Reconstruction of Vegetation Index Time Series Based on Self-Weighting Function Fitting from Curve Features
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Algorithm of SWCF
2.2.1. Self-Weighting from the VI Curve Features
- (1)
- Definition of gradually changing points and suddenly dropping points
- (2)
- Calculation of the weights for the VI time series
2.2.2. Weighted Function Fitting
2.2.3. Software Implementations
2.3. Evaluation of SWCF
2.3.1. Evaluation at the Pixel Level
- (1)
- Preselection of test pixels
- (2)
- Construction of the reference NDVI curve
- (3)
- Classifications of the reference NDVI time series
- (4)
- Construction of the noise NDVI time series
- (5)
- Reconstruction of the noise NDVI time series
- (6)
- Evaluation of the reconstructed NDVI time series
2.3.2. Evaluation at the Region Level
2.3.3. Determination of the Optimal Stretching Range for SWCF
3. Results
3.1. The Optimal Stretching Range of VI Time Series
3.2. The Reconstruction Performance at the Pixel Level
3.3. The Reconstruction Performance at the Regional Level
4. Discussion
4.1. The Advantages and Potential Applications of SWCF
4.2. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Definition of the Width and Amplitude of a Vegetation Growth Cycle
Appendix B. Existing Reconstruction Methods Used in This Study
- (1)
- Double logistic function fitting
- (2)
- Double Gaussian function fitting
- (3)
- Polynomial function fitting
- (4)
- Savitzky–Golay filtering
Appendix C
References
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Defries, R.S.; Townshend, J.R.G. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P.; Kettle, W.D. Relations between NDVI and tree productivity in the central Great Plains. Int. J. Remote Sens. 2004, 25, 3127–3138. [Google Scholar] [CrossRef]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 2005, 94, 244–255. [Google Scholar] [CrossRef]
- Lyon, J.G.; Yuan, D.; Lunetta, R.S.; Elvidge, C.D. A change detection experiment using vegetation indices. Photogramm. Eng. Remote Sens. 1998, 64, 143–150. [Google Scholar]
- Kobayashi, H.; Dye, D.G. Atmospheric conditions for monitoring the long-term vegetation dynamics in the Amazon using normalized difference vegetation index. Remote Sens. Environ. 2005, 97, 519–525. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Stowe, L.L.; McClain, E.P.; Carey, R.; Pellegrino, P.; Gutman, G.G.; Davis, P.; Long, C.; Hart, S. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data. Adv. Space Res. 1991, 11, 51–54. [Google Scholar] [CrossRef]
- Ma, M.; Veroustraete, F. Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China. Adv. Space Res. 2006, 37, 835–840. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.; Jing, Y.; Yin, H.; Li, X.; Guan, X. High-quality vegetation index product generation: A review of NDVI time series reconstruction techniques. Int. J. Appl. Earth Observ. Geoinf. 2021, 105, 102640. [Google Scholar] [CrossRef]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Pan, Y.; He, H.; Wang, L.; Mou, M.; Liu, J. A Changing-Weight Filter Method for Reconstructing a High-Quality NDVI Time Series to Preserve the Integrity of Vegetation Phenology. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1085–1094. [Google Scholar] [CrossRef]
- Viovy, N.; Arino, O.; Belward, A.S. The Best Index Slope Extraction (BISE): A method for reducing noise in NDVI time-series. Int. J. Remote Sens. 1992, 13, 1585–1590. [Google Scholar] [CrossRef]
