Interpretation of the Spatiotemporal Evolution Characteristics of Land Deformation in Beijing during 2003–2020 Using Sentinel, ENVISAT, and Landsat Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. SAR Images
3.2. Other Datasets
3.3. Land Subsidence Monitoring Using SBAS-InSAR
3.4. GPS Processing Strategy
3.5. Dataset Calibration for Different Platforms
4. Results
4.1. Spatiotemporal Characteristics of Land Subsidence and Reliability Analysis
4.2. Time Series Land Subsidence
5. Discussion
5.1. Relationship between Land Subsidence and Land Use Type in Beijing during 2003–2020
5.2. Relationship between Land Subsidence and Groundwater in Beijing during 2003–2020
5.3. Relationship between Land Subsidence and Geological Structures and Faults in Beijing
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Xu, Y.S.; Shen, S.L.; Cai, Z.Y.; Zhou, G.Y. The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Nat. Hazards 2008, 45, 123–135. [Google Scholar] [CrossRef]
- Chen, B.B.; Gong, H.L.; Li, X.J.; Lei, K.C.; Gao, M.L.; Zhou, C.F.; Ke, Y.H. Spatial–temporal evolution patterns of land subsidence with different situation of space utilization. Nat. Hazards 2015, 77, 1765–1783. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Gong, H.L.; Gu, Z.Q.; Wang, R.; Li, X.J.; Zhao, W.J. Characterization of Land Subsidence Induced by Groundwater Withdrawals in the Plain of Beijing City, China. Hydrogeol. J. 2014, 22, 397–409. [Google Scholar] [CrossRef]
- Bürgmann, R.; Hilley, G.; Ferretti, A.; Novali, F. Resolving Vertical Tectonics in the San Francisco Bay Area from Permanent Scatterer InSAR and GPS Analysis. Geology 2006, 34, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Osmanoğlu, B.; Sunar, F.; Wdowinski, S.; CabralCano, E. Time series analysis of InSAR data: Methods and trends. Int. Soc. Photogramm. Remote Sens. 2016, 115, 90–112. [Google Scholar] [CrossRef]
- Yan, Y.; Doin, M.P.; Lopez-Quiroz, P.; Tupin, F.; Fruneau, B.; Pinel, V.; Trouvé, E. Mexico City subsidence measured by InSAR time series: Joint analysis using PS and SBAS approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1312–1326. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Wang, H.S.; Jiang, L.M. Monitoring of the reclamation-induced ground subsidence in Macao (China) using the PSInSAR technique. J. Cent. South Univ. 2013, 20, 1039–1046. [Google Scholar] [CrossRef]
- Li, Z.H.; Liu, J.N.; Xu, C.J. Error Analysis in InSAR Data Processing. Geomat. Inf. Sci. Wuhan Univ. 2004, 29, 72–76. (In Chinese) [Google Scholar]
- Yan, W.; Ming-Sheng, L.; De-Ren, L.; Zi-Xin, W.; Zheng, F. Subsidence velocity retrieval from long-term coherent targets in radar interferometric stacks. Chin. J. Geophys. 2007, 50, 598–604. (In Chinese) [Google Scholar]
- He, X.F.; Gao, Z.; Xiao, R.Y.; Luo, H.B.; Feng, C. Monitoring and analysis of subsidence along Lian-Yan railway using multitemporal Sentinel-1A InSAR. Acta Geod. Et Cartogr. Sin. 2021, 50, 600–611. (In Chinese) [Google Scholar]
- Dai, K.; Liu, G.X.; Li, Z.H.; Li, T.; Yu, B.; Wang, X.W.; Singleton, A. Extracting Vertical Displacement Rates in Shanghai (China) with Multi-Platform SAR Images. Remote Sens. 2015, 7, 9542–9562. [Google Scholar] [CrossRef] [Green Version]
- Perissin, D.; Wang, T. Time-Series InSAR Applications Over Urban Areas in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 92–100. [Google Scholar] [CrossRef]
