Effect of the Shadow Pixels on Evapotranspiration Inversion of Vineyard: A High-Resolution UAV-Based and Ground-Based Remote Sensing Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Acquisition and Processing
2.2.1. Remote Sensing Data Acquisition
2.2.2. Meteorological Data Acquisition
2.2.3. Eddy Covariance
2.3. Methods
2.3.1. ET Remote Sensing Estimation Method
3T Model
Radiation Flux and Heat Flux Calculations
2.3.2. Pure Canopy Pixel Extraction
2.3.3. Statistical Analysis
2.3.4. Processing and Mapping of the Data
3. Results
3.1. Variability of Vineyard Thermal Imagery
3.2. Effect of the Shaded Soil Pixels on Vineyard Evapotranspiration
3.2.1. Thermal Characteristic of Shaded Soil Pixels
3.2.2. Extraction of Pure Pixels
3.2.3. Vineyard Evapotranspiration Estimation
3.3. Effect of the Shaded Vegetation Pixels on Vineyard Transpiration
3.3.1. Thermal Characteristics of Shaded Vegetation Pixels
3.3.2. Vineyard Plant Transpiration Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, B.; Xue, J.; Xie, C.; Fang, Y.; Fuentes, S. Digital surface model applied to unmanned aerial vehicle based photogrammetry to assess potential biotic or abiotic effects on grapevine canopies. Int. J. Agric. Biol. Eng. 2016, 9, 119. [Google Scholar]
- Song, Z.W.; Sun, M.Y.; Yang, R.J.; Dou, G.Y.; Zhang, Y.; Zhang, L. Evaluation of ecosystem service value of the grape industry at the eastern foot of Helan Mountain, Ningxia, China. J. Appl. Ecol. 2019, 30, 979–985. [Google Scholar]
- Zuniga-Espinoza, C.; Aspillaga, C.; Ferreyra, R.; Selles, G. Response of Table Grape to Irrigation Water in the Aconcagua Valley, Chile. Agronomy 2015, 5, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Hu, X.; Ran, H.; Wang, X.; Wang, W.; He, X. Estimation of grape evapotranspiration in semi-humid region based on Bowen ratio energy balance method. Agric. Res. Arid Areas 2020, 38, 175–183. [Google Scholar]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Rosenberg, N.J.; Black, B.L.V. Microclimate: The Biological Environment of Plants, 2nd ed.; John Wiley Sons: New York, NY, USA, 1983; p. 495. [Google Scholar]
- Wei, Z.; Kei, Y.; Lixin, W.; Diego, G.M.; Scott, J.; Xuhui, L. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 2017, 44, 2792–2801. [Google Scholar] [CrossRef] [Green Version]
- Jasechko, S.; Sharp, Z.D.; Gibson, J.J.; Birks, S.J.; Yi, Y.; Fawcett, P.J. Terrestrial water fluxes dominated by transpiration. Nature 2013, 496, 347–350. [Google Scholar] [CrossRef]
- Lv, C.; Tan, J.; Chen, S.; Cui, Y. Real-time Forecast of Grape Evapotranspiration under Drip Irrigation in Hilly Region of Southern China. J. Irrig. Drain. 2012, 31, 47–52. [Google Scholar]
- Vanino, S.; Pulighe, G.; Nino, P.; De Michele, C.; Bolognesi, S.F.; D’Urso, G. Estimation of Evapotranspiration and Crop Coefficients of Tendone Vineyards Using Multi-Sensor Remote Sensing Data in a Mediterranean Environment. Remote Sens. 2015, 7, 14708–14730. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Tian, J.; Zhu, H.; Shen, H. Effects of different drip irrigation methods and water and fertilizer combination on photosynthesis and yield of wine grape. Water Sav. Irrig. 2020, 45, 53–58. [Google Scholar]
- Rana, G.; Katerji, N. Direct and indirect methods to simulate the actual evapotranspiration of an irrigated overhead table grape vineyard under Mediterranean conditions. Hydrol. Process. 2008, 22, 181–188. [Google Scholar] [CrossRef]
- Wang, X. Study of the estimating methods for evapotranspiration in farmland. Syst. Sci. Compr. Stud. Agric. 2003, 19, 81–84. [Google Scholar]
- Qiu, G.; Tomohisa, Y.; Kazuro, M. An improved methodology to measure evaporation from bare soil based on comparison of surface temperature with a dry soil surface. J. Hydrol. 1998, 210, 93–105. [Google Scholar] [CrossRef]
