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Abstract: Forest management practices can increase climate change mitigation potential through
applications focused on carbon budgets. One such application involves utilizing non-merchantable
material (i.e., logging residues typically piled and burned) for bio-energy. However, limited remote
sensing data is available for estimating wood residues until after timber has been harvested, at
which point recovery of residual wood is of little financial interest. This research utilizes a hybrid
method to develop models that provide pre-harvest estimates of the amount of merchantable and
non-merchantable material that would result from harvesting and investigates the scalability and
transferability of such measures to the harvest block level. Models were trained using 38 plots across
two sites dominated by Douglas-fir, then expanded to ten harvest blocks, and transferred to eight
blocks from two sites without training data before being compared against multiple independent
block-level estimates. Model results showed root mean square errors of 35% and 38% for merchantable
and non-merchantable volumes, respectively. Merchantable volume estimates in blocks with training
had average absolute differences from the harvest scale (9–34%) similar to transferred blocks without
training (15–20%). Non-merchantable model results were also similar in both trained and transferred
harvest blocks, with the pre-harvest model results having lower differences from the post-harvest
geospatial versus field surveys. The results from this study show promise for hybrid methods
to improve estimates of merchantable wood volume compared to conventional forest cover data
approaches, and provide the ability to predict non-merchantable volumes within the range of accuracy
of post-harvest residue survey methods.

Keywords: LiDAR; enhanced forest inventory; area-based approach; individual tree approach;
merchantable wood volume; non-merchantable wood volume; logging residues

1. Introduction

Forests are a critical global resource, serving as the foundation for numerous national
economies while at the same time driving the global carbon cycle [1,2]. Canadian forests
are a critical component of this natural resource as they make up over 9% of the world’s
total forest cover [3]. As of 2018, a significant proportion (226 million hectares, or 65%)
of these forests are considered actively managed, much of which has contributed over
CAD 25 billion to the national GDP through industrial operations [3]. At the same time,
forests play a critical role in the national and global carbon balance by potentially acting as
landscape-level carbon sinks through conservation or targeted management activities [4]
or acting as carbon sources due to anthropogenic disturbances such as harvesting [5] or
natural disturbances such as wildfires [6].

An examination of the mitigation potential of managed forests in Canada showed that
changes to management policies could increase the mitigation potential of forest lands by
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45.1 Tg CO2e per year by 2050 [7]. In the province of British Columbia, similar changes in
forest management practices (including producing longer-lived products, utilizing more
harvested material, as well as utilizing harvest residues for bio-energy) were shown to
have cumulative mitigation effects that could contribute up to 35% of the province’s carbon
reduction target by 2050 [8]. These relatively small changes in management practices have
been recognized to increase the positive mitigation potential of managed forests [9,10].
Furthermore, the Intergovernmental Panel on Climate Change (IPCC) recognizes several
management options to increase the climate change mitigation potential of forests [4],
including reducing deforestation, increasing afforestation, conducting selected silvicultural
practices, and increasing the utilization of cut forest material for use as products in the
bioeconomy [11].

In response to political pressures to reduce carbon emissions, many forest companies
in Canada have begun utilizing waste from the milling process as a source for on-site bio-
energy production [12]. This process involves using solid wood waste from manufacturing
(i.e., chips, shavings, or sawdust) or black liquor produced from pulp mills to generate
electricity that can be used on-site or sold to electricity markets [13]. It has been estimated
that national bioenergy production could displace emissions from energy usage by 27 Mt
CO2e per year. However, this is most effective when bioenergy displaces energy produced
from fossil fuels instead of other energy sources such as hydroelectricity [14]. While most
of the bio-energy production in the context of forest processing has been utilizing feed
sources (i.e., fuels) from milling waste, a relatively underutilized source of bio-material is
residues from logging [13].

In general, logging residues from harvest sites (i.e., non-merchantable trees and log
processing remnants that are cut but left in a harvest block) are piled and burned or left
dispersed across a harvest block [15]. Logging residues are a viable feed source [16],
although the amount of available supply remains generally unknown until after harvest
is completed, creating challenges for increasing their utilization [12]. One solution to
enhance the industry’s ability to increase logging residue use is to refine the prediction
and forecasting of non-merchantable timber volumes. Logging residue estimates could
be improved from methods that provide coarse-scale regional estimates [12,17] towards
approaches that focus on operational scales such as individual harvest blocks.

Remote sensing and spatial modelling have provided successful approaches for con-
ducting logging residue measurements [18–20]. Satellite imagery, for example, has been
used to conduct national-level assessments of potential biomass available from logging
residues [12] and salvage after wildfires [21]. Additionally, geospatial models and spatially
explicit carbon models have been used to estimate the availability of woody biomass for
bioenergy [17,22]. However, several factors currently constrain the capacity for remote
sensing and spatial analysis at the individual harvest block, including the use of moderate
resolution (≥250 m) remote sensing data, variable definitions of logging residues, and
analysis at the spatial scale of forest management units.

More recent remote sensing solutions, such as enhanced forest inventory (EFI) meth-
ods, have been developed that overcome issues of resolution to allow for estimating forest
attributes, including merchantable volume, at operational scales such as individual harvest
blocks. Such methods utilize high-resolution remote sensing data, such as LiDAR or optical
imagery, and can be generally characterized into one of two approaches that differ in scale:
area-based (AB) and individual tree (IT).

The AB approach creates a generalized statistical model that accounts for the entire
forest canopy profile within a rasterized grid cell. LiDAR data and a network of training
ground plots are used to develop a statistical model using either parametric [23–25] or
non-parametric [26–28] methods. Once a plot level model is developed, it can then be
applied to the larger area of interest, provided that it has similar characteristics as the
training plots, by using a rasterized grid of LiDAR metrics similar to those used in the
model development [29]. A general advantage of the AB approach is that both the dominant
canopy trees and the sub-canopy trees are typically accounted for, given that appropriate
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LiDAR densities exist when developing the attribute models. While several studies have
implemented the AB approach successfully with an improved level of accuracy over
traditional inventories [26,30,31], some results indicate that the AB approach performs
better in structurally homogenous even-aged stands, which can present challenges when
modelling attributes such as wood volume in more complex stands [24,25].

