in and 95.99 km2

transferred out, resulting in a net transferred area of 426.06 km2. Its primary source was
cultivated land, which was 344.14 km2, accounting for 80.77% of the net transferred area.
At the same time, the net transfer out of cultivated land and other land also reached
342.59 km2 and 308.21km2, respectively. This shows that in 2003–2011, the pace of ur-
banization in Jiaozuo accelerated and the size of cities continued to expand. With the
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improvement in economic conditions, many rural self-built houses came into being, and
the rural residential bases showed the phenomenon of harmful expansion, resulting in
a large amount of arable land and other land being occupied in this period [55]. With
the increase in the implementation time of the "Land Administration Law of the People’s
Republic of China" and the intensification of government enforcement, this phenomenon
eased slightly. For example, from 2011 to 2020, the net area of cultivated land transferred
out was 276.76 km2, and the average annual net transfer out was 30.75 km2. The speed and
magnitude of change decreased compared with the period of 2003–2011. At the same time,
from 2003 to 2011, the net transfer of bare land area was 112.66 km2. This was because, in
2008, Jiaozuo was identified as a "resource-depleted" city and the state restricted resource
exploitation. Along the Northern Mountain area, a large number of small coal mines and
coal washeries were forced to close down demolition, and vacated land was not used
effectively or promptly. This resulted in a large amount of bare land. With the acceleration
in the urbanization process, part of the rural labor force came into the city, resulting in an
amount of cultivated land and shrub orchard waste, leading eventually into bare land. In
this period, the rough development of Jiaozuo led to the significant fluctuation in land use
structure, and the contradiction between humans and land began to emerge.

In 2011–2020, cultivated land and construction land still changed sharply, which con-
tinued to change from cultivated land to construction land in a large amount, reaching
374.92 km2. A large amount of bare land area was transferred out, and the leading des-
tination was forest land. During this period, the state vigorously promoted ecological
environment construction. A large number of abandoned mining areas in Jiaozuo were
reclaimed and transformed, the area of woodland began to increase. In particular, in 2017,
Jiaozuo was listed as a key city in the "air pollution control battle" [56], which accelerated
this process, and in 2011–2020, Jiaozuo gradually shifted from rough development to high-
quality development. The society’s awareness of intensive and economical use of land
increased, and the contradiction between humans and land began to moderate during
this period.

Figure 8 shows the spatial changes in land use over the three periods in Jiaozuo; the
white part of the figure is the area where the land use type did not change. The figures
0–5 in the legend represent woodland, bare land, construction land, cultivated land, water
body and other land, respectively, and the figure 01 represents the part of the forest land
transformed into bare land during this period and so on.

It can be seen that the most drastic changes were in the southern part along the
Yellow River, the combination of mountainous areas and plains in the north, and the more
populated urban areas. In addition, the main categories of utilization that have been
transformed over time are reflected in the graph in much the same way as in Table 4 to
Table 6.

3.3. Driving Force Analysis

Land use evolution is a complex process, and the driving factors vary in different
regions. Based on reference to the relevant research combined with the characteristics
of the research area, and following the drive, therefore, of the selection principle [57,58],
17 indicators in five categories of driving factors were selected: demographic factors,
economic factors, agricultural structure, policy factors and at the social development level.
Then, the principal component analysis and regression analysis methods were used to
analyze the main driving factors of land use type evolution in the study area (shown in
Table 8).



Remote Sens. 2022, 14, 2185 16 of 22

Table 8. Change index of land use driving force.

Factors Indicators

Demographic factors X1 total population at the end of the year,
X2 non-agricultural population

Economic Factors X3 gross regional product, X4 primary industry.
X5 secondary industry, X6 tertiary industry, X7 industrial value added

Agricultural structure X8 grain production, X9 oilseed production, X10 cotton production,
X11 vegetable production, X12 total meat production

Policy Factors X13 social fixed asset investment, X14 fiscal budget revenue,
X15 fiscal budget expenditure

Social Development Level X16 total retail sales of social consumer goods,
X17 per capita net income of farmers

3.3.1. Principal Component Analysis

After standardized treatment of the 17 influencing factors, the cumulative contribution
rate of principal components 1 and 2 was 94.63%. The eigenvalues were all greater than
1, which satisfies the data analysis standard. Their component loading matrixes after
orthogonal rotation are shown in Table 9.