- Brown, K.W.; Rosenberg, N.J. A Resistance Model to Predict Evapotranspiration and Its Application to a Sugar Beet Field. Agron. J. 1973, 65, 341–347. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, J.; Zhao, S.; Jia, K.; Xie, X.; Sun, L. Estimation of farmland evapotranspiration: A review of methods using thermal infrared remote sensing data. Adv. Earth Sci. 2012, 27, 1308–1318. [Google Scholar]
- Hou, M.; Tian, F.; Zhang, T.; Huang, M. Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery. Agric. Water Manag. 2019, 222, 182–192. [Google Scholar] [CrossRef]
- Riveros-Burgos, C.; Ortega-Farias, S.; Morales-Salinas, L.; Fuentes-Penailillo, F.; Tian, F. Assessment of the clumped model to estimate olive orchard evapotranspiration using meteorological data and UAV-based thermal infrared imagery. Irrig. Sci. 2021, 39, 63–80. [Google Scholar] [CrossRef]
- Park, S.; Ryu, D.; Fuentes, S.; Chung, H.; O’Connell, M.; Kim, J. Mapping Very-High-Resolution Evapotranspiration from Unmanned Aerial Vehicle (UAV) Imagery. Isprs Int. J. Geo-Inf. 2021, 10, 210. [Google Scholar] [CrossRef]
- Ortega-Farias, S.; Esteban-Condori, W.; Riveros-Burgos, C.; Fuentes-Penailillo, F.; Bardeen, M. Evaluation of a two-source patch model to estimate vineyard energy balance using high-resolution thermal images acquired by an unmanned aerial vehicle (UAV). Agric. For. Meteorol. 2021, 304, 108433. [Google Scholar] [CrossRef]
- Qiu, G.; Kazuro, M.; Tomohisa, Y. Estimation of Plant Transpiration by Imitation Leaf Temperature Theoretical consideration and field verification (I). Trans. Jpn. Soc. Irrig. Drain. Reclam. Eng. 1996, 1996, 401–410. [Google Scholar]
- Qiu, G.; Wang, S.; Wu, X. Three temperature (3T) model—A method to estimate evapotranspiration and evaluate environmental quality. Chin. J. Plant Ecol. 2006, 30, 231–238. [Google Scholar]
- Tian, F.; Qiu, G.; Yang, Y.; Lü, Y.; Xiong, Y. Estimation of evapotranspiration and its partition based on an extended three-temperature model and MODIS products. J. Hydrol. 2013, 498, 210–220. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhao, S.; Tian, F.; Qiu, G. An evapotranspiration product for arid regions based on the three-temperature model and thermal remote sensing. J. Hydrol. 2015, 530, 392–404. [Google Scholar] [CrossRef]
- Hou, M.; Tian, F.; Zhang, L.; Li, S.; Du, T.; Huang, M.; Yuan, Y. Estimating Crop Transpiration of Soybean under Different Irrigation Treatments Using Thermal Infrared Remote Sensing Imagery. Agronomy 2018, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Yang, Y.; Xie, X.; Liao, L.; Tian, Y.; Zhou, J. Evapotranspiration estimation using three-temperature model and influencing factors of Nanning City, China. J. Appl. Ecol. 2021, 32, 289–298. [Google Scholar]
- Ilkka, L.; Hamlyn, G.J. Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J. Exp. Bot. 2004, 55, 1423–1431. [Google Scholar]
- Zyl, J. Diurnal variation in grapevine water stress as a function of changing soil water status and meteorological conditions. S. Afr. J. Enol. Vitic. 2017, 8, 45–50. [Google Scholar]
- Tomas, P.; Samuel, O.F.; Dongryeol, R. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard. Sensors 2018, 18, 397. [Google Scholar]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: Comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Miura, H.; Midorikawa, S.; Fujimoto, K. Automated building detection from high-resolution satellite image for updating gis building inventory data. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 1–6 August 2004. [Google Scholar]
- Heiskanen, J.; Kajuutti, K.; Jackson, M.; Elvehøy, H.; Pellikka, P. Assessment of glaciological parameters using landsat satellite data in svartisen, northern norway. In Proceedings of the EARSeL-LISSIG-Workshop Observing Our Cryosphere from Space, Bern, Switzerland, 11–13 March 2002. [Google Scholar]
