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Abstract: With the development of deep learning techniques in the field of remote sensing change
detection, many change detection algorithms based on convolutional neural networks (CNNs) and
nonlocal self-attention (NLSA) mechanisms have been widely used and have obtained good detection
accuracy. However, these methods mainly extract semantic features on images from different periods
without taking into account the temporal dependence between these features. This will lead to
more “pseudo-change” in complex scenes. In this paper, we propose a network architecture named
UVACD for bitemporal image change detection. The network combines a CNNs extraction backbone
for extracting high-level semantic information with a visual transformer. Here, visual transformer
constructs change intensity tokens to complete the temporal information interaction and suppress
irrelevant information weights to help extract more distinguishable change features. Our network
is validated and tested on both the LEVIR-CD and WHU datasets. For the LEVIR-CD dataset, we
achieve an intersection over union (IoU) of 0.8398 and an F1 score of 0.9130. For the WHU dataset, we
achieve an IoU of 0.8664 and an F1 score of 0.9284. The experimental results show that the proposed
method outperforms some previous state of the art change detection methods.

Keywords: change detection; transformer; deep learning; spatiotemporal feature enhancement

1. Introduction

Change detection is a process of identifying differences by observing the states of
an object or phenomenon at different times [1]. It is one of the main problems in Earth
observation and has been studied extensively in recent years. With the continuous de-
velopment of Earth observation technology, a large amount of remote sensing data with
hyperspectral space-time resolutions are now available, bringing new requirements for
change detection and promoting the development of change detection technology. The ap-
plication fields of change detection are urban expansion [2], building change detection [3,4],
water environment change detection [5,6], forest detection [7], debris flow and landslide
detection [8].

Most traditional change detection methods can be divided into two steps: change unit
analysis, and change identification [9]. Change unit analysis usually divides the image
into pixel-level units, and object-level units, and then constructs useful features based on
these units. Different forms of analysis units share similar feature extraction techniques,
common spectral features, and spatial features. Change identification uses human-made
or learned rules to compare feature representations of analysis units to determine change
categories. A common and simple method is to calculate a feature difference map and then
use thresholding to segment the change region [10]. The direction and magnitude of the
change vector can be analyzed to determine the type of change based on change vector
analysis (CVA) [11]. Alternatively, hand-designed rules are used to construct decision
trees [12], and support vector machines are used [13] to identify the type of change. In
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addition, probabilistic graphical models, such as Markov random field and conditional
random field models, can also be used for change identification [12,13]. Thus, traditional
methods of change detection are designed based on handcrafted features and supervised
classification algorithms with strong theoretical explanations, but the feature construction
and selection process of these methods is complex and less adaptable to unknown datasets.
End-to-end deep learning (DL) methods, on the other hand, have been rapidly developed
by liberating the process of tedious hand-designed features.

Over the past few years, based on convolutional neural networks (CNNs), remote
sensing image change detection approaches have achieved remarkable progress. Most re-
cently developed supervised change detection (CD) methods rely on CNN-based structures
to extract high-level semantic features that reveal the change of interest from each temporal
image [3,14]. However, convolution kernels are not good at modeling the long-range de-
pendencies of image contents and features because they only process a local neighborhood,
either in space or time [15]. Current change detection methods, including both feature-
level Siamese change detection and image-level fusion- and segmentation-based change
detection approaches, are almost all built upon convolutional operations [16–18]. As a
consequence, these methods only perform well in modeling local image content relation-
ships but are limited in terms of capturing long-range global interactions. The long-range
global interactions indicate that we integrate the image global contextual relationships to
calculate each pixel value in the image, which make the generated feature maps have more
robust properties. Such a deficiency may degrade the capacities of these models to deal
with scenarios where global contextual information is important for localization, such as
objects undergoing large-scale land use change types. It is necessary to introduce a nonlocal
self-attention mechanism to capture remote global interaction information [19–21].