Table 9. Factor load matrix after orthogonal rotation.

Factor Component 1 Component 2 Factor Component 1 Component 2

X13 0.995 0.056 X4 0.923 0.341
X17 0.990 0.107 X9 0.912 0.315
X15 0.990 0.111 X8 0.856 0.322
X6 0.989 −0.013 X1 0.827 0.525
X16 0.986 0.117 X2 0.816 0.398
X3 0.981 0.179 X11 0.455 0.846
X7 0.964 0.239 X12 −0.073 0.940
X14 0.961 0.261 X10 −0.896 −0.247
X5 0.946 0.291

As can be seen from the table above, the load coefficients of the principal component 1
of the indicators related to the level of economic, policy and social development are all
greater than 0.9. Therefore, principal component 1 can be categorized as a socio-economic
development-type factor. The load coefficients of vegetable yield and meat yield in principal
component 2 are relatively high, which can be concluded as agricultural factors. The
land use drivers in Jiaozuo were dominated by the policy and social development levels,
followed by economic factors and supplemented by agricultural factors.

3.3.2. Linear Regression Analysis

The results of the above analysis show that policy factors and the level of social
development were the primary sources of land use drivers in Jiaozuo. To further analyze
the relationship between the main drivers and land use evolution, the area of construction
land was selected (unit: km2). It was relatively sensitive to urbanization and economic
development, as the dependent variable. Other than that, social fixed asset investment
(X13 unit: 100 million yuan), per capita net income of farmers (X17 unit: yuan), fiscal budget
expenditure (X15 unit: 100 million yuan), tertiary industry (X6 unit: 100 million yuan)
and total retail sales of social consumer goods (X16 unit: 100 million yuan), a total of five
indicators with the greatest relationship with policy and social development, were selected
as independent variables for linear analysis. The sample information for the independent
variables is shown in Table 10. The results are shown in Figure 9; their R2 are all greater
than 0.8, with significant effects.
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Table 10. Sample Information Table For independent variables.

1 2 3 4 5 6 7 8 9

X13 60.98 63.53 50.20 187.16 491.33 970.82 1374.04 2198.01 3064.28
X17 2238 2586 2445 3374 5326 7512 11400 14851 19374
X15 12.88 14.76 15.85 38.63 75.03 121.55 139.20 217.34 297.60
X6 57.37 55.53 72.28 131.14 219.76 289.03 423.27 721.1 1131.2
X16 54.55 65.23 75.1 118.8 180.38 321.84 494.7 698.92 873.55

Figure 9. Regression analysis model diagram.

(1) Policy implementation. The social fixed asset investment and fiscal budget expen-
diture increased significantly, 50 times and 25 times, respectively, from the beginning to the
end of the study period. Among these is included the fixed assets investment, mainly for
industrial investment, infrastructure construction and real estate investment. In contrast,
the capital expenditure also increased year by year. This not only effectively drove the
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rapid development of the local economy, but also directly led to the rapid increase in
construction land. In recent years, Jiaozuo has tended to build green and livable cities,
focusing on the quality of urban development, urban greening and the construction of
urban tourism projects. At the same time, the process of urbanization has been acceler-
ating with the development of high-tech industrial clusters and construction land area
increases correspondingly.

