Relative Merits of Optimal Estimation and Non-Linear Retrievals of Sea-Surface Temperature from MODIS
Abstract
:1. Introduction
2. Bayesian Inversion Concepts
- i.
- we have some knowledge of the state before the measurement is even made and this prior knowledge is expressed by a prior pdf of the state variables
- ii.
- we have a forward model that maps the state variable into the measurement space
- iii.
- we know the pdf of the measurement errors
- iv.
- we use Equation (3) to calculate posterior pdf by augmenting the prior pdf of the state vector with the measurement.
3. Linear Forward Model and Gaussian PDFs
4. Gain and Averaging Representation
5. Application to SST Retrievals
5.1. Satellite Dataset
5.2. Prior Knowledge
5.3. Forward Model
5.3.1. Measurement Error Covariance Sϵ
5.3.2. Prior Covariance Sa
6. Information Content Aspects of the OE Retrieval
6.1. Degrees of Freedom
6.2. Shannon Information Content
6.3. Retrieval Potential
7. The Retrieval Process and Results
7.1. Retrieval with ERA5 “sst” as Prior SST
7.2. Using ERA5 “skt” as Prior SST
7.3. Geographical Distribution of ERA5 SST0–SSTb
7.4. Information Measures
8. Comparison with NLSST
9. Discussion and Conclusions
- (a)
- Through retrievals using situ buoy measurements used as the prior SST in the OE, we estimated that in our application the biases not related to those in the prior SST are on order of 0.02 K, which is small in comparison to the accuracy of buoy measurements of ~0.2 K [51,52,53,54] or the requirement of a CDR of SST of 0.1 K [5]. Newer surface drifters provide more accurate subsurface temperature measurements, with a target of 0.01 K [55,56], but thus far relatively few have been deployed.
- (b)
- It is relatively simple to estimate the consequences of neglecting diurnal signals that are missing from the foundation SST of the ERA5 data. A significant improvement in daytime OE SST retrievals is achieved by applying a simple diurnal correction, reducing the mean difference between OESST and buoy measurements from −0.25 K to −0.05 K.
- (c)
- Perhaps, somewhat surprisingly, this simple correction to ERA5 foundation SST provides better prior for the OE retrieval than the ERA5 skin temperature (SKT). The SKT–SSTb bias is larger than the ERA5 SST–SSTb bias even before the diurnal correction, and for both nighttime and daytime matchups.
- (d)
- Despite the improvement in the mean after application of the diurnal correction, there remain large values of OESST–SSTb. The large disagreements between OESST and SSTb occur mostly in the areas of the ocean where there are large horizontal gradients in the SST, i.e., coastal areas or at the surface expressions of oceanic thermal fronts. The limited spatial resolution of the numerical models providing prior SST fields often fails to adequately represent the spatial variability of SST in those areas. The spatial sampling bias is difficult to correct without an improvement in the resolution of the prior SST. We use the nearest ERA5 SST value for the a priori and more advanced interpolation could improve the estimates but might also introduce undesirable artifacts in areas of strong spatial variability.
- (e)
- In areas with strong horizontal thermal gradients, the NLSST often provides better estimates of SST than the OE approach.
- (f)
- In general, OESST improves on NLSST in terms of mean offset from in situ measurements, but not for the RMS, and improvement in the mean is driven mostly by the accuracy of the underlying prior SST with the OE retrieval not departing much from the prior.
- (g)
- The OESST departure from the prior is on average quite small so if the SST0–SSTb is large then the agreement between the retrieval and the in situ is not much improved.
- (h)
- On average, for very large differences between NLSST and in situ measurements, the OE provides a better estimate of SST but the OESST retrieval is not as accurate as the corrected prior.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021; p. 3949. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 21 March 2022).
- Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; Maturi, E.; et al. Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
- NRC. Climate Data Records from Environmental Satellites; National Academy of Sciences: Washington, DC, USA, 2004; p. 150. [Google Scholar] [CrossRef]
- NRC. Issues in the Integration of Research and Operational Satellite Systems for Climate Research: II. Implementation; National Academy of Sciences: Washington, DC, USA, 2000; Available online: http://www.nap.edu/catalog/9966.html (accessed on 21 March 2022).
- Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R. Satellite Instrument Calibration for Measuring Global Climate Change: Report of a Workshop. Bull. Am. Meteorol. Soc. 2005, 86, 1303–1313. [Google Scholar] [CrossRef]
- Prabhakara, C.; Dalu, G.; Kunde, V.G. Estimation of sea-surface temperature from remote sensing in 11 to 13.5mm window region. J. Geophys. Res. 1974, 80, 5039–5044. [Google Scholar] [CrossRef]
- McMillin, L. Estimation of sea-surface temperatures from two infrared window measurements with different absorption. J. Geophys. Res. 1975, 80, 5113–5117. [Google Scholar] [CrossRef]
- Walton, C.C.; Pichel, W.G.; Sapper, J.F.; May, D.A. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. 1998, 103, 27999–28012. [Google Scholar] [CrossRef]
- Barnes, W.L.; Xiong, X.; Salomonson, V.V. Status of Terra MODIS and Aqua MODIS. Adv. Space Res. 2003, 32, 2099–2106. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podesta, G.; Walsh, S.; Evans, R.; Minnett, P.J. Implementation of Version 6 AQUA and TERRA SST Processing; University of Miami: Miami, FL, USA, 2014; p. 14. Available online: https://oceancolor.gsfc.nasa.gov/reprocessing/r2014/sst/MODIS_V6_SST_changes.pdf (accessed on 21 March 2022).
- Kilpatrick, K.A.; Podestá, G.P.; Evans, R.H. Overview of the NOAA/NASA Pathfinder algorithm for Sea Surface Temperature and associated Matchup Database. J. Geophys. Res. 2001, 106, 9179–9198. [Google Scholar] [CrossRef]
- Závody, A.M.; Mutlow, C.T.; Llewellyn-Jones, D.T. A radiative transfer model for sea surface temperature retrieval for the along-track scanning radiometer. J. Geophys. Res. Ocean. 1995, 100, 937–952. [Google Scholar] [CrossRef]
- Blackmore, T.A.; O’Carroll, A.G.; Saunders, R.W.; Aumann, H. A Comparison of Sea Surface Temperatures from the Advanced Along-track Scanning Radiometer and the Atmospheric Infrared Sounder Instruments; UK Met Office: Exeter, UK, 2007; p. 21. [Google Scholar]
- Romaguera, M.; Sobrino, J.A.; Olesen, F.S. Estimation of sea surface temperature from SEVIRI data: Algorithm testing and comparison with AVHRR products. Int. J. Remote Sens. 2006, 27, 5081–5086. [Google Scholar] [CrossRef]
- Petrenko, B.; Ignatov, A.; Kihai, Y.; Pennybacker, M. Optimization of Sensitivity of GOES-16 ABI Sea Surface Temperature by Matching Satellite Observations with L4 Analysis. Remote Sens. 2019, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Park, K.-A.; Woo, H.-J.; Chung, S.-R.; Cheong, S.-H. Development of Sea Surface Temperature Retrieval Algorithms for Geostationary Satellite Data (Himawari-8/AHI). Asia Pac. J. Atmos. Sci. 2019, 56, 187–206. [Google Scholar] [CrossRef]
- Minnett, P.J.; Kilpatrick, K.A.; Podestá, G.P.; Evans, R.H.; Szczodrak, M.D.; Izaguirre, M.A.; Williams, E.J.; Walsh, S.; Reynolds, R.M.; Bailey, S.W.; et al. Skin Sea-Surface Temperature from VIIRS on Suomi-NPP—NASA Continuity Retrievals. Remote Sens. 2020, 12, 3369. [Google Scholar] [CrossRef]
- McClain, E.P.; Pichel, W.G.; Walton, C.C. Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res. 1985, 90, 11587–11601. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podestá, G.; Walsh, S.; Williams, E.; Halliwell, V.; Szczodrak, M.; Brown, O.B.; Minnett, P.J.; Evans, R. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 2015, 165, 27–41. [Google Scholar] [CrossRef]
- Llewellyn-Jones, D.T.; Minnett, P.J.; Saunders, R.W.; Zavody, A.M. Satellite multichannel infrared measurements of sea surface temperature of the N.E. Atlantic Ocean using AVHRR/2. Q. J. R. Meteorol. Soc. 1984, 110, 613–631. [Google Scholar] [CrossRef]
- Merchant, C.J.; Harris, A.R.; Murray, J.; Zavody, A.M. Toward the elimination of bias in satellite retrievals of skin sea surface temperature. 1: Theory. modelling and inter-algorithm comparison. J. Geophys. Res. 1999, 104, 23565–23578. [Google Scholar] [CrossRef]
- Minnett, P.J. The regional optimization of infrared measurements of sea-surface temperature from space. J. Geophys. Res. 1990, 95, 13497–13510. [Google Scholar] [CrossRef]