- Heleno, S.I.; Oliveira, L.G.; Henriques, M.J.; Falcão, A.P.; Lima, J.N.; Cooksley, G.; Ferretti, A.; Fonseca, A.M.; Ferreira, J.P.; Fonseca, J.F. Persistent Scatterers Interferometry detects and measures ground subsidence in Lisbon. Remote Sens. Environ. 2011, 115, 2152–2167. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.J.; Hooper, A.J.; Hanssen, R.F.; Bastos, L.C.; Ruiz, A.M. Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens. 2011, 115, 2652–2663. [Google Scholar] [CrossRef]
- Wang, C.S.; Wang, X.S.; Xu, Y.P.; Zhang, B.C.; Jiang, M.; Xiong, S.T.; Zhang, Q.; Li, W.D.; Li, Q.Q. A new likelihood function for consistent phase series estimation in distributed scatterer interferometry. IEEE Trans. Geosci. Remote. Sens. 2022, 1. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Lu, Z.; Danskin, W. InSAR analysis of natural recharge to define structure of a groundwater basin, San Bernardino, California. Geophys. Res. Lett. 2001, 28, 2661–2664. [Google Scholar] [CrossRef] [Green Version]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Shi, M.; Gong, H.L.; Gao, M.L.; Chen, B.B.; Zhang, S.K.; Zhou, C.F. Recent Ground Subsidence in the North China Plain, China, Revealed by Sentinel-1A Datasets. Remote Sens. 2020, 12, 3579. [Google Scholar] [CrossRef]
- Yuan, M.Z.; Li, M.; Liu, H.; Lv, P.; Li, B.; Zheng, W. Subsidence Monitoring Base on SBAS-InSAR and Slope Stability Analysis Method for Damage Analysis in Mountainous Mining Subsidence Regions. Remote Sens. 2021, 13, 3107. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, J.M.; Li, X. Monitoring and analyzing surface subsidence based on SBAS-InSAR in Beijing region, China. In Proceedings of the International Conference on Intelligent Earth Observing and Applications, Guilin, China, 9 December 2015. [Google Scholar]
- Li, Y.S.; Zhang, J.F.; Li, Z.H.; Luo, Y. Land Subsidence in Beijing City from InSAR Time Series Analysis with Small Baseline Subset. Geomat. Inf. Sci. Wuhan Univ. 2013, 38, 1374–1377. (In Chinese) [Google Scholar]
- Pan, C.; Jiang, L.M.; Sun, Q.S.; Jiang, Y.N. Monitoring and Analyzing Chengdu Ground Subsid-ence Based on InSAR Technology by Using Sentinel-1 Radar Image. J. Geod. Geodyn. 2020, 40, 198–203. [Google Scholar]
- Zhou, C.; Gong, H.; Chen, B.; Zhou, F.; Duan, G.; Gao, M.; Lu, W. Land Subsidence under Different Land Use in the Eastern Beijing Plain, China 2005–2013 revealed by InSAR timeseries analysis. GISci. Remote Sens. 2016, 53, 671–688. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.M.; Xiaojing, L.; Li, L. Mapping land subsidence over the eastern Beijing city using satellite radar interferometry. Int. J. Digit. Earth 2018, 11, 504–519. [Google Scholar] [CrossRef]
- Liu, L.M.; Yu, J.; Chen, B.B.; Zhu, F.; Duan, G.Y.; Gao, M.L.; Lu, W. Urban subsidence monitoring by SBAS-InSAR technique with multi-platform SAR images: A case study of Beijing Plain, China. Eur. J. Remote Sens. 2020, 53, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Muhetaer, N.; Yu, J.; Wang, Y.B.; Yue, J. Temporal and Spatial Evolution Characteristics Analysis of Beijing Land Subsidence Based on InSAR. In Proceedings of the 3rd International Forum on Geoscience and Geodesy, Shenyang, China, 13–15 November 2020; Volume 658, pp. 13–15. [Google Scholar]