Alternatively, the IT approach focuses on the larger trees that dominate images of the
top of the forest canopy. IT approaches generally utilize image segmentation techniques to
identify and delineate the crowns of individual trees. Some of these methods delineate tree
crowns from a LiDAR canopy height model (CHM) up from the space between crowns [32],
down from an initial treetop point [33], or directly from the point cloud itself [34]. The main
advantage of using LiDAR data in the IT approach is that a more direct measurement of tree
attributes, such as height and crown area, can be obtained. Furthermore, IT segmentation
can classify tree species when combined with appropriate imagery [32]. As well, attributes
such as species, height, and crown area can be used to model additional attributes, such
as diameter at breast height [35], which ultimately could lead to individual tree volume
measurements using allometric equations [36]. These estimates can then be summed up to
the stand, harvest block, or landscape level for which there is data coverage and similar
forest characteristics as the training data. The major limitation of the IT approach is a
sensitivity to errors of omission and commission, as it is limited to segmenting crowns
from the larger upper canopy trees only [37]. However, summary metrics produced from
an IT approach could provide valuable additional stand information, such as tree density
or spectral characteristics, to an AB modelling approach.

Several studies have proposed a hybrid EFI approach which combines methods from
both the AB and IT approaches, and most have taken similar steps of summarizing metrics
calculated for the ITs into a grid similar to the AB predictor metrics [23,37–39]. The
main premise of this approach is that the inclusion of IT metrics allows for potential
weighting towards the larger trees that make the largest contributions to total volumes.
However, a limitation of using a hybrid method is the significantly increased processing
time, as IT analysis needs to be completed and summarized into appropriate metrics
before the model fitting can be continued, requiring considerable processing time for large
areas. Yet, estimating the non-merchantable volume component presents a unique case
where the increased times may be justified as IT variables, such as stocking density and
crown area, could provide important information about the amount of non-merchantable
material available.

While a hybrid approach has been shown to improve forest attribute estimates com-
pared to independent AB and IT approaches, applications of EFI methods have gener-
ally focused on merchantable volume components, with little effort to estimate the non-
merchantable components [24,26,33]. Additionally, limited research has been conducted to
explore how EFI models scale to a harvest block and transfer to areas of similar conditions
without prior training [26,27]. This is desirable as creating a transferable model to other
harvest blocks would reduce the cost of establishing ground sample plots with every new
harvest block. Traditionally, EFI models are fit using sample plot data and then expanded
to a larger area or transferred to a new area and evaluated against additional sample plot
data, which can be limited by sampling density and distribution of plots [27]. Alternatively,
all merchantable wood transported off-site is scaled after harvest, allowing for a complete
census of merchantable volume, which can then be compared to EFI model results on a
harvest block-level [26].

Similarly, the traditional method to measure and estimate non-merchantable volumes
in a harvest block uses sample estimates from plots or transects and then scaling up sample
estimates to the stratum or block-level [40]. These methods are limited because they
also depend on the number and location of sample plots, which underestimate total non-
merchantable volumes [15]. However, recent methods have been developed to conduct a
complete census of non-merchantable volume in the harvest block using a semi-automated
log delineation method (SLD) [41].
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Given the shortcomings described above, this study aims to understand the application
of an enhanced forest inventory method that combines the area-based and individual tree
approaches to develop hybrid models (hereafter referred to as the HB models) that estimate
the amount of pre-harvest merchantable and non-merchantable material that would result
from harvesting operations. To accomplish this, we will address the following question: to
what extent are estimates obtained using an HB model scalable to the harvest block level
and transferable to blocks without plot level training data? In answering this, we also seek
to understand how HB models select for specific individual tree metrics by examining the
overall importance of both area-based and individual tree-based predictor metrics.

2. Materials and Methods
2.1. Study Area Descriptions

The study area for this research is composed of five sites in Pacific coastal forests
located on Vancouver Island, British Columbia (B.C.), Canada. All sites are located within
various subzones of the Coastal Western Hemlock biogeoclimatic zone [42]. In total, 18
sample blocks across the five sites were examined in this study.

2.1.1. Oyster River

The Oyster River (OR) site, located northwest of Courtenay, B.C. (Figure 1), was part
of Fluxnet Canada’s network of monitoring stations from 1997 to 2010, a network of eddy-
covariance flux towers across Canada in various forest types used to continuously monitor
carbon exchanges between the forest and atmosphere [43]. A central portion of this site was
planted in 1949 as a second-growth Douglas-fir (Pseudotsuga menziesii) dominated stand
with some western hemlock (Tsuga heterophylla), western redcedar (Thuja plicata), and red
alder (Alnus rubra) (Table 1) [5]. The average estimated site index of these stands was 36 m,
and the elevation at this site ranged from 259 to an average of 335 m, while the slope is
moderate to high (Table 1). Between 2010 and 2011, this central portion of the site was
harvested in four blocks—WH017, WH017a, WH017b, and WH017c [15].

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 1. Study site map showing layouts of block boundaries (black lines) and sample plot locations 
(red triangles) at Oyster River (OR), Sooke Watershed South (SWS) and Sooke Watershed North 
(SWN), Northwest Bay (NWB), and Franklin River (FR). All sites are located in Douglas-fir domi-
nated sites on Vancouver Island, with central site locations shown (stars) in the lower right panel. 

2.1.3. Northwest Bay 
The Northwest Bay (NWB) site is located west of Nanaimo, B.C. (Figure 1), and had 

two blocks that were harvested in 2014 [40]. Prior to harvest, both blocks were primarily 
second-growth Douglas-fir with lesser amounts of western hemlock and western redcedar 
(Table 1). At NWB 193401, the stands were established between 1962 and 1965 and had 
site indices ranging from 18 to 28 m with strong slopes (Table 1). NWB 193401 was higher 
in elevation (456 m) than most blocks at the OR, SWS, and SWN sites, although lower than 
SWN 15 (Table 1). At NWB 193423, the stands were established between 1959 and 1980 
with site indices ranging from 21 to 28 m and a slightly steeper slope than NWB 193401 
(Table 1). The average elevation at NWB 193423 (612 m) was the highest of any blocks and 
was more than 150 m higher than NWB 193401 (Table 1). Both NWB 193401 and 193423 
were harvested over the summer and fall of 2014 [41]. 

2.1.4. Franklin River 
The Franklin River (FR) site is located south of Port Alberni, B.C. (Figure 1). The FR 

blocks were composed of second-growth forests established between 1941 and 1948, and 
the main species present were mixtures of Douglas-fir, western hemlock, and western 
redcedar. However, some blocks had western hemlock as the dominant species and Doug-
las-fir as the secondary species, and one block included additional components of amabilis 
fir (Abies amabilis) (Table 1). The FR blocks had some of the lowest elevations of all sample 
blocks, but the overall range (132–348 m) was comparable with the other sites (Table 1). 
Alternatively, the slopes in the FR blocks were some of the highest (15–24°) but still within 
the range of other sites (Table 1). Harvesting of the six blocks at the FR site occurred be-
tween 2018 and 2019. 