- Kumar, A.; Minnett, P.J.; Podesta, G.; Evans, R.H.; Kilpatrick, K. Analysis of Pathfinder SST algorithm for global and regional conditions. Proc. Indian Acad. Sci. Earth Planet. Sci. 2000, 109, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Luo, B.; Minnett, P.J.; Nalli, N.R. Infrared satellite-derived sea surface skin temperature sensitivity to aerosol vertical distribution—Field data analysis and model simulations. Remote Sens. Environ. 2021, 252, 112151. [Google Scholar] [CrossRef]
- Luo, B.; Minnett, P.J.; Gentemann, C.; Szczodrak, G. Improving satellite retrieved night-time infrared sea surface temperatures in aerosol contaminated regions. Remote Sens. Environ. 2019, 223, 8–20. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Le Borgne, P.; Bellec, B. Saharan dust in nighttime thermal imagery: Detection and reduction of related biases in retrieved sea surface temperature. Remote Sens. Environ. 2006, 104, 15–30. [Google Scholar] [CrossRef]
- Le Borgne, P.; Péré, S.; Roquet, H. Night time detection of Saharan dust using infrared window channels: Application to NPP/VIIRS. Remote Sens. Environ. 2013, 137, 264–273. [Google Scholar] [CrossRef]
- Bogdanoff, A.S.; Westphal, D.L.; Campbell, J.R.; Cummings, J.A.; Hyer, E.J.; Reid, J.S.; Clayson, C.A. Sensitivity of infrared sea surface temperature retrievals to the vertical distribution of airborne dust aerosol. Remote Sens. Environ. 2015, 159, 1–13. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; p. 238. Available online: https://books.google.com/books?id=p3b3ngEACAAJ (accessed on 21 March 2022).
- Merchant, C.J.; LeBorgne, P.; Marsouin, A.; Roquet, H. Optimal estimation of sea surface temperature from split-window observations. Remote Sens. Environ. 2008, 112, 2469–2484. [Google Scholar] [CrossRef]
- Merchant, C.J.; Le Borgne, P.; Roquet, H.; Marsouin, A. Sea surface temperature from a geostationary satellite by optimal estimation. Remote Sens. Environ. 2009, 113, 445–457. [Google Scholar] [CrossRef]
- Merchant, C.J.; Saux-Picart, S.; Waller, J. Bias correction and covariance parameters for optimal estimation by exploiting matched in-situ references. Remote Sens. Environ. 2020, 237, 111590. [Google Scholar] [CrossRef]
- Koner, P.K.; Harris, A.; Maturi, E. A Physical Deterministic Inverse Method for Operational Satellite Remote Sensing: An Application for Sea SurfaceTemperature Retrievals. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5872–5888. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The Current Configuration of the Ostia System for Operational Production of Foundation Sea Surface Temperature and Ice Concentration Analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef] [Green Version]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, J. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef] [Green Version]
- Gentemann, C.L.; Minnett, P.J.; LeBorgne, P.; Merchant, C.J. Multi-satellite measurements of large diurnal warming events. Geophys. Res. Lett. 2008, 35, L22602. [Google Scholar] [CrossRef] [Green Version]
- Castro, S.L.; Wick, G.A.; Buck, J.J.H. Comparison of diurnal warming estimates from unpumped Argo data and SEVIRI satellite observations. Remote Sens. Environ. 2014, 140, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Minnett, P.J. Radiometric measurements of the sea-surface skin temperature—The competing roles of the diurnal thermocline and the cool skin. Int. J. Remote Sens. 2003, 24, 5033–5047. [Google Scholar] [CrossRef]
- Fairall, C.; Bradley, E.; Godfrey, J.; Wick, G.; Edson, J.; Young, G. Cool-skin and warm-layer effects on sea surface temperature. J. Geophys. Res. 1996, 101, 1295–1308. [Google Scholar] [CrossRef]
- Hirahara, S.; Balmaseda, M.A.; de Boisseson, E.; Hersbach, H. Sea Surface Temperature and Sea Ice Concentration for ERA5; ECMWF: Reading, UK, 2016; p. 27. Available online: https://www.ecmwf.int/node/16555 (accessed on 21 March 2022).