A transformer can be seen as a special self-attention mechanism [22], that performs
global adaptive weighting of inputs by computing global contextual relations to automati-
cally focus on key information locations. Transformers have achieved rich success in tasks
such as speech recognition [23] and natural language modeling [24]. Recently, transformers
have been employed in discriminative computer vision models and have attracted great
attention [25]. This mechanism has also received considerable attention in remote sensing
image processing, such as image time-series classification [26,27], hyperspectral image
classification [28], and RS image captioning [29]. However, transformers have not been
widely used in remote sensing change detection. ChangeFormer [30] is a hierarchical trans-
former in a Siamese network with a lightweight decoder, and it shows that good results
can still be obtained without relying on the convolution operation. However, it is limited
by the mechanism of the transformer, which makes training the model more difficult.
CNN + Transformer is another effective solution. Bit-CD [31] uses a transformer decoder
network to enhance the context information of Conv-Net features. It has the advantages of
the efficient training performance of convolutional networks while maintaining the advan-
tages of long-distance dependency information modeling. The video vision transformer
(ViVit) [32], is a video sequence classification network built using a visual transformer. Here,
we use the idea of building spatiotemporal dependencies between frames by a transformer
to construct a change intensity token and propose a new end-to-end change detection
architecture for CNNs and transformers with encoder–decoders to boost the performance
of conventional convolution models. Our approach differs from ViVit in two ways: first,
the network structure is redesigned to adapt to the semantic segmentation task, and second,
CNNs are used as the feature extraction framework for feature extraction.

Both spatial and temporal information are important for change detection. The former
contains object appearance information for target localization, while the latter includes
the state changes of objects. Most existing change detection methods only exploit spatial
information because they apply attention separately to each temporal image to enhance
its features or simply use attention to reweight the fused bitemporal feature maps in the
channel or spatial dimension [21,33–36]. For example, a previous study [37] extracted
multi-level features from a Siamese network for dual-temporal images and used feature
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differences in algebraic operations to detect used changes. Another study [38] extracted the
most representative features at different semantic levels by cascading bitemporal features
at different scales, and then performed channel attention on these features. Ref. [20]
makes the network focus on useful information on bitemporal images by adding attention
mechanisms to the Siamese networks separately.

Although successful, these methods mainly focus on extracting semantic features on
images at different time periods, but do not consider the temporal dependence between
these features, which will lead to more pseudo-change in complex scenes. In this work,
considering its superior capacity for modeling global dependencies, we use a transformer to
integrate spatial and temporal information for change detection, generating discriminative
spatiotemporal features for feature fusion. Considering the superior capability of trans-
formers in terms of modeling global dependencies, we use a transformer to integrate spatial
and temporal information for change detection and generate discriminative spatiotemporal
features for feature fusion. More specifically, we propose a new spatiotemporal module
based on visual transformer for change information fusion. The new architecture contains
three key components: an encoder, a fusion module, and a variance information extrac-
tion module. The encoder receives the original image in two time periods and generates
independent feature maps. This fusion module uses the visual transformer structure to
enhance independent feature maps and achieves the fusion of spatiotemporal information.
The differential information extraction module is based on 3D convolution (conv3d), which
is different from general algebraic operations such as summation and difference, and can
more flexibly generate change feature maps and be directly used for classification.

In summary, this work has three contributions.
1. We propose a new 3D convolutional difference information extraction module specif-

ically for the extraction of bitemporal variation feature maps. It can easily and efficiently
aggregate bitemporal features, helping us to generate difference feature maps more flexibly
while helping us to focus more on the feature encoding or feature enhancement part.

2. We propose a visual transformer-based spatiotemporal feature enhancement strat-
egy in the dual-temporal feature information fusion and processing approach. Temporal
information modeling is achieved by first executing the transformer separately in the spatial
dimension, and then a classification token of aggregated temporal features is constructed
in the temporal dimension; in other words, this approach can be understood as a global av-
erage pooling operation involving fused temporal information. The method fully considers
the long-range dependencies between feature maps and unites feature information in the
temporal dimension, and the experimental results show that this is important for temporal
feature enhancement.

3. For the combined CNN + Transformer approach, we construct an additional training
loss for the transformer part to strengthen the influence of the transformer module on the
network, and experimentally validate the feasibility of this approach, which provides a
new solution for the CNN + Transformer to build a change detection network.

The rest of this paper is as follows. In the second section, the overall structure of the
change detection network in this paper is proposed, in which the dual-time phase feature
fusion enhancement module and the feature difference module are described in detail.
In the third section, the experimental results and analysis are provided. In Section 4, we
discuss some of the details and parameters of the experimental results. In Section 5, the
conclusions of this paper are derived.