(2) Industrial structure. In 2008, after the national “resource-depleted” cities were
released, the local government began to adjust the industrial structure. The proportion of
secondary industry decreased year by year, from 68.5% in 2009 to 53.6% in 2019, and some
mineral mining sinkholes were transformed into unique tourist attractions. In addition,
the agricultural structure also changed: farmers began to plant yams, peanuts and other
crops with high economic benefits, and the agricultural economy developed more rapidly.
The restructuring of industry and agriculture promoted the development of related tertiary
industries (such as tourist attractions, transportation services, etc.), such as the tertiary
industry correlation coefficient of 0.898 in the regression model. The output value increased
from 28.903 billion in 2009 to 113.12 billion in 2019, with an average annual growth rate
of 29.14%, and the rapid development of the tertiary industry also reflected the local
urbanization process. For example, the construction of tourist attractions and related
supporting facilities and the construction of transportation networks have expanded the
urban space. Farmers have engaged in the service industry, prompting an increase in the
non-farm population and the expansion of urban scale. Both of which have directly or
indirectly caused an increase in the area of construction land.

(3) Social development level. The regression model shows that the rural per capita net
income is highly correlated with the area of construction land, with a correlation coefficient
of 0.92, which has increased by 157.9% in the past ten years. As incomes rose, large numbers
of new homes began to be built in vast rural areas farther from the city. The rural scale
radiated outward, causing the construction land area to increase continuously. In particular,
in 2014, Jiaozuo set up an urban–rural integration demonstration zone; a large number of
high-tech industries were completed and put into production. The “One body, Two wings”,
which was the main urban functional area, the logistics industrial zone and the ecological
agricultural area, were completed. The people’s income and living standards in the villages
and towns in the region increased rapidly, and some villages and towns began to take on
an urban scale. This process and the development of related derivative service industries
have increased the total retail sales of consumer goods in the region, and accelerated the
urbanization process of Jiaozuo as a whole.

4. Discussion

This manuscript builds the R-IMNet model based on the 3D-2D-CNN convolutional
neural network. The “intelligent module”, which can selectively emphasize the informa-
tional characteristics, is introduced through the residual link. It overcomes the problems
of low classification accuracy and the loss of the edge information of objects. However,
Jiaozuo is located at the junction of the Taihang Mountains area and the Yellow River
alluvial plain. It is still difficult to classify by R-IMNet because of its dense population and
disordered land use structure in the transition zone between the mountain area and the
plain. Moreover, the spatial resolution of the image data used in this study is not high. Some
small objects are difficult to be imaged. Therefore, it has an impact on the classification
results. A small sample classification model is established to ensure the correct rate of
samples. By reducing the probability of wrong samples participating in the training model,
the accuracy of classification results can be further improved to meet the requirements of
subsequent quantitative analysis.

This study mainly analyzes the impact of socio-economic factors on the evolution
of regional land use, and obtains the key driving factors. Urban transformation, and
industrial and agricultural restructuring in the study area play an indispensable role in
the overall regional land structure transformation process, such as implementing some
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special engineering measures and land use policies during the transformation process [59].
During the study period, the rapid economic development and continuous urbanization of
Jiaozuo directly led to the decrease in cultivated land area (690.97 km2) and the increase in
construction land area (839.38 km2). Some studies have shown that the loss of cultivated
land has been slowed down to a certain extent by the national policy of cultivated land
requisition and compensation and essential farmland protection [60]. At the same time,
the government of Jiaozuo invested a lot of money to carry out land remediation work in
the mining sinkhole area and to plant trees, which led to the transformation of some bare
land into forest land. In addition, the policy of returning farmland to forest has also led to
the conversion of some cultivated land into forest land. This manuscript mainly discusses
the influence of socio-economic and policy factors on regional land change, excluding the
influence of natural factors such as temperature, precipitation and slope. Still, it cannot be
denied that these natural factors also play an important role in regional land change.

Compared with the driving forces of land change in other regions, the land use change
in Jiaozuo is greatly affected by economic and policy factors. For example, in the Loess
Plateau, the country’s strict implementation of the “returning farmland to forest” policy
has resulted in a continuous increase in the forest area [43]. In the southern part of Jiangsu
Province, China, its developed economy attracts many people every year, resulting in
urban expansion and dramatic changes in land use structure [61]. However, Jiaozuo
is not as economically developed as the southern part of Jiangsu Province. The main
impact of economic development is the government’s fixed asset investment and per capita
net income of farmers, and the implementation of policies is not as strict as the Loess
Plateau. Therefore, the factors that affect the change in land use in Jiaozuo have their
particularities. That is, it is influenced by a combination of factors, rather than a single
factor that dominates.