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Hocking, J.; Rayer, P.; Rundle, D.; Saunders, R.; Matricardi, M.; Geer, A.; Brunel, P.; Vidot, J. RTTOV v12 Users Guide; EUMETSAT: Darmstadt, Germany, 2018; p. 142. Available online: https://www.nwpsaf.eu/site/download/documentation/rtm/docs_rttov12/NWPSAF-MO-DS-029_Prod_Spec_RTTOV12.pdf (accessed on 21 March 2022).
- Chen, B.; Liu, Z. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite. J. Geophys. Res. Atmos. 2016, 121, 11,442-11,462. [Google Scholar] [CrossRef]
- ECMWF. IFS Documentation—Cy43r1. Part IV: Physical Processes; ECMWF: Reading, UK, 2016; p. 223. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2016/17117-part-iv-physical-processes.pdf#section.H.10 (accessed on 21 March 2022).
- Luo, B.; Minnett, P. Evaluation of the ERA5 Sea Surface Skin Temperature with Remotely-Sensed Shipborne Marine-Atmospheric Emitted Radiance Interferometer Data. Remote Sens. 2020, 12, 1873. [Google Scholar] [CrossRef]
- Minnett, P.J.; Knuteson, R.O.; Best, F.A.; Osborne, B.J.; Hanafin, J.A.; Brown, O.B. The Marine-Atmospheric Emitted Radiance Interferometer (M-AERI), a high-accuracy, sea-going infrared spectroradiometer. J. Atmos. Ocean. Technol. 2001, 18, 994–1013. [Google Scholar] [CrossRef]
- Von Clarmann, T.; Degenstein, D.A.; Livesey, N.J.; Bender, S.; Braverman, A.; Butz, A.; Compernolle, S.; Damadeo, R.; Dueck, S.; Eriksson, P.; et al. Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature. Atmos. Meas. Techn. 2020, 13, 4393–4436. [Google Scholar] [CrossRef]
- Merchant, C.J.; Harris, A.R.; Roquet, H.; Le Borgne, P. Retrieval characteristics of non-linear sea surface temperature from the Advanced Very High Resolution Radiometer. Geophys. Res. Lett. 2009, 36, L17604. [Google Scholar] [CrossRef] [Green Version]
- O’Carroll, A.G.; Eyre, J.R.; Saunders, R.W. Three-Way Error Analysis between AATSR, AMSR-E, and In Situ Sea Surface Temperature Observations. J. Atmos. Ocean. Technol. 2008, 25, 1197–1207. [Google Scholar] [CrossRef] [Green Version]
- Gentemann, C.L. Three way validation of MODIS and AMSR-E sea surface temperatures. J. Geophys. Res. Ocean. 2014, 119, 2583–2598. [Google Scholar] [CrossRef]
- Kennedy, J.J.; Smith, R.O.; Rayner, N.A. Using AATSR data to assess the quality of in situ sea-surface temperature observations for climate studies. Remote Sens. Environ. 2012, 116, 79–92. [Google Scholar] [CrossRef]
- Kennedy, J.J. A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev. Geophys. 2014, 51, 2013RG000434. [Google Scholar] [CrossRef]