- Lovell, J.L.; Graetz, R.D. Filtering Pathfinder AVHRR Land NDVI data for Australia. Int. J. Remote Sens. 2001, 22, 2649–2654. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Li, M.; Sheng, Y. Study on application of Gaussian fitting algorithm to building model of spectral analysis. Guang Pu Xue Yu Guang Pu Fen Xi = Guang Pu 2008, 28, 2352–2355. [Google Scholar]
- Piao, S.; Fang, J.; Zhou, L.; Ciais, P.; Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Change Biol. 2006, 12, 672–685. [Google Scholar] [CrossRef]
- Roerink, G.J.; Menenti, M.; Verhoef, W. Reconstructing cloudfree NDVI composites using Fourier analysis of time series. Int. J. Remote Sens. 2000, 21, 1911–1917. [Google Scholar] [CrossRef]
- Menenti, M.; Azzali, S.; Verhoef, W.; van Swol, R. Mapping agroecological zones and time-lag in vegetation growth by means of Fourier-analysis of time-series of NDVI images. Adv. Space Res. 1993, 13, 233–237. [Google Scholar] [CrossRef]
- Lu, X.; Liu, R.; Liu, J.; Liang, S. Removal of noise by wavelet method to generate high quality temporal data of terrestrial MODIS products. Photogramm. Eng. Remote Sens. 2007, 73, 1129–1139. [Google Scholar] [CrossRef] [Green Version]
- Cao, R.; Chen, Y.; Shen, M.; Chen, J.; Zhou, J.; Wang, C.; Yang, W. A simple method to improve the quality of NDVI time-series data by integrating spatiotemporal information with the Savitzky-Golay filter. Remote Sens. Environ. 2018, 217, 244–257. [Google Scholar] [CrossRef]
- Zhang, X. Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data. Remote Sens. Environ. 2015, 156, 457–472. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, J.; Huang, Q.; Wu, W.; Sun, Y. Weighted Double-Logistic Function Fitting Method for Reconstructing the High-Quality Sentinel-2 NDVI Time Series Data Set. Remote Sens. 2019, 11, 2342. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.I.; Mustard, J.F.; Vadeboncoeur, M.A. Green leaf phenology at Landsat resolution: Scaling from the field to the satel-lite. Remote Sens. Environ. 2006, 100, 265–279. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Julien, Y.; Sobrino, J.A. Comparison of cloud-reconstruction methods for time series of composite NDVI data. Remote Sens. Environ. 2010, 114, 618–625. [Google Scholar] [CrossRef]
- Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Rahman, M.S.; Di, L.; Shrestha, R.; Yu, E.G.; Lin, L.; Kang, L.; Deng, M. Comparison of selected noise reduction techniques for MODIS daily NDVI: An empirical analysis on corn and soybean. In Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016; pp. 1–5. [Google Scholar]
- Atkinson, P.M.; Jeganathan, C.; Dash, J.; Atzberger, C. Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sens. Environ. 2012, 123, 400–417. [Google Scholar] [CrossRef]
- Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An empirical comparison of selected techniques. Remote Sens. Environ. 2009, 113, 248–258. [Google Scholar] [CrossRef]
- White, M.A.; de Beurs, K.M.; Didan, K.; Inouye, D.W.; Richardson, A.D.; Jensen, O.P.; O’Keefe, J.; Zhang, G.; Nemani, R.R.; van Leeuwen, W.J.D.; et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Chang. Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- Qi, J.; Marsett, R.C.; Moran, M.S.; Goodrich, D.C.; Heilman, P.; Kerr, Y.H.; Dedieu, G.; Chehbouni, A.; Zhang, X.X. Spatial and temporal dynamics of vegetation in the San Pedro River basin area. Agric. For. Meteorol. 