  

Figure 1. Study site map showing layouts of block boundaries (black lines) and sample plot locations
(red triangles) at Oyster River (OR), Sooke Watershed South (SWS) and Sooke Watershed North
(SWN), Northwest Bay (NWB), and Franklin River (FR). All sites are located in Douglas-fir dominated
sites on Vancouver Island, with central site locations shown (stars) in the lower right panel.
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Table 1. Sample block site descriptions including earliest estimated establishment date (Est. Date),
major species composition, main stand estimated site index (m) (site height at 50 years age at DBH),
average block elevation (m ASL), average block slope (degrees) for blocks located at the Oyster River
(OR), Sooke Lake Watershed South (SWS), Sooke Lake Watershed North (SWN), Northwest Bay
(NWB), and Franklin River (FR) sites. Major species include Douglas-fir (Fd), western hemlock (Hw),
western red cedar (Cw), and amabilis fir (Ba). Est. Date determined through tree core analysis at OR,
SWS, SWN and through existing forest inventories at NWB and FR.

Site Block Est. Date Species Site
Index Elevation Slope Harvest

Year

OR WH017 1949 FdHwCw 37.0 259 10 2011
OR WH017a 1949 FdHwCw 36.0 328 11 2010
OR WH017b 1949 FdHwCw 34.0 335 11 2011
OR WH017c 1949 FdHwCw 37.0 275 7 2011

SWS 02 1960 FdHwCw 38.8 296 20 -
SWS 05 1892 FdCw 25.6 220 8 -
SWS 09 1816 FdCw 24.3 347 25 -
SWN 12 1949 FdCwHw 33.4 348 8 -
SWN 13 1898 FdCwHw 29.9 250 12 -
SWN 15 1695 Fd 29.9 491 21 -
NWB 193401 1962 FdCwHw 28.0 456 10 2014
NWB 193423 1959 FdHwCw 28.0 612 15 2014

FR 073213 1943 HwFd 34.2 281 15 2019
FR 062210 1945 FdHwCw 31.2 132 17 2018
FR 973413 1948 FdHw 29.5 316 23 2018
FR 971315 1941 HwFdBa 29.4 348 19 2019
FR 972124 1945 HwFd 27.5 192 17 2019
FR 874328 1943 FdHw 29.5 167 24 2019

2.1.2. Sooke Lake Watershed

The Sooke Lake watershed area is located near Victoria, B.C. and hosts two sites: Sooke
Lake Watershed South (SWS) and Sooke Lake Watershed North (SWN) (Figure 1). Located
at each site are young (est. 1960/1949), mature (est. 1892/1898), and old-growth (est.
1816/1695) stands (Table 1) being monitored as part of the Coastal Forest Chronosequence
project [44,45]. Douglas-fir dominates the stands with additional western redcedar and
western hemlock components and estimated site indices ranging from 24 to 39 m (Table 1).
The average elevation at these sites ranged from 220 to 347 m at SWS and 250 to 491 m at
SWN, and both sites had a range of slopes from moderate to very steep (Table 1). There
was no harvesting in the three blocks at SWS or SWN. However, a nested sample design
in which smaller inventory plots were nested inside larger stem-mapped demographic
blocks [46] allowed for a simulated harvest to be conducted, as described below, and
post-harvest block-level data to be calculated.

2.1.3. Northwest Bay

The Northwest Bay (NWB) site is located west of Nanaimo, B.C. (Figure 1), and had
two blocks that were harvested in 2014 [40]. Prior to harvest, both blocks were primarily
second-growth Douglas-fir with lesser amounts of western hemlock and western redcedar
(Table 1). At NWB 193401, the stands were established between 1962 and 1965 and had site
indices ranging from 18 to 28 m with strong slopes (Table 1). NWB 193401 was higher in
elevation (456 m) than most blocks at the OR, SWS, and SWN sites, although lower than
SWN 15 (Table 1). At NWB 193423, the stands were established between 1959 and 1980
with site indices ranging from 21 to 28 m and a slightly steeper slope than NWB 193401
(Table 1). The average elevation at NWB 193423 (612 m) was the highest of any blocks and
was more than 150 m higher than NWB 193401 (Table 1). Both NWB 193401 and 193423
were harvested over the summer and fall of 2014 [41].
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2.1.4. Franklin River

The Franklin River (FR) site is located south of Port Alberni, B.C. (Figure 1). The FR
blocks were composed of second-growth forests established between 1941 and 1948, and the
main species present were mixtures of Douglas-fir, western hemlock, and western redcedar.
However, some blocks had western hemlock as the dominant species and Douglas-fir
as the secondary species, and one block included additional components of amabilis fir
(Abies amabilis) (Table 1). The FR blocks had some of the lowest elevations of all sample
blocks, but the overall range (132–348 m) was comparable with the other sites (Table 1).
Alternatively, the slopes in the FR blocks were some of the highest (15–24◦) but still within
the range of other sites (Table 1). Harvesting of the six blocks at the FR site occurred
between 2018 and 2019.

2.2. Spatial Data

Spatial data for this study included pre-harvest LiDAR and imagery data, post-harvest
imagery and photogrammetric point clouds, as well as pre- and post-harvest spatial bound-
aries. All spatial data were projected into a common coordinate system of NAD 1983 UTM
zone 10n (EPSG: 29610), and block boundaries used to clip data to areas of interest were
buffered by 100 m to limit the impacts of edge effects. Pre-harvest LiDAR acquisitions were
performed in 2008 at the OR site (Leica ALS50-II, avg 3.74 points m−2) [47], 2012 at the
SWS and SWN sites (Terra Remote Mark III, up to 70 points m−2) [48], 2011 at the NWB site
(Terra Remote Mark III, avg 15 pts m−2) [15], and in 2016 at the FR site (Riegl LMS-Q780,
avg 12 pulses m−2) (S. Platt—Western Forest Products, personal communication, 10 January
2020) (Table 2). LiDAR points from each site were classified into ground and non-ground
points by vendors using various versions of the Terrascan software (Terrasolid, v021.023).
All LiDAR point clouds were checked for errors such as duplicated points or air hits above
the canopy using the lidR package in R [49]. Point density was calculated using a 20 m
resolution raster and summarized each block as the average of cells with centroids within
the block boundaries (Table 2). Point clouds were then normalized into heights above
ground to remove the effects of local topography using the lidR package and a triangular
irregular network [49].

Table 2. Point cloud and imagery characteristics and acquisition years. * Note imagery from SWN-15
from 2013 similar to SWS.