- Poli, P.; Lucas, M.; O’Carroll, A.; Le Menn, M.; David, A.; Corlett, G.K.; Blouch, P.; Meldrum, D.; Merchant, C.J.; Belbeoch, M. The Copernicus Surface Velocity Platform drifter with Barometer and Reference Sensor for Temperature (SVP-BRST): Genesis, design, and initial results. Ocean. Sci. 2019, 15, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Le Menn, M.; Poli, P.; David, A.; Sagot, J.; Lucas, M.; O’Carroll, A.; Belbeoch, M.; Herklotz, K. Development of Surface Drifting Buoys for Fiducial Reference Measurements of Sea-Surface Temperature. Front. Mar. Sci. 2019, 6, 578. [Google Scholar] [CrossRef] [Green Version]
- Prospero, J.M.; Carlson, T.N. Vertical and areal distribution of Saharan dust over the western Equatorial North Atlantic Ocean. J. Geophys. Res. 1972, 77, 5255–5265. [Google Scholar] [CrossRef] [Green Version]
- Adams, A.M.; Prospero, J.M.; Zhang, C. CALIPSO-Derived Three-Dimensional Structure of Aerosol over the Atlantic Basin and Adjacent Continents. J. Clim. 2012, 25, 6862–6879. [Google Scholar] [CrossRef]
- Zuidema, P.; Alvarez, C.; Kramer, S.J.; Custals, L.; Izaguirre, M.; Sealy, P.; Prospero, J.M.; Blades, E. Is Summer African Dust Arriving Earlier to Barbados? The Updated Long-Term In Situ Dust Mass Concentration Time Series from Ragged Point, Barbados, and Miami, Florida. Bull. Am. Meteorol. Soc. 2019, 100, 1981–1986. [Google Scholar] [CrossRef]
- Tegen, I.; Schepanski, K. The global distribution of mineral dust. IOP Conf. Ser. Earth Environ. Sci. 2009, 7, 012001. [Google Scholar] [CrossRef]
- Minobe, S.; Kuwano-Yoshida, A.; Komori, N.; Xie, S.-P.; Small, R.J. Influence of the Gulf Stream on the troposphere. Nature 2008, 452, 206. [Google Scholar] [CrossRef]
- Minobe, S.; Miyashita, M.; Kuwano-Yoshida, A.; Tokinaga, H.; Xie, S.-P. Atmospheric Response to the Gulf Stream: Seasonal Variations. J. Clim. 2010, 23, 3699–3719. [Google Scholar] [CrossRef] [Green Version]
- Parfitt, R.; Czaja, A.; Minobe, S.; Kuwano-Yoshida, A. The atmospheric frontal response to SST perturbations in the Gulf Stream region. Geophys. Res. Lett. 2016, 43, 2299–2306. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ma, X.; Chang, P.; Jia, Y.; Fu, D.; Xu, G.; Wu, L.; Saravanan, R.; Patricola, C.M. Ocean fronts and eddies force atmospheric rivers and heavy precipitation in western North America. Nat. Commun. 2021, 12, 1268. [Google Scholar] [CrossRef]
- Belkin, I.M.; Cornillon, P.C.; Sherman, K. Fronts in Large Marine Ecosystems. Prog. Oceanogr. 2009, 81, 223–236. [Google Scholar] [CrossRef]