2000, 105, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Justice, C.O.; Román, M.O.; Csiszar, I.; Vermote, E.F.; Wolfe, R.E.; Hook, S.J.; Friedl, M.; Wang, Z.; Schaaf, C.B.; Miura, T.; et al. Land and cryosphere products from Suomi NPP VIIRS: Overview and status. J. Geophys. Res. Atmos. 2013, 118, 9753–9765. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Huete, A.; Didan, K.; Miura, T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Madden, H.H. Comments on the Savitzky-Golay convolution method for least-squares-fit smoothing and differentiation of digital data. Anal. Chem. 1978, 50, 1383–1386. [Google Scholar] [CrossRef]
Amplitude | Width | ||
---|---|---|---|
Width ≤ 210 d | 210 d < Width ≤ 260 d | Width > 260 d | |
Amplitude ≤ 0.3 | A1W1 | A1W2 | A1W3 |
0.3 < Amplitude ≤ 0.5 | A2W1 | A2W2 | A2W3 |
Amplitude > 0.5 | A3W1 | A3W2 | A3W3 |
Curve Shape Types | Double Logistic Function Fitting | Polynomial Function Fitting | Double Gaussian Function Fitting | Savitzky–Golay Filtering | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unweighted | Weighted | RMSE | RMSE | Unweighted | Weighted | RMSE | RMSE | Unweighted | Weighted | RMSE | RMSE | ||
RMSE | RMSE | Reduction | Reduction | RMSE | RMSE | Reduction | Reduction | RMSE | RMSE | Reduction | Reduction | RMSE Average | |
Average | Average | Rate * (%) | Rate # (%) | Average | Average | Rate * (%) | Rate # (%) | Average | Average | Rate * (%) | Rate # (%) | ||
A1W1 | 0.0574 | 0.0273 | 52.44 | 54.04 | 0.0601 | 0.0290 | 51.75 | 51.18 | 0.0601 | 0.0304 | 49.42 | 48.82 | 0.0594 |
A1W2 | 0.0662 | 0.0350 | 47.13 | 43.55 | 0.0630 | 0.0335 | 46.83 | 45.97 | 0.0652 | 0.0392 | 39.88 | 36.77 | 0.0620 |
A1W3 | 0.0667 | 0.0402 | 39.73 | 37.48 | 0.0629 | 0.0325 | 48.33 | 49.46 | 0.0779 | 0.0416 | 46.60 | 35.30 | 0.0643 |
A2W1 | 0.0922 | 0.0496 | 46.20 | 44.02 | 0.0969 | 0.0610 | 37.05 | 31.15 | 0.1023 | 0.0678 | 33.72 | 23.48 | 0.0886 |
A2W2 | 0.1051 | 0.0593 | 43.58 | 41.05 | 0.1058 | 0.0614 | 41.97 | 38.97 | 0.1144 | 0.0685 | 40.12 | 31.91 | 0.1006 |
A2W3 | 0.1157 | 0.0703 | 39.24 | 38.01 | 0.1136 | 0.0643 | 43.40 | 43.30 | 0.1177 | 0.0728 | 38.15 | 35.80 | 0.1134 |
A3W1 | 0.1022 | 0.0675 | 33.95 | 26.87 | 0.1085 | 0.0794 | 26.82 | 13.98 | 0.1090 | 0.0767 | 29.63 | 16.90 | 0.0923 |
A3W2 | 0.1072 | 0.0689 | 35.73 | 29.91 | 0.1073 | 0.0704 | 34.39 | 28.38 | 0.1127 | 0.0784 | 30.43 | 20.24 | 0.0983 |
A3W3 | 0.1196 | 0.0771 | 35.54 | 27.74 | 0.1122 | 0.0687 | 38.77 | 35.61 | 0.1168 | 0.0784 | 32.88 | 26.52 | 0.1067 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; He, B.; Xie, Z.; Zhao, C.; Zhuang, H.; Li, P. Reconstruction of Vegetation Index Time Series Based on Self-Weighting Function Fitting from Curve Features. Remote Sens. 2022, 14, 2247. https://doi.org/10.3390/rs14092247
Zhu W, He B, Xie Z, Zhao C, Zhuang H, Li P. Reconstruction of Vegetation Index Time Series Based on Self-Weighting Function Fitting from Curve Features. Remote Sensing. 2022; 14(9):2247. https://doi.org/10.3390/rs14092247
Chicago/Turabian StyleZhu, Wenquan, Bangke He, Zhiying Xie, Cenliang Zhao, Huimin Zhuang, and Peixian Li. 2022. "Reconstruction of Vegetation Index Time Series Based on Self-Weighting Function Fitting from Curve Features" Remote Sensing 14, no. 9: 2247. https://doi.org/10.3390/rs14092247
APA StyleZhu, W., He, B., Xie, Z., Zhao, C., Zhuang, H., & Li, P. (2022). Reconstruction of Vegetation Index Time Series Based on Self-Weighting Function Fitting from Curve Features. Remote Sensing, 14(9), 2247. https://doi.org/10.3390/rs14092247