Site Point Density Image Resolution (m) LiDAR (Image) Year

Pre-harvest
OR 6.9 1.0 2008 (2007)
SWS 3.7 0.2 2012 (2013)
SWN 10.1 0.2 2012 (2012 *)
NWB 23.1 0.1 2011 (2011)
FR 52.2 0.1 2016 (2016)
Post-harvest
OR 15.1 0.02 2011 (2012)
NWB n/a 0.02 n/a (2016)
FR n/a 0.02 n/a (2019)

Pre-harvest orthoimagery was also acquired for the OR (2007), SWS (2013), SWN
(2012/2013), NWB (2011), and FR (2016) sites. All imagery contained three channels (red,
green, and blue) and had various delivered spatial resolutions (Table 2). The imagery at
the OR site had a timing offset from the LiDAR data, similar to imagery from the SWS
site and SWN block 15 (Table 2). The imagery from SWN blocks 12 and 13 was collected
coincidently with the LiDAR, similar to image acquisitions for the NWB and FR sites
(Table 2). Imagery collected separately from the LiDAR acquisitions showed differences in
absolute positioning of identifiable features compared to the LiDAR data. To geo-rectify
imagery data to the LiDAR positioning, individual treetop positions were determined
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using image-based [32] and point cloud-based [49] methods. The treetop positions of large
identifiable trees near the edge of gaps were used to rectify the imagery to match the
absolute positioning of the LiDAR data with co-registration root mean square errors ≤2 m.

Post-harvest very high resolution (2 cm) imagery was also acquired using remotely
piloted aircraft for the independent geospatial survey of post-harvest residues in the OR
(2011), NWB (2015), and FR (2019) sites. Images were used to generate orthomosaics and
image point clouds for each site. All imagery contained three channels (red, green, and
blue) and had various delivered spatial resolutions and positioning accuracies (Table 2).
The imagery at the OR site [15] and NWB site [41] had been used in previous studies
developing post-harvest geospatial survey methods, whereas imagery from the FR site was
newly acquired for this study (Table 2).

2.3. Spatial Data Processing
2.3.1. Pre-Harvest

A point thinning method was used to address the large range in average LiDAR
point density between the different sites. This method randomly removed points from
within a 25 m2 window to a maximum density of 3 points m−2 and produced consistent
results across the entire block, particularly in areas of scan line overlap with the target
density chosen based on the 25th percentile of the calculated point densities in each block.
Thinning was performed to produce a similar point cloud structure through all study sites
when generating point cloud metrics, as Tompalski et al. [27] found that non-parametric
implementations of the AB approach are sensitive to differences in point cloud structure
among different sites. Canopy height models (CHMs) were produced using the thinned
point clouds and a pit-free algorithm [50], with intermediate TIN surfaces produced at 2, 5,
10, 15, 20, and 30 m, removing edges longer than 1.5 m.

Next, a series of IT metrics were calculated from the segmented trees, including the
crown area, the 95th percentile of the IT LiDAR height, and the average pixel values from
the three imagery channels. Before the average imagery values were calculated, each image
was resampled to 0.5 m to match the spatial resolution of the CHMs. Next, a bright pixel
mask was created using the green channel and selecting pixels with a green value higher
than the ITs average green value [32]. The red, green, and blue channel averages were
then calculated for pixels within each IT’s bright pixel mask. Finally, IT metrics were
summarized using a rasterized grid with a 20 m resolution, matching the area of sample
plots (0.04 ha), such that the average was calculated for the height, area, and imagery
metrics for all trees that had their tops within a particular raster cell. An IT density metric
was also calculated for each cell as the number of IT tops divided by the cell area (0.04 ha).

A series of LiDAR metrics more common with traditional AB approaches was also
generated using the same 20 m rasterized grid, similar in size to sample plots (0.04 ha).
These predictor metrics included a combination of height, density, canopy cover, and
statistical metrics similar to those produced and used by Kelley et al. [28]. In total,
34 AB metrics were created using the lidR package in R [49] to be included with the
six IT metrics (Table 3). Additionally, all point clouds and IT segmentations were clipped to
the same extent as the sample plots, and the same combination of 40 AB and IT metrics
was generated at the plot level for the development of the HB model.
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Table 3. Area based (AB) and individual tree (IT) style predictor metrics used for variable selection.

Class Code Description

AB CanRelRatio ((mean ht − min ht)/(max ht − min ht))
AB p1st_abv_2 Percentage 1st returns above 2 m
AB p1st_abv_Mean Percentage 1st returns above mean ht
AB p1st_abv_Mode Percentage 1st returns above mode ht
AB Zaad Average absolute deviation (AD) of ht
AB Zl1 First L moment
AB Zl2 Second L moment
AB Zlcv L-moment coefficient of variation
AB Zlkur L-moment kurtosis
AB Zlskew L-moment skewness
AB Zmadmed Median of the AD from the overall median
AB Zmadmod Median of the AD from the overall mode
AB ZquadMean Quadratic mean of ht

AB zq10-95 Xth percentile of height distribution
(10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95)

AB Zpcum1-9 Cumulative percentage of returns in the Xth decile (1–9)
IT IT_TTDens Individual tree density (# ha−1)
IT IT_z95 95th percentile of individual tree LiDAR points
IT IT_crownarea Individual tree crown area
IT IT_redspec Individual tree mean red channel
IT IT_greenspec Individual tree mean green channel
IT IT_bluespec Individual tree mean blue channel

2.3.2. Post-Harvest

Processing of post-harvest imagery to detect dispersed and roadside residues for the
OR and NWB blocks is described in detail in Trofymow et al. [15] and Trofymow et al. [40],
respectively. At the FR site, post-harvest orthoimagery in each block was resampled to a
5 cm spatial resolution for use in the SLD algorithms. An averaged blue channel image was
created using a two-pass mean filter with a window size of 7 × 7 and 31 × 31, which was
subtracted from the blue channel to create a normalized blue channel image [40] and used
by the SLD algorithms to detect roadside and dispersed residues. At all sites, orthoimagery
was used to manually delineate the boundary of residue piles and heavy accumulations.
At the OR site, the differencing of a LiDAR-derived digital terrain model (DTM) and digital
surface model (DSM) was used to calculate bulk pile volumes [15]. At both the NWB and
FR sites, photogrammetric point clouds were edited to remove points from within the piles,
and pseudo DTMs were created and differenced from DSMs created with the full point
cloud to determine pile bulk volumes [41].

2.4. Training Data from Plots at the OR, SWS and SWN Sites

Data from sample ground plots at OR, SWS, and SWN were used as the training data
for the HB model. During the 2009 growing season at the OR site, 14 circular sample
plots with an area of 0.04 ha were measured following Canada’s National Forest Inventory
sampling guidelines [51]. Measurements recorded included species, diameter at breast
height (DBH), and height for all trees ≥1.3 m in height within the plot areas. At the SWS
and SWN sites, similar measurements were recorded for trees within sample plots (4 per
block) during the 2014 growing season. Sample plots in SWS 09 were 0.04 ha in size,
whereas plots in all other blocks at SWS and SWN were 0.03 ha.