2. Materials and Methods

In this section, we introduce the architecture of the proposed method in detail. The
overall structure of the change detection network for learning spatiotemporal features is
presented in Figure 1. For clarity, we first introduce this basic change detection network
with three main modules: a feature extraction backbone in Section 2.1.1, a difference infor-
mation extraction module in Section 2.1.2, and a decoder for segmentation in Sections 2.1.3
and 2.1.4. Subsequently, In Section 2.2, we add a transformer-based temporal feature
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enhancement module to the basic network to help build a long-range modeling approach
for spatiotemporal features, considering the long-range dependence of self-attention and
making the network performance more robust.
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Figure 1. Method flow for our change detection network.

2.1. Basic Siamese Network with a Conv3d-Based Differential Module
2.1.1. Siamese Backbone

The transformer locates key location information by computing global adaptive weight-
ing for the input, which makes the computational effort of the model positively correlated
with the size of the input image. ViVit [32] divides the image into blocks of nonoverlap-
ping size and computes block-to-block correlations, and although it greatly reduces the
computational effort, it loses its ability to model the relationships between pixels with a
block modeling capability. However, convolutional networks perform feature extraction by
sliding windows, which are less computationally intensive than a transformer. Therefore, to
compensate for the computation of block-to-block correlation analysis, we use ResNet [15]
as the backbone to build a deep feature extraction framework, and to guarantee the model
capacity, we use ResNet50 to achieve a better feature representation. More specifically,
there are no changes in the original ResNet other than the removal of the last stage and
the fully connected layers. The input of the backbone is a pair of images: a pre-period
image z1 ∈ R3×H×W , and a post-period image z2 ∈ R3×H×W that locate the change state
information. Afterward, by passing them to the backbone, the pre- and post-period images
z1 and z2 are mapped to feature maps fz1 ∈ RC× H

s ×
W
s and fz2 ∈ RC× H

s ×
W
s , respectively.

Here, s represents the size of the block. Then, for the change detection task, we constructed
the change detection network backbone of this paper by using the Siamese structure, which
is shown in Figure 2 below. The depth residual convolution uses the same color to indicate
that they have the same network structure and weights, which will form a Siamese back-
bone, and then the output of different input images passing through this Siamese backbone
will become different. Thus, we use different colors to draw the output.

2.1.2. Difference Information Extraction

The difference feature maps are extracted as a simple cascade of bitemporal feature
maps extracted by the Siamese backbone and then operated by the 3D convolution mod-
ule [39]. Unlike traditional 2D convolution, the convolution kernel of 3D convolution adds
a temporal dimension to process the sequential image input, so the input feature map needs
to be stacked in the temporal dimension. The processing process is shown in Equation (1).
In this module, the channel width C, height H, and weight W of the bitemporal feature
maps fz1 and fz2 are kept constant. The receptive fields on the multiscale temporal feature
maps are fused by convolving the conv3d voids with dilation rates of 1, 4, and 8, and
a convolution is performed for feature aggregation. Here, to fuse the receiver fields at
different scales, the 3D convolution module uses the idea of atrous spatial pyramid pooling
(ASPP) [39], which we name ASPP3d. Dilation = 1 represents the normal convolution,
while the outer 4 and 8 are added to aggregate the difference features at multiple scales
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and to increase the model capacity. In addition, we visualize the absolute value of the
feature map and the difference feature map extracted using ASPP3d. Figure 3 shows that
the extracted features are more robust and have less noise.

D = σ(g( fz1, fz2)) (1)

where g : RH×W×C×2 → RH×W×C′ represents the difference feature extraction operation
and σ represents the aggregation operation of g with different dilation parameters. C′ is
the number of channels after convolution, where C′ = C.
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2.1.3. Classification Head

Since the size resolutions of the feature maps extracted based on the ResNet backbone
are smaller than the resolution of the original image, to achieve a semantic segmentation
process that guarantees the size of the original image, the difference feature maps need to
be upsampled and then classified by convolution. Since a simple upsampling operation
produces a tessellation lattice phenomenon, an additional convolution operation is added
to the sampled difference feature map to stabilize the post-sampling performance; this is
followed by a categorical convolution output change probability for two classification steps.
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The first channel represents the background probability value with a label value of 0, and
the second channel is the change foreground probability value to be extracted with a label
of 1. The structure is shown in Figure 4.
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2.1.4. Construction of Extra Predictions