- Yang, Q.; Ke, Y.H.; Zhang, D.Y.; Chen, B.B.; Gong, H.L.; Lv, M.Y.; Zhu, L.; Li, X.J. Multi-Scale Analysis of the Relationship between Land Subsidence and Buildings: A Case Study in an Eastern Beijing Urban Area Using the PS-InSAR Technique. Remote Sens. 2018, 10, 1006. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.H.M.; Ge, L.L.; Li, X.J.; Zhang, K. Monitoring ground deformation in Beijing, China with persistent scatterer SAR interferometry. J. Geod. 2011, 86, 375–392. [Google Scholar] [CrossRef]
- Hu, L.Y.; Dai, K.R.; Xing, C.Q.; Li, Z.; Tomás, R.; Clark, B.; Shi, X.; Chen, M.; Zhang, R.; Qiu, Q.; et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101886. [Google Scholar] [CrossRef]
- Zhou, C.F.; Gong, H.L.; Chen, B.B.; Li, X.; Li, J.; Wang, X.; Gao, M.; Si, Y.; Guo, L.; Shi, M.; et al. Quantifying the contribution of multiple factors to land subsidence in the Beijing Plain, China with machine learning technology. Geomorphology 2019, 335, 48–61. [Google Scholar] [CrossRef]
- Samsonov, S.V.; D’Oreye, N.; González, P.J.; Tiampo, K.F.; Ertolahti, L.; Clague, J.J. Rapidly accelerating subsidence in the Greater Vancouver region from two decades of ERS ENVISAT RADARSAT-2 DInSAR measurements. Remote Sens. Environ. 2014, 143, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Pepe, A.; Zhao, Q.; Bonano, M.; Lu, Z.; Zhou, Y. The study of the deformation time evolution in coastal areas of Shanghai:a joint C/X-band SBAS-DInSAR analysis. In Proceedings of the Name of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 306–309. [Google Scholar]
- Gao, M.L.; Gong, H.L.; Chen, B.B.; Zhou, C.F.; Chen, W.F.; Liang, Y.; Shi, M.; Si, Y. InSAR time-series investigation of long-term ground displacement at Beijing Capital International Airport, China. Tectonophysics 2016, 691, 271–281. Available online: http://geodata.geoscience.cn/cjy/cjy.action (accessed on 14 January 2022). [CrossRef]
- Wang, Z.; Cai, X.; Yan, J.; Wang, J.; Liu, Y.; Zhang, L. Using the integrated geophysical methods detecting active faults: A case study in Beijing, China. J. Appl. Geophys. 2018, 156, 82–91. [Google Scholar] [CrossRef]
- Yang, Y.; Jia, S.M.; Wang, H.G. The Status and Development of Land Subsidence in Beijing Plain. Shanghai Geol. 2010, 31, 23–27. [Google Scholar]
- Yang, Y.; Jia, S.M.; Wang, H.G.; Zhou, Y. Analysi s on impact of land subsidence on planned new cities in Beijing. City Plan. Rev. 2013, 37, 67–71. (In Chinese) [Google Scholar]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Zhu, J.J.; Li, Z.W.; Hu, J. Research Progress and Methods of InSAR for Deformation Monitoring. Acta Geod. Et Cartogr. Sinica 2017, 46, 1717–1733. [Google Scholar]
- Yang, C.S.; Zhang, Q.; Zhao, C.Y.; Ji, L.Y. Small Baseline Subset InSAR Technology Used in Datong Basin Ground Subsidence, Fissure and Fault Zone Monitoring. Geomat. Inf. Sci. Wuhan Univ. 2014, 39, 945–950. [Google Scholar]
- Song, Y.F.; Liu, G.X.; Zhang, R. Monitoring Significant Ground Subsidence by Using New Small Baseline Subset Multiple Temporal InSAR Approach. Remote Sens. Inf. 2016, 31, 84–88. [Google Scholar]
- Golub, G.H.; VanLoan, C.F. Matrix Computation; Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Zhu, Y.X.; Feng, L.P.; Jia, X.L.; Zhang, Q.H.; Ruan, R.G. The PPP precision analysis based on BDS regional navigation system. Acta Geod. Et Cartogr. Sin. 2015, 44, 377–383. [Google Scholar]