Total and merchantable volumes in the plots were determined from individual tree
volumes calculated using the tree species, DBH, and height data, as input to regional
taper equations developed by Kozak [36]. For each tree, jurisdictional timber criteria
and available timber cruise data helped determine the merchantability parameters, set
as a 30 cm stump height, 10 cm top height, 12.5 cm minimum DBH, and a 10 m log
length (Timber Pricing Branch, 2011). At the old-growth plots in SWS-09 and SWN-15, the
minimum DBH limit was increased to 17.5 cm to match merchantability limits of coastal
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old-growth stands [52]. The volume of each tree that met the merchantability limits was
used to populate the initial merchantable volume pool (Figure 2). Next, sampled trees
identified as dead standing had merchantable volumes transferred to the non-merchantable
pool (Figure 2). A final merchantable volume net-down of 6% for conifer species and 9% for
deciduous species was subtracted from each live tree’s merchantable volume and added to
the non-merchantable volume pool. The net-down values were determined from averaging
species-specific reductions applied in available timber cruise data from the FR blocks.
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Figure 2. (A) Diagram depicting the areal appearance of the canopy and sub-canopy tree crowns;
(B) data representations of an individual tree delineation for OR plot 11.3; (C) structure of a complex
forest with live (dark and light green crown, respectively) and dead (yellow crown) trees that make
up the canopy and sub-canopy. Also shown are the stem wood components of merchantable stem
wood (≥12.5/17.5 cm DBH and 10 m length) (dark brown), non-merchantable stem wood (≥10 cm
diameter and <10 m length) (light brown), and stumps and tops (grey). (D) Corresponding LiDAR
point cloud for OR plot 11.3.

Tree volume that belonged to undersized stems (<12.5/17.5 cm DBH) (not includ-
ing stumps or tops) and the short (<10 m) logs were used to populate the initial non-
merchantable volume pool (Figure 2), followed by the addition of dead trees and the net-
down portion of the live tree merchantable volume described above. Then, for each sample
plot, the total merchantable and non-merchantable volumes for all trees were summed and
plot merchantable and non-merchantable volume densities (m3ha−1) calculated and used
for the HB model training.

2.5. Hybrid Model Development

The forty combined metrics for each of the 38 sample plots were used in a Boruta
feature selection routine to select a subset of training metrics for merchantable and non-
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merchantable volume models. Boruta feature selection is a method popularly used for
models with many predictor metrics and, more recently, in implementations of LiDAR
EFI models [28,37]. First, the Boruta method adds copies of the predictor metrics that are
randomly permuted noise metrics [53]. Next, over 1000 random forest (RF) iterations, the
algorithm tracks the RF variable importance scores and calculates the z-scores for each
expanded set of predictor metrics, comparing z-scores between the original metrics and
the noise metrics [53]. The final selected metrics are those metrics that have a significantly
higher z-score than the highest scoring noise variable.

RF models for both the merchantable and non-merchantable volume components were
fit using the Boruta reduced predictor metrics. Models were trained using 1000 regression
trees and the caret [54] and random forest [55] packages in R in a five-times repeated
10-fold cross-validation method [56]. This training method results in 50 independent cross-
validation observations used to assess model performance by calculating the absolute, and
relative root mean square error (RMSE) and bias [56]. Each model was then expanded
to the block areas using the suite of raster-based predictor metrics. For each cell with a
centroid within the block boundaries, the predicted volume density was multiplied by
the cell area (0.04 ha), and the total block merchantable or non-merchantable volume was
summed and divided by the total block area to calculate block-level densities (m3ha−1) of
predicted merchantable and non-merchantable volume.

2.6. Sources of Block-Level Data for Testing Hybrid Models

The HB models were trained and parameterized using plot data from the OR, SWN,
and SWS sites. The trained models were then expanded to the harvest blocks at the OR,
SWN, and SWS sites and transferred to the harvest blocks at the NWB and FR sites, which
had no prior training and were then tested against block-level independent data for all
five sites. While the OR, NWB, and FR sites had post-harvest block-level measurements
of merchantable and non-merchantable volumes, the demographic blocks at SWS and
SWN were not harvested, thus a simulated harvest was conducted. The SWS and SWN
demographic blocks recorded species and diameter measurements for all trees and heights
for a subset of trees. For those trees missing height measurements, a Chapman–Richards
function was used to estimate height with parameters fit using data from trees that had both
height and diameter measurements similar to Kelley et al. [28] and Metsaranta et al. [57].
A simulated harvest was then performed for all trees in a block, and total merchantable
and non-merchantable volumes were calculated using the same merchantability limits as
described above for the sample plots.

Estimates of block-level merchantable volumes (m3ha−1) derived from the HB models
were compared to two independent sources of merchantable volume. The first came from
traditional forest cover data used to calculate pre-harvest volumes in each block. The
traditional forest cover data used was a mixture of polygonal inventories that were derived
through air photo interpretation (for the SWS and SWN sites), such as the BC Vegetation
Resource Inventory [58], or from internal industry inventories derived from timber cruising
(for the OR, NWB, and FR sites). The second source of merchantable volume data at the
OR, NWB, and FR sites, provided by the operating companies, was the scaled volume for
logs transported to a log sort. Therefore, the calculated merchantable volumes from the
simulated harvest of the demographic blocks at the SWS and SWN sites were used as a
proxy for the harvest scale volumes.

Estimates of modelled block-level non-merchantable volumes (m3ha−1) at the OR,
NWB, and FR sites were compared to two independent sources of post-harvest residue
volumes. The first source was the provincial standard waste and residue survey (WRS)
sample plots measured on each block post-harvest [59]. The second used a geospatial
semi-automated log delineation (SLD) method for dispersed residues while bulk pile
volumes and packing ratios were used to determine accumulations and piled residues (P
method) [40,41] to perform a complete census of residues in the entire post-harvest block.
The harvest block and WRS sampling stratum boundaries were digitized for all blocks
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using very high-resolution orthoimages. Non-merchantable WRS volume estimates were
determined using the digitized stratum areas and the average stratum densities from WRS
sampling plots. Total block density (m3ha−1) was calculated by summing all stratum totals
and dividing by the total block area [15]. Non-merchantable volume estimates were also
determined using the SLD method for the dispersed and light-roadside stratums and the P
method for the heavy-roadside and piled stratums [40,41]. The total block densities were
determined by summing SLD and P stratum totals (SLDP method) and dividing by the
total block area [41]. At the SWS and SWN sites, the calculated non-merchantable volume
from the simulated harvest of the demographic blocks was used as a proxy for the SLDP
volume measurements.

2.7. Hybrid Model Testing and Comparisons

For each block, the total summed merchantable volume from the pre-harvest HB
model, pre-harvest forest cover, and post-harvest scale was divided by the area of the
digitized block boundaries to determine total merchantable volume densities (m3ha−1).
The block volume densities for the two pre-harvest sources were compared to the post-
harvest scale in paired t-tests [37]. The Shapiro–Wilk normality test was used to investigate
if the differences between sources were normally distributed. Additionally, the difference
between the post-harvest scale and each of the two pre-harvest methods (post-harvest–pre-
harvest) was calculated for comparison.