- Joyce, T.M.; Kwon, Y.-O.; Yu, L. On the Relationship between Synoptic Wintertime Atmospheric Variability and Path Shifts in the Gulf Stream and the Kuroshio Extension. J. Clim. 2009, 22, 3177–3192. [Google Scholar] [CrossRef]
- Hand, R.; Keenlyside, N.S.; Omrani, N.-E.; Bader, J.; Greatbatch, R.J. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector. Clim. Dyn. 2019, 52, 417–438. [Google Scholar] [CrossRef] [Green Version]
- Chapman, C.C.; Lea, M.-A.; Meyer, A.; Sallée, J.-B.; Hindell, M. Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate. Nat. Clim. Change 2020, 10, 209–219. [Google Scholar] [CrossRef]
a | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SST0–SSTb Bins | SST0–SSTb | OESST–SSTb | NLSST–SSTb | N Cases | ||||||||
Mean | RMS | Std | Mean | RMS | Std | OE StDev | Mean | RMS | Std | ΔNL SST | ||
−5.0 > −1.0 | −1.597 | 1.666 | 0.472 | −1.516 | 1.583 | 0.456 | 0.055 | −0.067 | 0.743 | 0.740 | 0.284 | 929 |
−1.0 > −0.5 | −0.697 | 0.711 | 0.141 | −0.678 | 0.697 | 0.161 | 0.081 | −0.225 | 0.712 | 0.675 | 0.304 | 1057 |
−0.5 > −0.25 | −0.350 | 0.357 | 0.070 | −0.348 | 0.364 | 0.108 | 0.107 | −0.285 | 0.616 | 0.546 | 0.329 | 2147 |
−0.25 > −0.1 | −0.170 | 0.175 | 0.042 | −0.170 | 0.192 | 0.088 | 0.117 | −0.218 | 0.534 | 0.487 | 0.340 | 2720 |
−0.1 > −0.05 | −0.075 | 0.076 | 0.014 | −0.081 | 0.113 | 0.079 | 0.117 | −0.201 | 0.526 | 0.486 | 0.339 | 1126 |
−0.05 > 0 | −0.025 | 0.029 | 0.014 | −0.034 | 0.091 | 0.085 | 0.122 | −0.171 | 0.522 | 0.493 | 0.342 | 1180 |
0 > 0.05 | 0.025 | 0.029 | 0.015 | 0.011 | 0.080 | 0.079 | 0.115 | −0.144 | 0.490 | 0.490 | 0.338 | 1128 |
0.05 > 0.1 | 0.075 | 0.076 | 0.014 | 0.057 | 0.102 | 0.084 | 0.118 | −0.128 | 0.469 | 0.469 | 0.340 | 1058 |
0.1 > 0.25 | 0.169 | 0.174 | 0.043 | 0.147 | 0.170 | 0.085 | 0.116 | −0.111 | 0.472 | 0.472 | 0.340 | 2453 |
0.25 > 0.5 | 0.353 | 0.360 | 0.070 | 0.312 | 0.328 | 0.099 | 0.105 | −0.042 | 0.494 | 0.494 | 0.332 | 2102 |
0.5 > 1.0 | 0.680 | 0.694 | 0.137 | 0.609 | 0.626 | 0.157 | 0.083 | 0.056 | 0.573 | 0.573 | 0.311 | 1038 |
1.0 > 5.0 | 1.824 | 1.987 | 0.789 | 1.687 | 1.847 | 0.745 | 0.063 | 0.386 | 0.916 | 0.916 | 0.284 | 569 |
b | ||||||||||||
SST0–SSTb Bins | SST0–SSTb | OESST–SSTb | NLSST–SSTb | N Cases | ||||||||
Mean | RMS | Std | Mean | RMS | Std | OE StDev | Mean | RMS | Std | ΔNL SST | ||
−5.0 > −1.0 | −1.627 | 1.710 | 0.525 | −1.490 | 1.569 | 0.492 | 0.067 | 0.168 | 0.715 | 0.695 | 0.281 | 932 |
−1.0 > −0.5 | −0.689 | 0.703 | 0.137 | −0.649 | 0.677 | 0.193 | 0.102 | −0.056 | 0.780 | 0.778 | 0.313 | 996 |