Although the ASPP3d difference feature extraction module proposed in this paper
can simply aggregate the bitemporal feature relations, it fails to consider the multiscale
resolution relations of multilevel feature maps. Therefore, in this paper, the Unet [40]
structure, which consists of a symmetric encoder–decoder network with skip connections
to enhance detail retention, is adopted to build an extra classification. The overall process
is shown in Figure 5. Here, signal “C” represents the cascading and convolution of the
difference feature maps. The red and yellow parts at the bottom of the figure represent
the feature maps generated by the bitemporal images after the Siamese backbone. The
light blue part is their difference feature map, and the transformer is the bitemporal feature
enhancement module for disparity feature extraction, which is introduced in Section 2.2.
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2.1.5. Loss Function

As the change detection process used in this paper is treated as a semantic segmenta-
tion task, we use softmax cross-entropy loss in the training phase for implementation. The
loss formula is as follows:

l(x, y) = L = (l1, · · · , lN)
τ (2)

ln = −wn[yn × log xn + (1− yn)× log(1− xn)] (3)

where y is the true value of a point (usually 0 or 1), x is the predicted value of a point,
N is the batch size, and w is the weight given to each batch. Due to the construction of a
multilevel resolution prediction task, this network has a total of two losses to be calculated.
The final loss_total = sum (loss1, loss2).

The smaller the subscript of the loss is, the closer it is to the final output of the network
and the smaller its resolution. In the calculation of the loss, the binary label map must be
resampled to this resolution.

2.2. Bitemporal Feature Enhancement

To enhance the model so that it can handle global contextual information while speci-
fying the temporal and spatial relationships between pixel pairs to generate differentiated
spatiotemporal features, we propose a bitemporal feature fusion transformer module. It
mainly consists of the following two structures: tokenization in Section 2.2.1 and the
spatiotemporal transformer in Section 2.2.2, as shown in Figure 6.
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2.2.1. Tokenization

Vit divides an image into a series of sequences as input, scans each element of the
sequence, and learns their dependencies. Although this feature makes it essentially good
at capturing global information in sequence data, it cannot implicitly learn the position
information of the obtained sequence, so it needs to perform position encoding on the
sequence to retain the position information (position embedding, PE). The formula can be
expressed as follows. To learn the relationships between temporal feature maps, a temporal
classification token is used here, as shown in the formula below:

T = S( fz1, fz2, p) + pos (4)
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where S : R H
s ×

W
s ×C×2 → R(( H

s∗p ·
W

s∗p )+1)×C′×2 is the sequence that divides the input feature
map into p size patches and encodes the original feature width C as C′, and change intensity

tokens used to fill the time dimension are generated in this process. pos ∈ R( H
s∗p ·

W
s∗p +1)×2 is a

position-encoding parameter that can be calculated. Note that since the height H and width
W of the original image will become 1/s times since the Siamese backbone from the previous
section is used, image chunking is achieved, so we set p to 1.

2.2.2. Spatiotemporal Transformer

This part of the structure contains both spatial transformer and temporal transformer
parts with a similar multiheaded attention mechanism. Both parts are composed of trans-
former encodings of L layers, with each layer containing a multiheaded self-attention
mechanism (MSA) with layer normalization (LN) and a multilayer perceptron (MLP)
structure, which are denoted as follows:

yl = MSA
(

LN
(

Tl
))

+ Tl (5)

Tl+1 = MLP
(

LN
(

yl
))

+ yl (6)

The MLP structure consists of two linear layers, as well as the GELU activation
function, and the dimensionality C\prime of the sequence is kept constant throughout
the process. In addition, the model uses a separated multiheaded attention mechanism,
utilizing different heads to compute spatial attention and temporal attention separately. Its
attention is defined as follows:

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
V (7)

where Q = XWq, K = XWk, V = XWv, X, Q, K, V ∈ R(N/r2)×C′ , and the sequence length
is denoted N, which is divided into two types, Ns and Nt, representing the sequence lengths
in the space and time dimensions, respectively. The calculation formulas are as follows.

Ns =
Hz

s ∗ p
· Hz

s ∗ p
(8)

Nt = 2 (9)

The core idea of this structure is to construct the spaces Qs, Ks, Vs ∈ RNs×C′ and
Kt, Vt ∈ Rnt×d representing the query, key and value information of the respective dimensions.
Then, multiheaded attention is used to compute spatial features Ys = Attention (Qs, Ks, Vs), and
the next class token dimension is taken to compute temporal features Yt = Attention (Qt, Kt, Vt).
Finally, the temporal and spatial features are multiplied together, and the residuals are concatenated.