Total non-merchantable volumes were also summed to a block total divided by the
digitized area (m3ha−1) for the pre-harvest HB model results, the post-harvest WRS esti-
mates, and the post-harvest SLDP estimates. Similar to the merchantable volumes, paired
t-tests were used to compare the pre-harvest HB model with the two post-harvest methods,
and the Shapiro–Wilk test [60] was used to test for normality of the method differences.
Finally, the differences between each of the two post-harvest methods and the pre-harvest
model results (post-harvest–pre-harvest) were calculated for comparison.

3. Results
3.1. Variable Selection

The Boruta feature selection method reduced the original 40 metrics to 16 metrics for
the merchantable volume component (Figure 3). The average variable importance scores
ranged from 2.5 to 7.7 for the selected variables, which were dominated mainly by height
metrics. The average 95th percentile of individual tree (IT) height was the only IT metric
selected for the merchantable volume component. However, it scored higher on average
than similar maximum height metrics (zq90 and zq95) from the traditional AB metrics and
was within the top ten selected metrics (Figure 3). For the non-merchantable component,
the Boruta method resulted in a more considerable reduction down to 10 metrics from the
original 40 (Figure 3). The average importance scores for the selected metrics ranged from
2.9 to 4.3 and contained a mixture of all types of predictor metric classes (height, density,
statistical, and IT). The highest scoring IT variable was the average blue channel from the
tree crowns and was the third-highest scoring variable overall for the non-merchantable
volume component (Figure 3).

3.2. Model Fitting and Expansion

The hybrid (HB) merchantable volume model showed an R2 value of 0.75 with a
cross-validated (CV) root mean square error (RMSE) of 240.11 m3ha−1 (34.7%) and a bias of
−45.07 m3ha−1 (−6.5%). Examining the plot level model predictions against the measured
observations shows a variable bias, with predictions being the furthest from observations
in the plots with the largest observed volumes, SWS 09 and SWN 15 (15-S) (Figure 4).
The non-merchantable volume HB model showed a lower R2 value of 0.49, but the CV
RMSE of 52.28 m3ha−1 (38.0%) was in a similar relative range as the merchantable volume
model. The CV bias of −2.14 m3ha−1 (−1.6%) for the non-merchantable volume was
smaller than the merchantable model. The plot-level model predictions versus the observed
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measurements show a higher variable bias than the merchantable volume model, although
the largest discrepancies were also in the plots with the highest observed non-merchantable
volumes (Figure 4).
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Figure 3. Boruta variable selection results showing the distribution of variable importance scores
of selected metrics for the merchantable volume component (A) and non-merchantable volume
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(brown), height (HT) (blue), individual tree (IT) (orange), statistical (Stat) (purple), and the highest-
scoring noise variable (Noise Max) (red).
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Figure 4. Observed plot level vs. RF predicted merchantable (left) and non-merchantable (right)
volumes at the Oyster River (OR) (green), Sooke Lake Watershed South (SWS) (purple), and Sooke
Lake Watershed North (SWN) (orange) sites.

Applying the merchantable volume HB model to the block level showed that the aver-
age merchantable volume in the OR blocks, 538 m3ha−1, was slightly lower than averages
at the other sites with plot-level training data (SWS = 795 m3ha−1, SWN = 608 m3ha−1).
However, this is due mainly to the old-growth blocks, SWS-09 and SWN-15 (Table 4). The
NWB site had the lowest average merchantable volume model estimate of 339 m3ha−1,
and the average at the FR site of 655 m3ha−1 was within the range of the other blocks that
had training data. Similarly, the non-merchantable volume model showed a lower average
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value in the OR site (124 m3ha−1) than in the other training sites (SWS = 144 m3ha−1,
and SWN = 129 m3ha−1). However, while the NWB site still showed the lowest average
non-merchantable volum–es (120 m3ha−1), the difference from the range of the training
sites was not as large. Additionally, the non-merchantable volumes estimated in the FR
sites had shown on average 145 m3ha−1, which was slightly higher than the highest value
in the training sites.

Table 4. Block digitized areas (ha) and block-level HB random forest model estimates of merchantable
(m3ha−1) and non-merchantable volumes (m3ha−1).

Site Block GIS Area Merchantable
Volume

Non-Merchantable
Volume

OR WH017 11.44 607.63 131.02
OR WH017a 24.29 518.36 126.95
OR WH017b 18.16 538.49 130.23
OR WH017c 22.59 579.99 128.43

SWS 02 0.704 352.54 78.35
SWS 05 1.066 877.71 176.05
SWS 09 1.000 1156.14 178.38

SWN 12 1.188 406.05 130.02
SWN 13 1.240 670.08 140.23
SWN 15 1.139 749.32 116.19

NWB 193401 11.59 352.21 123.97
NWB 193423 20.30 363.03 128.66

FR 073213 17.58 774.20 155.55
FR 062210 16.64 606.05 138.79
FR 973413 27.95 615.02 136.68
FR 971315 36.58 550.36 142.80
FR 972124 29.92 635.92 147.93
FR 874328 16.35 750.96 150.26

3.3. Comparison of HB Model Estimates with Block-Level Data
3.3.1. Merchantable Volumes

Pre-harvest merchantable volume estimates from forest cover data were consistently
lower on average in all blocks than the actual or simulated harvest scale data, with the
largest average absolute difference being at the SWS, SWN, and NWB sites (Table 5)
(Figure 5a). Paired t-test results showed a significant difference between the forest cover
and harvest scale data (t = −2.65, p-value = 0.017). In addition, the pre-harvest HB model
estimates showed more variability of over and under-estimations of the harvest scale
compared to the forest cover data. On average, the HB model overestimated merchantable
volumes at the SWS and SWN sites and showed underestimates at all other sites (Table 5). In
contrast to the forest cover data, the results from paired t-test comparison of merchantable
volume from the harvest scales to the HB model indicated no significant difference between
the means of the two methods (t = 1.30, p-value = 0.211). On average, across the OR, NWB,
and FR blocks, the absolute difference in merchantable volume between the harvest scale
and the forest cover was 21% of the average harvest scale, whereas, for the HB model
estimates, the average absolute difference was 14% of the average harvest scale (Figure 5a).
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Table 5. Block merchantable volumes (m3ha−1) for the post-harvest scale (HS), pre-harvest forest
cover (FC), pre-harvest hybrid model (HB), and differences in pre-harvest estimates from post-harvest
validation. Average differences use the absolute value of block differences. SE—standard error.
* Note: HS values for SWS and SWN were simulated using field measurements for all trees in the
block. All blocks n = 12 excludes HS values for SWS and SWN.