−0.5 > −0.25 | −0.360 | 0.367 | 0.070 | −0.345 | 0.367 | 0.130 | 0.122 | −0.178 | 0.627 | 0.602 | 0.335 | 1537 |
−0.25 > −0.1 | −0.170 | 0.176 | 0.043 | −0.164 | 0.200 | 0.113 | 0.124 | −0.147 | 0.556 | 0.536 | 0.338 | 1757 |
−0.1 > −0.05 | −0.075 | 0.077 | 0.015 | −0.071 | 0.126 | 0.104 | 0.123 | −0.124 | 0.514 | 0.499 | 0.335 | 666 |
−0.05 > 0 | −0.025 | 0.029 | 0.014 | −0.019 | 0.099 | 0.097 | 0.121 | −0.076 | 0.581 | 0.576 | 0.334 | 771 |
0 > 0.05 | 0.025 | 0.029 | 0.015 | 0.017 | 0.108 | 0.107 | 0.122 | −0.092 | 0.499 | 0.499 | 0.335 | 785 |
0.05 > 0.1 | 0.075 | 0.077 | 0.014 | 0.070 | 0.123 | 0.101 | 0.119 | −0.055 | 0.508 | 0.508 | 0.335 | 750 |
0.1 > 0.25 | 0.171 | 0.176 | 0.042 | 0.155 | 0.181 | 0.111 | 0.110 | −0.016 | 0.492 | 0.492 | 0.329 | 1874 |
0.25 > 0.5 | 0.355 | 0.362 | 0.070 | 0.330 | 0.351 | 0.118 | 0.098 | 0.085 | 0.545 | 0.545 | 0.317 | 1711 |
0.5 > 1.0 | 0.673 | 0.686 | 0.133 | 0.625 | 0.646 | 0.167 | 0.084 | 0.239 | 0.664 | 0.664 | 0.293 | 840 |
1.0 > 5.0 | 1.777 | 1.943 | 0.786 | 1.651 | 1.816 | 0.754 | 0.062 | 0.549 | 1.075 | 1.075 | 0.264 | 453 |
a | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NLSST–SSTb Bins | SST0–SSTb | OESST–SSTb | NLSST–SSTb | N Cases | ||||||||
Mean | RMS | Std | Mean | RMS | Std | OE StDev | Mean | RMS | Std | ΔNL SST | ||
−5.0 > −1.0 | −0.240 | 0.679 | 0.636 | −0.370 | 0.709 | 0.604 | 0.114 | −1.415 | 1.483 | 0.443 | 0.329 | 1009 |
−1.0 > −0.5 | −0.124 | 0.485 | 0.469 | −0.167 | 0.469 | 0.438 | 0.124 | −0.693 | 0.706 | 0.138 | 0.338 | 2416 |
−0.5 > −0.25 | −0.059 | 0.507 | 0.504 | −0.080 | 0.482 | 0.475 | 0.110 | −0.362 | 0.369 | 0.071 | 0.331 | 3028 |
−0.25 > −0.1 | −0.045 | 0.513 | 0.511 | −0.053 | 0.482 | 0.479 | 0.104 | −0.174 | 0.179 | 0.043 | 0.329 | 2416 |
−0.1 > −0.05 | −0.014 | 0.514 | 0.514 | −0.015 | 0.478 | 0.478 | 0.105 | −0.074 | 0.076 | 0.015 | 0.331 | 850 |
−0.05 > 0 | −0.033 | 0.600 | 0.599 | −0.033 | 0.557 | 0.557 | 0.102 | −0.024 | 0.028 | 0.015 | 0.329 | 808 |
0 > 0.05 | −0.015 | 0.577 | 0.577 | −0.018 | 0.536 | 0.536 | 0.097 | 0.025 | 0.028 | 0.028 | 0.328 | 739 |
0.05 > 0.1 | −0.014 | 0.641 | 0.640 | −0.010 | 0.599 | 0.599 | 0.095 | 0.073 | 0.075 | 0.074 | 0.324 | 797 |
0.1 > 0.25 | 0.025 | 0.569 | 0.568 | 0.031 | 0.531 | 0.530 | 0.098 | 0.171 | 0.177 | 0.177 | 0.326 | 1971 |
0.25 > 0.5 | 0.069 | 0.768 | 0.765 | 0.081 | 0.714 | 0.710 | 0.098 | 0.359 | 0.366 | 0.366 | 0.325 | 2000 |
0.5 > 1.0 | 0.046 | 0.897 | 0.896 | 0.068 | 0.838 | 0.835 | 0.094 | 0.679 | 0.693 | 0.693 | 0.321 | 1190 |