Y = Ys + Ys ∗Yt (10)

3. Experiment

From the overall structure of the network, we named the network UVACD. This is
because it refers to the form of UNet, and the change detection task is realized in the
ASPP3d differential information extraction module proposed by the visual transformer.
We validate UVACD on two publicly available building change detection datasets: the
LEVIR-CD [36] dataset and the WHU [41] dataset. The experimental results show that
the proposed UVACD network outperforms recently proposed change detection methods.
In this section, we start by introducing the experimental dataset. Then, we describe the
details of our implementation and present the utilized evaluation metrics. Finally, we list
the comparison with some other methods.
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3.1. Dataset Settings

LEVIR-CD [36] is an open dataset containing 637 ultrahigh-resolution (0.5 m-resolution)
Google Earth image pairs with 1024 × 1024 pixels. Images of 20 different locations in sev-
eral cities in Texas were collected from 2002 to 2018, and the image pairs ranged from
5 to 14 years. The introduction of changes due to seasonal and light variations in the
dataset has helped to develop effective methods for mitigating the effects of unrelated
changes on actual changes. Architecture-related changes include building growth (changes
from soil/grassland/hardened ground or areas under construction/new building areas)
and building decay (building areas/nonbuilding areas such as soil/grassland/hardened
ground). The dataset covers various types of buildings, such as villas, high-rise apartments,
small garages and large warehouses. The dataset contains a total of 31,333 individual
building changes, with an average of approximately 50 building changes per image pair
and an average size of approximately 987 pixels per change area. Note that most of
the changes are due to building growth. The author of LEVIR-CD provided a standard
training/validation/test split, which assigns 70% of the samples for training, 10% for
validation, and 20% for testing. Regarding the GPU memory capacity limitation, we follow
the standard split proposed by reference [31]. We cut the images into small patches of
size 256 × 256 with no overlap. Therefore, we obtain 7120/1024/2048 pairs of patches for
training/validation/testing.

WHU [41] is a building change detection dataset consisting of two-period aerial
images, each with a resolution of 0.3 m. This dataset covers an area where a 6.3-magnitude
earthquake has occurred in February 2011 that was rebuilt in the following years. This
dataset consists of aerial images obtained in April 2012 that contain 12,796 buildings in
20.5 km2 (16,077 buildings in the same area in the 2016 dataset). A standard split does
not exist for this dataset. Different researchers use different data splitting approaches to
validate their models. For comparison, we use the splitting approach that was used in
reference [21]. We crop the images into small patches of size 256 × 256 with no overlap.
Note that we adopt the method of fewer training set samples, so we split them into three
parts (4491/498/2700) for training/validation/testing according to the range of test set
vectors given by the original dataset, where the validation set obtained represents 10% of
the training set. See Table 1 and Figure 7 for more details.

Table 1. A brief introduction to the two datasets.

Name Bands Image Pairs Resolution (m) Image Size Train/Val/Test Set

WHU 3 1 0.3 32207× 15354 4491/498/2700
LEVIR-CD 3 637 0.5 1024× 1024 7120/1024/2048
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3.2. Training Details

Our model is based on PyTorch and trained on one ubuntu20.04 operating system
using four NVIDIA Tesla V100 GPUs; the training strategy uses distributed data parallel
(DDP). During the training process, we implemented a loading data process where we
normalized the image data to between 0 and 1 and transformed their distribution to a
standard normal distribution. Then, data enhancement, random probability value of
0.5 data enhancement by random inversion, random resize, random cropping, Gaussian
noise, and random color change were performed. We used cross-entropy loss and the
AdamW optimizer with the parameters set to a weight decay of 0.01. The initial learning
rate was set to 0.005, and the initial four epochs were dropped to 1 × 10−6 using linear
warmup to the initial learning rate, followed by cosine annealing. The number of epochs
was 200, and the batch size was 32.

3.3. Evaluation Metrics

To compare the performance of our model with the performances of other methods,
we report their F1 and intersection over union (IoU) scores with regard to the change class
as the primary quantitative indices. Additionally, we report the precision and recall values
for the change category and the overall accuracy (OA) performance of the change detection
task. The IoU and F1 values range from 0 to 1, and the higher each value is, the better
the performance. The IoU and F1 scores are calculated as follows, where TP denotes true
positives, FP denotes false positives, and FN denotes false negatives.