- Liu, Y. GAMIT/GLOBK Installation and Application Based on Linux System; Beijing Surveying and Mapping: Beijing, China, 2014; pp. 30–33. [Google Scholar]
- Liu, X.W.; Pu, D.X.; Gao, X.; Zhang, S.Y.; Xia, D.H. High Precision GPS/BDS Data Processing and Precision Contrast Analysis Based on GAMIT10.61. GNSS World China 2018, 43, 77–83. [Google Scholar]
- Zhang, S.C.; Wang, Q.Y.; Liu, Q.; Zhang, C.L.; He, Y.F.; Zhao, G.S. Analysis of precision relative positioning accuracy of BDS by GAMIT. Sci. Surv. Mapp. 2018, 43, 92–97. [Google Scholar]
- DONG, D.; HERRING, T.A.; KING, R.W. Estimating regional deformation from a combination of space and terrestrial geodetic data. J. Geod. 1998, 72, 200–214. [Google Scholar] [CrossRef]
- Sun, F.L.; Song, S.L.; Zhu, W.Y.; Zheng, Z.Y. Utilizing GLOBK to Achieve Weekly Comprehensive Solution of GPS. GNSS World China 2013, 38, 61–65. [Google Scholar]
- Wang, Y.; Ge, D.Q.; Zhang, L.; Li, M.; Guo, X.F.; Wang, Y. Inter-comparison and time series fusion of ascending and descending PSInSAR data for land subsidence monitoring. Remote Sens. Land Resour. 2014, 26, 125–130. [Google Scholar]
- Dai, K.R.; Zhuo, G.C.; Xu, Q.; LI, Z.; LI, W.; Guan, W. Tracing the Pre-failure Two-dimensional Surface Displacements of Nanyu Landslide, Gansu Province with Radar Interferometry. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 1778–1786. [Google Scholar]
- Zhang, J.J.; Zhang, H.X.; Zhang, M.S.; Tao, H.; Dong, Y.; Xu, C.M. Study on the seepage deformation induce ground fissures caused and subsidence in Xi’an. J. Eng. Geol. 2018, 26, 301–309. [Google Scholar]
- Zhang, Y.; Xue, Y.Q.; Wu, J.C.; Wang, H.; He, J. Mechanical modeling of aquifer sands under long-term groundwater withdrawal. Eng. Geol. 2012, 125, 74–80. [Google Scholar] [CrossRef]
- Tosi, L.; Teatini, P.; Carbognin, L.; Brancolini, G. Using high resolution data to reveal depth-dependent mechanisms that drive land subsidence: The venice coast, Italy. Tectonophysics 2009, 474, 271–284. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, H.L.; Li, X.J.; Wang, R.; Chen, B.; Dai, Z.; Teatini, P. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng. Geol. 2015, 193, 243–255. [Google Scholar] [CrossRef]
- Chen, M.; Tomas, R.; Li, Z.H.; Motagh, A.; Li, T.; Hu, L.Y.; Gong, H.L.; Li, X.J.; Yu, J.; Gong, X.L. Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry. Remote Sens. 2016, 8, 468. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.B.; Gong, H.L.; Li, X.J.; Lei, K.C.; Zhang, Y.Q.; Li, J.W.; Gu, Z.Q.; Dang, Y.N. Spatial-temporal Characteristics of Land Subsidence Corresponding to Dynamic Groundwater Funnel in Beijing Municipality, China. Chin. Geogr. Science 2011, 21, 753–764. [Google Scholar] [CrossRef]
- Zhou, C.D.; Gong, H.L.; Chen, B.B.; Li, J.W.; Gao, M.L.; Zhu, F.; Chen, W.F.; Liang, Y. InSAR time-series analysis of land subsidence under different landuse types in the eastern Beijing plain, China. Remote Sens. 2017, 9, 380. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.F.; Gong, H.L.; Chen, B.B.; Gao, M.L.; Cao, Q.; Cao, J.; Duan, L.; Zuo, J.J.; Shi, M. Land Subsidence Response to Different Land Use Types and Water Resource Utilization in Beijing-Tianjin-Hebei, China. Remote Sens. 