Site Block HS
Volume

FC
Volume

HB
Volume

FC-HS
Volume

HB-HS
Volume

OR WH017 647 559 608 −88 −40
OR WH017a 564 559 518 −5 −46
OR WH017b 656 337 538 −319 −118
OR WH017c 557 559 580 2 23

OR Avg
(SE)

606
(26)

504
(56)

561
(20)

104
(75)

56
(21)

SWS 02 270 * 533 353 263 83
SWS 05 946 * 672 878 −274 −69
SWS 09 994 * 741 1156 −253 162

SWS Avg
(SE)

737
(234)

649
(61)

795
(236)

264
(6)

104
(29)

SWN 12 293 * 396 406 103 113
SWN 13 436 * 598 670 162 234
SWN 15 976 * 497 749 −479 −226

SWN Avg
(SE)

568
(208)

497
(58)

608
(104)

248
(117)

191
(39)

NWB 193401 419 241 352 −178 −67
NWB 193423 519 202 363 −317 −156

NWB Avg
(SE)

469
(50)

222
(20)

358
(5)

248
(70)

112
(45)

FR 073213 825 550 774 −275 −51
FR 062210 672 582 606 −90 −66
FR 973413 738 569 615 −169 −123
FR 971315 755 700 550 −55 −205
FR 972124 838 841 636 3 −202
FR 874328 708 560 751 −148 43

FR Avg
(SE)

756
(27)

634
(47)

655
(36)

123
(39)

115
(30)

Blocks
n = 18
Blocks
n = 12

Avg
(SE)
Avg
(SE)

656 *
(51)
658
(36)

539
(38)
522
(52)

617
(48)
574
(37)

177
(31)
137
(34)

112
(16)
95

(19)

3.3.2. Non-Merchantable Volumes

Pre-harvest estimates of non-merchantable volume from the HB model were con-
tinuously higher on average than the post-harvest estimates from the waste and residue
survey (WRS) (Table 6) (Figure 5b). The paired t-test across all blocks showed that the
means between these two methods were significantly different (t = 7.12, p-value < 0.001).
Alternatively, compared to the semi-automated log delineation plus piles (SLDP) estimates,
the HB model results are more variable, with the majority of blocks showing model results
to be lower than SLDP estimates (Table 6). The paired t-test across those blocks with an
SLDP method applied showed no significant difference between method means (t = −0.34,
p-value = 0.736). Across the OR, NWB, and FR blocks, the average absolute difference
between the WRS and HB model results was 63% of the WRS average, where the average
absolute difference between the SLDP and HB model results across all blocks was much
lower and only 20% of the SLDP average (Table 6) (Figure 5b).
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Figure 5. (A) Block merchantable volume (m3ha–1) absolute difference of post-harvest scale (HS)
from pre-harvest forest cover (FC) (blue) and pre-harvest hybrid model (HB) (orange). (B) Block
non-merchantable volume (m3ha−1) absolute difference from pre-harvest hybrid model (HB) for the
post-harvest semi-automated log delineation plus piles (SLDP) (blue) and the post-harvest waste and
residue survey (WRS) (orange). Note: HS and SLDP values for SWS and SWN were simulated using
field measurements for all trees in the block. WRS values for SWS and SWN are N/A (-1).

Table 6. Block non-merchantable volumes (m3ha−1) for the post-harvest waste and residue survey
(WRS) estimate, post-harvest semi-automated log delineation plus piles (SLDP) residue estimate,
pre-harvest hybrid (HB) model predictions, and differences between pre-harvest estimates and post-
harvest values. Average volume differences use the average absolute difference. SE—standard error.
* Note: SLDP values for SWS and SWN were simulated using field measurements for all trees in the
block. All blocks n = 12 excludes values for SWS and SWN.

Site Block WRS SLDP HB Model HB-WRS HB-SLDP

OR WH017 120 157 131 −11 26
OR WH017a 67 174 127 −60 47
OR WH017b 58 178 130 −73 48
OR WH017c 110 189 128 −18 60

OR Avg
(SE)

89
(15)

175
(7)

129
(1)

40
(15)

46
(7)

SWS 02 49 * 78 −30
SWS 05 163 * 176 −13
SWS 09 168 * 178 −10

SWS Avg
(SE)

127
(39)

144
(33)

18
(6)

SWN 12 109 * 130 −21
SWN 13 74 * 140 −66
SWN 15 130 * 116 14

SWN Avg
(SE)

104
(16)

129
(7)

34
(16)
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Table 6. Cont.

Site Block WRS SLDP HB Model HB-WRS HB-SLDP

NWB 193401 76 87 124 −48 −37
NWB 193423 72 85 129 −56 −44

NWB Avg
(SE)

74
(2)

86
(1)

126
(2)

52
(4)

40
(3)

FR 073213 75 166 156 −81 10
FR 062210 58 158 139 −80 19
FR 973413 117 167 137 −19 31
FR 971315 59 146 143 −84 3
FR 972124 80 133 148 −68 −15
FR 874328 108 178 150 −42 28

FR Avg
(SE)

83
(10)

158
(7)

145
(3)

62
(11)

18
(4)

Blocks Avg 140 * 137 29
n = 18 (SE) (10) (5) (4)
Blocks Avg 84 152 137 53 31
n = 12 (SE) (7) (10) (3) (7) (5)

4. Discussion

This study demonstrates the utility of a hybrid (HB) enhanced forest inventory mod-
elling approach for estimating merchantable and non-merchantable timber volumes at
the harvest block level. Individual tree (IT) metrics were ranked higher than Boruta noise
variables in both HB models, and were among the top three ranked metrics for the non-
merchantable model (Figure 3b). For the merchantable volume HB model, selected metrics
were mostly composed of height percentiles, including the selected IT metric (Figure 3a).

The selected metrics were similar to other applications of traditional area-based (AB)
models [25,26,61] and HB models [39] that estimate merchantable or total forest volume,
where height percentile metrics were consistently the highest-ranked or final selected
metrics. One of the highest-ranked metrics for the non-merchantable HB model was the IT
blue channel metric (Figure 3b). The high ranking of this metric is believed to be driven by
ITs that are dead standing and made up entirely of non-merchantable wood, as was seen in
sample plots at SWS 05. Interestingly, using the blue image channel from RGB imagery is
similar to the procedures in the semi-automated log delineation (SLD) method to detect
post-harvest logging residues [41].