IoU =
TP

TP + FP + FN
(11)

F1 = 2 ∗ precision ∗ recall
precision + recall

(12)

The precision is calculated as:

precision =
TP

TP + FP
(13)

The recall is calculated as:
recall =

TP
TP + FN

(14)

The OA is calculated as:
OA =

TP + TN
TP + FN + TN + FP

(15)

3.4. Comparison with Other Methods

In this section, we compare the change detection performance of our UVACD approach
with the performances of some existing deep learning change detection methods. The
methods used for comparison are as follows:

• FC-EF [37]: This method concatenates original bitemporal images and processes them
through ConvNet to detect changes.

• FC-Siam-D [37]: This is a feature-level difference method that extracts the multilevel
features of bitemporal images from a Siamese ConvNet and uses feature differences in
algebraic operations to detect changes.

• FC-Siam-Conc [37]: This is a feature-level concatenation method that extracts the
multilevel features of bitemporal images from a Siamese ConvNet, and feature con-
catenation in the channel dimension is used to detect changes.

• DTCDSCN [19]: This is an attention-based, feature-level method that utilizes a dual
attention module (DAM) to exploit the interdependencies between the channels and
spatial positions of ConvNet features to detect changes.

• STANet [36]: This is another attention-based, feature-level network for CD that inte-
grates a spatial–temporal attention mechanism to detect changes.
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• IFNet [14]: This is a multiscale feature-level method that applies channel attention and
spatial attention to the concatenated bitemporal features at each level of the decoder.
A supervised loss is computed at each level of the decoder. We use multi-loss training
strategies inspired by this technique.

• SNUNet [38]: This is a multiscale feature-level concatenation method in which a
densely connected (NestedUNet) Siamese network is used for change detection.

• BIT [31]: This is a transformer-based, feature-level method that uses a transformer
decoder network to enhance the context information of ConvNet features via semantic
tokens; this is followed by feature differencing to obtain the change map.

• ChangeFormer [30]: This is a pure transformer feature-level method that uses a
transformer encoder–decoder network to obtain the change map directly.

3.4.1. Experimental Results Obtained on the WHU Dataset

In this section, we present the results of the comparison of UVACD with some other
change detection algorithms on the WHU dataset. The comparison is mainly based on
the work of [21], who tested many change methods with their splitting approach. Here,
we also crop the image to a nonoverlapping 256 × 256 size, although we use less training
data to train the network on the WHU dataset. We present the comparative results in
Table 2. The table shows that UAVCD has shown excellent performance on this dataset.
Our methods achieved F1, IOU, recall, and precision values of 1.8%, 1.74%, 0.57%, and
0.88%, respectively.

Table 2. The average quantitative results obtained by different CD methods on WHU test set. (largest
in red, second-largest in blue; all values are reported as percentages (%)).

Methods F1 IoU Recall Precision OA

FC-EF 78.75 64.94 78.64 78.86 93.03
FC-Siam-diff 86.00 75.44 87.31 84.73 95.33
FC-Siam-conc 83.47 71.62 88.80 78.73 94.22

BiDataNet 88.63 79.59 90.60 86.75 96.19
Unet++_MSOF 90.66 82.92 89.40 91.96 96.98

DASNet 86.39 76.04 78.64 78.86 95.30
DTCDSCN 89.01 79.08 89.32 - -

DDCNN 91.36 84.9 89.12 93.71 97.23
UVACD (ours) 92.84 86.64 91.17 94.59 99.49

We also plotted some of the inference results from the test set, as shown in Figure 8.
In the first three columns, we present the bitemporal images (A, B) and ground truths
(GTs). The fourth column shows the change masks for UVACD. To show the test results
more visually, the missing false negative (FN) parts are shown in green, the false positive
parts are shown in red, and the other parts that overlap the label image are color-matched.
Overall, UVACD is maintained on the contour shape of the image with fewer FPs. From the
results of the first image, the change of the building is not simply an exclusive OR (XOR)
relationship, but also includes a building to another building change relationship, which
our algorithm can still accurately identify. However, from the third row of the image, the
performance of our small target detection method is weakened.