1.0 > 5.0 | 0.508 | 1.504 | 1.416 | 0.539 | 1.437 | 1.332 | 0.081 | 1.496 | 1.633 | 1.633 | 0.391 | 292 |
b | ||||||||||||
NLSST–SSTb Bins | SST0–SSTb | OESST–SSTb | NLSST–SSTb | N Cases | ||||||||
Mean | RMS | Std | Mean | RMS | Std | OE StDev | Mean | RMS | Std | ΔNL SST | ||
−5.0 > −1.0 | −0.272 | 0.621 | 0.559 | −0.386 | 0.651 | 0.523 | 0.120 | −1.319 | 1.38 | 0.363 | 0.321 | 585 |
−1.0 > −0.5 | −0.158 | 0.538 | 0.515 | −0.204 | 0.524 | 0.482 | 0.127 | −0.707 | 0.721 | 0.142 | 0.332 | 1563 |
−0.5 > −0.25 | −0.086 | 0.523 | 0.516 | −0.107 | 0.493 | 0.481 | 0.113 | −0.364 | 0.371 | 0.072 | 0.326 | 1862 |
−0.25 > −0.1 | −0.053 | 0.523 | 0.521 | −0.053 | 0.493 | 0.487 | 0.107 | −0.173 | 0.178 | 0.042 | 0.326 | 1508 |
−0.1 > −0.05 | −0.029 | 0.532 | 0.531 | −0.036 | 0.499 | 0.498 | 0.104 | −0.074 | 0.076 | 0.015 | 0.323 | 585 |
−0.05 > 0 | −0.049 | 0.552 | 0.550 | −0.038 | 0.516 | 0.514 | 0.106 | −0.023 | 0.028 | 0.015 | 0.326 | 636 |
0 > 0.05 | −0.053 | 0.535 | 0.532 | −0.051 | 0.507 | 0.505 | 0.102 | 0.025 | 0.028 | 0.028 | 0.328 | 514 |
0.05 > 0.1 | −0.094 | 0.709 | 0.702 | −0.068 | 0.650 | 0.646 | 0.105 | 0.073 | 0.074 | 0.074 | 0.322 | 590 |
0.1 > 0.25 | −0.038 | 0.607 | 0.605 | −0.015 | 0.562 | 0.561 | 0.100 | 0.173 | 0.178 | 0.178 | 0.318 | 1622 |
0.25 > 0.5 | −0.004 | 0.772 | 0.772 | 0.022 | 0.715 | 0.715 | 0.101 | 0.363 | 0.367 | 0.370 | 0.319 | 1735 |
0.5 > 1.0 | 0.023 | 0.955 | 0.955 | 0.069 | 0.886 | 0.883 | 0.100 | 0.692 | 0.705 | 0.705 | 0.314 | 1330 |
1.0 > 5.0 | 0.146 | 1.206 | 1.200 | 0.232 | 1.134 | 1.110 | 0.089 | 1.570 | 1.688 | 1.688 | 0.293 | 542 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczodrak, M.D.; Minnett, P.J. Relative Merits of Optimal Estimation and Non-Linear Retrievals of Sea-Surface Temperature from MODIS. Remote Sens. 2022, 14, 2249. https://doi.org/10.3390/rs14092249
Szczodrak MD, Minnett PJ. Relative Merits of Optimal Estimation and Non-Linear Retrievals of Sea-Surface Temperature from MODIS. Remote Sensing. 2022; 14(9):2249. https://doi.org/10.3390/rs14092249
Chicago/Turabian StyleSzczodrak, Malgorzata D., and Peter J. Minnett. 2022. "Relative Merits of Optimal Estimation and Non-Linear Retrievals of Sea-Surface Temperature from MODIS" Remote Sensing 14, no. 9: 2249. https://doi.org/10.3390/rs14092249
APA StyleSzczodrak, M. D., & Minnett, P. J. (2022). Relative Merits of Optimal Estimation and Non-Linear Retrievals of Sea-Surface Temperature from MODIS. Remote Sensing, 14(9), 2249. https://doi.org/10.3390/rs14092249