Despite relying on a limited number of training sample plots (38), HB model fits
for both merchantable and non-merchantable volume components with RMSE values of
34.7% and 38.0%, respectively, were similar to total or merchantable volume estimates
from other studies in complex coniferous forests using non-parametric modelling (RMSE:
23.3–31.4% [61]; RMSE: 17.9% [62]; RMSE: 33.2% [56]). For example, White et al. [26] uti-
lized 788 sample plots to fit an AB model estimating merchantable volumes in Alberta with
an RMSE of 26%, which was applied to 272 harvested stands, and Kankare et al. [39] utilized
254 sample plots to fit an HB style model in coniferous forests of southern Finland with
RMSEs ranging from 26.4–34.0%. In addition, the recent implementation of a combination
approach in pine forests utilized 1680 training plots to create HB style models of volume
that had normalized RMSE values ranging from 34.6 to 42.6% and were applied to over
10,290 km2 of forested area in the southern United States [37].

The results from this study also highlight the potential for the transferability of EFI
models. The HB merchantable volume model results had average absolute differences of
9–34% of the harvest scale in harvest blocks with available plot-level training data (Table 5).
When the HB model was transferred to those harvest blocks without pre-harvest plot-level
training data, the average absolute difference from the harvest scale was within a similar
range of 15–24%. A sample plot analysis of model transferability found that, using the same
LiDAR acquisition, models trained in one area could be successfully transferred to similar
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forest areas with no major increases to plot-level RMSE [27]. However, Kotivuori et al. [63]
found that both forest structure and LiDAR sensor had considerable effects on volume
model accuracy. For this study, data acquisitions took place over several years with
numerous sensor platforms and differing positional accuracies. The fusion of these data
has potentially increased uncertainty of model estimates through compounding errors,
however as an initial application the HB model results are still promising. A formal analysis
of the impacts of data fusion on hybrid models would be beneficial in future research but
due to data availability was beyond the scope of the current study.

Not surprisingly, the merchantable volume estimates from forest cover data for blocks
with timber cruising data (OR, NWB, FR) were on average closer to harvest scales compared
to forest cover estimates derived solely from air photo interpretation. At the Franklin River
site, blocks with hemlock as the leading dominant species instead of Douglas-fir also
tended to show the largest differences between the harvest scale and the HB merchantable
volume results, indicating a possible lack of stability in model transferability as stand
species characteristics change. This should be expected as western hemlock and Douglas-fir
dominated stands appear similar in point cloud structure despite having slightly different
tapers and densities [64,65]. This is also similar to Tompalski et al.’s [27] findings where
random forest model predictions of wood volume decreased as the proportions of hemlock
and Douglas-fir changed between sites with otherwise similar stand characteristics. This
would suggest that if the IT species could be detected, it could improve the HB model.

Comparing the merchantable volume results against the harvest scale showed that
the HB model performed better than the forest cover data for this study. The HB model
showed that the average absolute difference across OR, NWB, and FR blocks was 14% of
the average harvest scale, whereas the average absolute difference was 21% of the harvest
scale for the forest cover data. The HB model results from this study are higher than the
AB model results reported by White et al. [26], which were on average 6.7% less than
the harvest scale. However, the stands examined by White et al. [26] were at a higher
elevation and covered a lower overall volume distribution than the coastal forest in this
study, which could explain the increased differences between HB merchantable volume and
harvest scales.

Comparisons of non-merchantable volume estimates show that HB model results were
higher and significantly different from waste and residue survey (WRS) estimates and lower
but not significantly different from semi-automated log delineation plus piles estimates
(SLDP). Previous research comparing WRS and SLDP methods found that, particularly
for the piled and heavy roadside stratums, WRS methods can lead to underestimates of
residue volumes depending on sampling intensity [15]. In the OR and NWB sites, the
number of WRS sample plots per stratum was much greater than at the FR sites, and thus
the differences between the WRS and SLDP methods were lower at these sites (Table 6).
In another approach utilizing LiDAR data, Heinaro et al. [66] attempted to segment the
LiDAR point cloud to detect coarse woody debris under the canopy. Results from that study
indicated that point density and stand characteristics, such as canopy cover, significantly
impact the ability to produce accurate ground classifications and resolve the under-canopy
structure [66].

For forest managers these pre-harvest HB models allow for wall-to-wall estimation
within a harvest block of potential merchantable and non-merchantable wood volumes. In
Canadian managed forests, harvesting operations often result in large amounts of residues
at the roadside which are piled and burned [15]. The improved pre-harvest estimation of
the amount of non-merchantable volumes from HB models would allow forest managers
the opportunity to contract the extraction of these residues instead of burning them on
site. While this study shows the potential for HB models to be developed and applied
utilizing existing spatial and field data, the collection of co-incident LiDAR and imagery
from the same sensors over the entire study area has the potential to lessen the amount of
uncertainty in model results. Additionally, future applications of the HB methods should
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investigate the inclusion of other environmental proxy variables that can be derived from
remotely sensed data such as a topographic wetness index.

5. Conclusions

The results of this study demonstrate the ability for a hybrid enhanced forest inventory
model to be used for pre-harvest estimations of non-merchantable volume that may be left
post-harvest as logging residues. Additionally, this study highlighted that individual tree
metrics could rank as important predictor metrics when using a Boruta variable selection
method. This study also demonstrated the transferability of area-based models to areas
with stable and similar point cloud structure, after point thinning, and similar forest
structure characteristics. Future work should examine if completing segmentations before
point cloud thinning offers any improvements, if the inclusion of other environmental or
voxelized predictor metrics offers improved model estimates, and what the impacts of
field plot sampling distribution are on estimates of merchantable and non-merchantable
wood volumes. With further advancements, a hybrid enhanced forest inventory model
could assist with forecasting non-merchantable wood volume available from future harvest
blocks for use as bioenergy fuel or bioproducts such as wood pellets. Better forecasting of
non-merchantable wood volumes allows for the economic evaluation of extracting these
materials before stands are cut and residues burned or started to decompose. Additionally,
the methods demonstrated here provide forest managers with the opportunity to analyze
block-level harvest efficiencies rapidly.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14092204/s1, Table S1: Flight characteristics for post-harvest
data collection at Franklin River site. Table S2: Oyster River plot level summaries and LiDAR metrics
used in merchantable volume HB model training. Table S3: Victoria Watershed South plot level
summaries and LiDAR metrics used in merchantable volume HB model training. Table S4: Victoria
Watershed North plot level summaries and LiDAR metrics used in merchantable volume HB model
training. Table S5: Oyster River plot level summaries and LiDAR metrics used in non-merchantable
volume HB model training. Table S6: Victoria Watershed South plot level summaries and LiDAR
metrics used in non-merchantable volume HB model training. Table S7: Victoria Watershed North
plot level summaries and LiDAR metrics used in non-merchantable volume HB model training. Table
S8: WRS stratum average densities, GIS derived total stratum area, and total volume for FR blocks.
Table S9: SLD stratum and block level total volume estimates.
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