3.4.2. Experimental Results Obtained on the LEVIR-CD Dataset

In this section, we compare UVACD with some other change detection algorithms on
the LEVIR-CD dataset. The comparison is mainly based on the work of [30], who tested
many change detection methods with their splitting approach. Moreover, we maintain a
consistent way of dividing the data. We present the comparative results in Table 3. The
table shows that UVACD has greater performance on this dataset. In comparison to the
second-ranked metrics, the F1 and IOU values of our approach increase by 0.9% and 1.8%,
respectively, but the recall and precision remain optimal.
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Table 3. The average quantitative results obtained by different CD methods on LEVIR-CD test set.
(largest in red, second-largest in blue; all values are reported as percentages (%)).

Methods F1 IoU Recall Precision OA

FC-EF 83.40 71.53 80.17 86.91 98.39
FC-Siam-diff 86.31 75.92 83.31 89.53 98.67
FC-Siam-conc 83.69 71.96 76.77 91.99 98.49

STANet 87.26 77.40 91.00 83.81 98.66
IFNet 88.13 78.77 82.93 94.02 98.87

SNUNet 88.16 78.83 87.17 89.18 98.82
BIT 89.31 80.68 89.37 89.24 98.92

ChangeFormer 90.40 82.48 88.80 92.05 99.04
UVACD (ours) 91.30 83.98 90.70 91.90 99.12

Ref. [30] published their code and the results of a test image for their comparison
experiment. We also validated their test images by inference, as shown in Figure 9. Here,
we focus on the red boxes in A (pre-period image) and B (post-period image), which have
changed with the disappearance of the building and the unlabeled change type. Our
UVACD and Bit-CD method are still accurate in detecting the types of missing changes,
but the methods used to compare them all fail to detect the types of irrelevant changes.
As highlighted in red (false detection) and green (missed detection), our UVACD method
maintains better robustness against building additions and reductions, and even suspected
building additions, than the other change detection methods. Both of these quantitative
and qualitative comparisons show the superiority of our proposed method for conducting
change detection with bitemporal images.
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4. Discussion
4.1. Effects of Transformers on the Network Structure

To verify the impact of the bitemporal feature enhancement module built on the
transformer for the overall network structure in this paper, we designed the following sets
of ablation experiments.

• Base_Single: Only the ASPP3d convolution fusion module proposed in this paper is
used (without extra classification).

• Base_Muti: The Aspp3d convolution fusion module proposed in this paper is used for
extra classification.

• UVA_Single: The proposed ASPP3d convolution fusion module is combined with
bitemporal feature enhancement without extra classification.

• UVA_Muti: The proposed ASPP3d convolution fusion module is combined with
bitemporal feature enhancement for extra classification.

The results of these four experiments on the WHU dataset and the LEVIR-CD dataset
are presented in Table 4. The base network, with or without extra classification, does
not significantly improve the following five metrics and is not optimal in terms of recall.
When bitemporal feature enhancement is used, the prefix for UVA, the recall increases
significantly, and the maximum increases in recall on LEVIR-CD and WHU are 2.25%
and 1.16%, respectively. When we use the extra classification, the F1 and IoU metrics of
Uva_Muti increase by 0.66% and 1.1% compared to those of Uva_Single on the LEVIR-CD
dataset, but the metrics increase by only 0.09% and 0.67% on the WHU dataset. This shows
that the addition of extra classification tasks has a facilitating effect on the construction of
the bitemporal feature enhancement strategy. However, the facilitation of this strategy is
much better on the LEVIR-CD dataset than on the WHU dataset, which may be because the
change types on the LEVIR-CD dataset are more complex than those on the WHU dataset,
and the test metrics of WHU are better than those of LEVIR-CD, which makes the ability of
the visual transformer to cope with more complex change types more fully exploited.
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Table 4. The ablation experiments results on LEVIR-CD and WHU. All values are reported as
percentages (%).

Ablation
Experiments

LEVIR-CD WHU

F1 IoU Recall Precision F1 IoU Recall Precision

Base_Single 90.36 82.42 88.45 92.36 92.18 85.49 89.86 94.62
UVA_Single 90.64 82.88 90.35 90.93 92.45 85.97 91.06 93.84
Base_Muti 89.90 81.65 88.78 91.05 92.38 85.85 89.51 95.45
UVA_Muti 91.30 83.98 90.70 91.90 92.84 86.64 91.17 94.58

Color convention: Best in red, second-largest in blue.