Regional land use conversion may become more frequent with the dual impact of ur-
ban transformation and accelerated urbanization in Jiaozuo. However, due to the country’s
strict farmland protection policy, the large-scale land conversion will not occur in the future.
Moreover, the driving factors of changes in the same land use type may differ in different
regions, and the driving factors of changes in different land use types in the same region
also differ. Therefore, in order to formulate scientific, reasonable and sustainable land use
policy, it is necessary to analyze the driving factors of specific land use type change and
study the land use evolution process from a microcosmic scale [44]. This can help to reveal
the interaction between the biophysical environment and human activities. In this way,
it is possible to better coordinate the relationship between urban development and land
use, ease the contradiction between human and land, and make land conversion within a
reasonable range.

5. Conclusions and Prospects

In this study, a hybrid convolutional neural network algorithm is proposed to over-
come the problems of low classification accuracy and missing edge information in tradi-
tional methods. On this basis, the land use classification of the four periods of Landsat
image data in Jiaozuo was carried out, and the land use data with high accuracy in the study
area were obtained. Furthermore, the spatial and temporal pattern of land use transfer in
Jiaozuo was discussed based on land use dynamic attitude, land use structure information
entropy and land use transfer matrix. The results show that during the study period, the
land use types in Jiaozuo were mainly woodland, cultivated land and construction land,
which accounted for more than 90% of the total area of the study area. Among them, the
area of woodland, cultivated land, water body and other land was reduced, and the area of
construction land increased. From 1993 to 2020, the most drastic changes were observed in
cultivated land and construction land, with area changes of −690.97 km2 and 839.38 km2,
respectively. The information entropy of land use structure increased from 1.24 to 1.31,
which indicates that the land use was in a state of rapid change and the instability of the
whole system increased.
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According to the land use transfer matrix and transfer mapping, it can be seen that:
during 1993–2020, cultivated land was the primary type of transfer out, and its conversion
object was mainly construction land. The cultivated land was transformed into 201.89 km2,
344.14 km2 and 374.92 km2, respectively, in the three periods. Woodland, bare land, water
body and other land all had changes of transfer in and out. A large amount of woodland
was transferred from 1993 to 2003, with a conversion area of 281.23 km2 and a conversion
rate of 36.2%. From 2003 to 2011, many conversions occurred on land other than cultivated
land, with a conversion rate of 87.19%. In 2011–2020, the transfer of woodland occurred
and recovered to the level of 1993. In addition to cultivated land, bare land and water body
also showed a large transfer out, 202.18 km2 and 42.63 km2, respectively, with a transfer
out rate of 94.65% and 72.61%. The magnitude of land use conversion was more drastic in
the urban–rural interface and the overland area between settlements and non-residents.

An analysis of the drivers of land use change in Jiaozuo showed that: policy factors
and social development level affect the process of land evolution in the study area together;
their cumulative contribution rate was 94.62%. The positioning of the “resource-exhausted
city” has prompted the local government to adjust the industrial structure and change the
land use pattern. The rapid growth in the tertiary sector of the economy and the increase
in rural per capita net income have led to the expansion of urban areas and the increase
in self-built rural housing, both of which have led to the conversion of cultivated land to
construction land. The cultivated land protection policy and land remediation engineering
measures have alleviated the decrease in quantity to a certain extent. With the continuous
urbanization of Jiaozuo and the improvement in people’s economic income, the people’s
awareness of the intensive and economical use of land has increased. At the same time, the
contradiction between man and land has been eased.

Finally, we hope that this study can provide a certain reference for the local government
and other similar cities in the world to carry out land use planning under the premise of
ensuring food security, rationally developing and utilizing land, and properly handling
the relationship between people and land, so that there is regional land use evolution of a
reasonable scope.
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