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.D.; Gong, H.L.; Zhang, Y.Q.; Duan, G.Y. The Influence of Building Load to Land Subsidence in Beijing Plain based on PS-InSAR and GIS. J. Geo-Inf. Sci. 2016, 18, 1551–1562. [Google Scholar]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR Analysis in the Pisa Urban Area (Italy): A Case Study of Subsidence Related to Stratigraphical Fac-tors and Urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.P.; Li, W.P.; Wang, L.Y.; Chen, Y.; Zang, X.S.; Wang, Y.L.; Zhu, J.Y.; Bian, Y.Y. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain. Hydrogeol. Eng. Geol. 2021, 48, 162–171. [Google Scholar]
- Long, D.; Yang, W.T.; Scanlon, B.R.; Zhao, J.S.; Liu, D.G.; Burek, P.; Pan, Y.; You, L.Z.; Wada, Y. South-to-North Water Diversion stabilizing Beijing’s groundwater levels. Nat. Commun. 2020, 11, 3665. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Li, X.; Lei, K.; Zhu, L.; Gao, M.; Zhou, C. Characterization and causes of land subsidence in Beijing, China. Int. J. Remote Sens. 2017, 38, 808–826. [Google Scholar] [CrossRef]
- Zheng, J.R.; Gong, H.L.; Li, Q.Y.; Cui, Y.Z.; Chen, B.B. The Control Factors on Subsidence of Beijing Plain Area in 2003–2009 Based on PS-InSAR Technology. Bull. Surv. Mapp. 2014, 12, 40–43. [Google Scholar]
- Karen, M.W.; Yehuda, B.; David, T.S. Satellite Interferometric Observations of Displacements Associated with Seasonal Groundwater in the Los Angeles Basin. J. Geophys. Res. Atmos. 2002, 107, 265–296. [Google Scholar]
Sensor | ENVISAT ASAR | Sentinel-1A/1B |
---|---|---|
Band | C | C |
Wavelength (cm) | 5.5 | 5.56 |
Heading (°) | −164 | −166 |
Track | 2218 | 47 |
Polarization | VV | VV |
Orbit directions | Descending | Descending |
Number of images | 40 | 90 |
Data range | 18 June 2003–29 September 2010 | 24 January 2005–22 January 2021 |
Incidence angle (°) | 22.8 | 33.9 |
Land Use and Cover | Proportion of the Corresponding Area | |||
---|---|---|---|---|
2005 | 2010 | 2015 | 2020 | |
Constructionland | 16.7% | 19% | 21.1% | 21.8% |
Cropland | 31.2% | 28.6% | 26.5% | 25.6% |
Forest | 47.6% | 47.8% | 48.4% | 48.8% |
Grassland | 3.4% | 3.6% | 3% | 2.4% |
Water | 1% | 1% | 1% | 1.4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, Y.; Yu, J.; Fan, Q.; Si, J.; Zhu, W.; Song, M. Interpretation of the Spatiotemporal Evolution Characteristics of Land Deformation in Beijing during 2003–2020 Using Sentinel, ENVISAT, and Landsat Data. Remote Sens. 2022, 14, 2242. https://doi.org/10.3390/rs14092242
Zhang S, Zhang Y, Yu J, Fan Q, Si J, Zhu W, Song M. Interpretation of the Spatiotemporal Evolution Characteristics of Land Deformation in Beijing during 2003–2020 Using Sentinel, ENVISAT, and Landsat Data. Remote Sensing. 2022; 14(9):2242. https://doi.org/10.3390/rs14092242
Chicago/Turabian StyleZhang, Shuangcheng, Yafei Zhang, Jing Yu, Qianyou Fan, Jinzhao Si, Wu Zhu, and Mingxin Song. 2022. "Interpretation of the Spatiotemporal Evolution Characteristics of Land Deformation in Beijing during 2003–2020 Using Sentinel, ENVISAT, and Landsat Data" Remote Sensing 14, no. 9: 2242. https://doi.org/10.3390/rs14092242
APA StyleZhang, S., Zhang, Y., Yu, J., Fan, Q., Si, J., Zhu, W., & Song, M. (2022). Interpretation of the Spatiotemporal Evolution Characteristics of Land Deformation in Beijing during 2003–2020 Using Sentinel, ENVISAT, and Landsat Data. Remote Sensing, 14(9), 2242. https://doi.org/10.3390/rs14092242