We further plot the inference for the test sets of these four experiments on these
two datasets in Figure 10. The first three lines in the figure represent the results on the
WHU dataset, and the last three lines represent the results on the LEVIR dataset. In the
first three columns, we present the bitemporal images A (pre-period image), B (post-period
image) and GTs. The last four columns show the results of the four ablation experiments
constructed in this paper. The UVA prefix indicates that we are using the transformer
bitemporal feature enhancement strategy. Here, green represents FNs, red represents FPs,
white represents TPs, and black represents TNs. From the image on the first line, we see
that the ability of the network to detect small target changes has improved slightly with the
addition of a transformer, but there are still omissions. In the six-line image that follows,
building the transformer shows some similarity in error detection, as shown by the red part
of the image, if there is no additional classification task. Here, we consider that without
additional classification constraints, the overall performance of the network will be biased
toward the performance of the convolutional neural network. Therefore, it is necessary to
build additional classification constraints on the transformer here.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 19 
 

 

 

Figure 10. Visualization for the transformer on the network structure. 

4.2. Visualization of Change Intensity Tokens 

Since the Siamese backbone is used for extracting the feature maps of the pre- and 

post-temporal phases separately, it is important to consider these two feature maps for 

transformer modeling. Here, we fuse temporal information by constructing a change in-

tensity token for each of the two feature maps, which can be computed by the transformer 

in the spatial dimension; then, the two calculated change intensity tokens are further com-

puted interactively by using the transformer. To further display the feature extraction 

ability of the proposed transformer bitemporal feature enhancement, a gradient-weighted 

class activation map (G-CAM) is adopted to evaluate the proposed method. The G-CAM 

method displays the important areas in the image predicted by the model by generating 

a rough attention map from the last layer of the neural network. Red denotes higher at-

tention values, and blue denotes lower values, as shown in Figure 11. 

From the second column to the third column, we can see that the transformer has 

successfully located the building information on the high-level semantic feature map ex-

tracted by the CNN. However, it is redder, which indicates that it still maintains a higher 

weight for nonbuilding. By introducing change intensity tokens, the weight values of non-

building areas are obviously suppressed, resulting in a light green color. The last column 

of the change feature map shows that it is clearly positioned in the change area, within 

which the color is biased toward red.  

A B GT Base_Single Base_Muti UVA_MutiUVA_Single

Figure 10. Visualization for the transformer on the network structure.



Remote Sens. 2022, 14, 2228 15 of 17

4.2. Visualization of Change Intensity Tokens

Since the Siamese backbone is used for extracting the feature maps of the pre- and
post-temporal phases separately, it is important to consider these two feature maps for
transformer modeling. Here, we fuse temporal information by constructing a change
intensity token for each of the two feature maps, which can be computed by the transformer
in the spatial dimension; then, the two calculated change intensity tokens are further
computed interactively by using the transformer. To further display the feature extraction
ability of the proposed transformer bitemporal feature enhancement, a gradient-weighted
class activation map (G-CAM) is adopted to evaluate the proposed method. The G-CAM
method displays the important areas in the image predicted by the model by generating a
rough attention map from the last layer of the neural network. Red denotes higher attention
values, and blue denotes lower values, as shown in Figure 11.
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From the second column to the third column, we can see that the transformer has
successfully located the building information on the high-level semantic feature map
extracted by the CNN. However, it is redder, which indicates that it still maintains a higher
weight for nonbuilding. By introducing change intensity tokens, the weight values of
nonbuilding areas are obviously suppressed, resulting in a light green color. The last
column of the change feature map shows that it is clearly positioned in the change area,
within which the color is biased toward red.

5. Conclusions

Current deep learning-based change detection methods mainly extract semantic fea-
tures on images from different time periods without considering the temporal correlation
between these features. This will lead to more “pseudo-change” in complex scenes. To
address this problem, we propose a network architecture for bitemporal image change
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detection named UVACD. The network combines a CNNs extraction backbone for extract-
ing high-level semantic information with a visual transformer. Here, visual transformer
constructs change intensity tokens to complete the temporal information interaction and
suppress irrelevant information weights to help extract more distinguishable change fea-
tures. The experimental results show that the proposed method is effective and outper-
forms some previous state of the art change detection methods. The results also show that
constructing extra classification tasks for the output of the transformer can improve the
performance of the network. However, our method still lacks the ability to detect changes
in small targets, and there is still room for improvement. Our future work is dedicated to
further modeling the ability to detect changes in small targets.
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