- Aboutalebi, M.; Torres-Rua, A.F.; Kustas, W.P.; Nieto, H.; Coopmans, C.; Mckee, M. Assessment of different methods for shadow detection in high-resolution optical imagery and evaluation of shadow impact on calculation of NDVI, and evapotranspiration. Irrig. Sci. 2019, 37, 407–429. [Google Scholar] [CrossRef]
- Wu, Y.; Du, T. Estimating and partitioning evapotranspiration of maize farmland based on stable oxygen isotope. Trans. Chin. Soc. Agric. Eng. 2020, 36, 127–134. [Google Scholar]
- Tian, F.; Qiu, G.; Lü, Y.; Yang, Y.; Xiong, Y. Use of high-resolution thermal infrared remote sensing and “three-temperature model” for transpiration monitoring in arid inland river catchment. J. Hydrol. 2014, 515, 307–315. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Yano, T.; Momii, K. Estimation of plant transpiration by imitation leaf temperature. II. Application of imitation leaf temperature for detection of crop water stress. Trans. Jpn. Soc. Irrig. Drain. Rural Eng. 1996, 1996, 245–246. [Google Scholar]
- Qiu, G.; Momii, K.; Yano, T.; Robert, J.L. Experimental verification of a mechanistic model to partition evapotranspiration into soil water and plant evaporation. Agric. For. Meteorol. 1999, 93, 79–93. [Google Scholar] [CrossRef]
- Zhao, S.; Yonghui, Y.; Guoyu, Q.; Qiming, Q.; Yunjun, Y.; Yujiu, X.; Chunqiang, L. Remote detection of bare soil moisture using a surface-temperature-based soil evaporation transfer coefficient. Int. J. Appl. Earth Obs. 2010, 12, 351–358. [Google Scholar] [CrossRef]
- Qiu, G.; Ming, Z. Remotely monitoring evaporation rate and soil water status using thermal imaging and “three-temperatures model (3T Model)” under field-scale conditions. J. Environ. Monit. 2010, 12, 716–723. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Y.; Chen, B. Fractional vegetation cover of invasive Spartina alterniflora in coastal wetland using unmanned aerial vehicle (UAV) remote sensing. Chin. J. Appl. Ecol. 2016, 27, 3920–3926. [Google Scholar]
- Kutnjak, H.; Leto, J.; Vranic, M.; Bošnjak, K.; Perčulija, G.; Pospišil, M. Potential of aerial robotics in crop production: High resolution NIR/VIS imagery obtained by automated unmanned aerial vehicle (UAV) in estimation of botanical composition of alfalfa-grass mixture. In Proceedings of the 50th Croatian and 10th International Symposium on Agriculture, Opatija, Croatia, 16–20 February 2015. [Google Scholar]
- Xie, C.; Yang, C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agric. 2020, 178, 105731. [Google Scholar] [CrossRef]
- Sassu, A.; Gambella, F.; Ghiani, L.; Mercenaro, L.; Pazzona, A.L. Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture. Sensors 2021, 21, 956. [Google Scholar] [CrossRef]
- Mathews, A.J.; Jensen, J.L. Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud. Remote Sens. 2013, 5, 2164–2183. [Google Scholar] [CrossRef] [Green Version]
- Santesteban, L.G.; Gennaro, S.; Herrero-Langreo, A.; Miranda, C.; Royo, J.B.; Matese, A. High-resolution UAV-based thermal imaging to estimate the instantaneous and seasonal variability of plant water status within a vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- Torres-Sanchez, J.; Pena, J.M.; de Castro, A.I.; Lopez-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Tu, Y.; Phinn, S.; Johansen, K.; Robson, A.; Wu, D. Optimising drone flight planning for measuring horticultural tree crop structure. ISPRS J. Photogramm. 2020, 160, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Minch, C.; Dvorak, J.; Jackson, J.; Sheffield, S.T. Creating a Field-Wide Forage Canopy Model Using UAVs and Photogrammetry Processing. Remote Sens. 2021, 13, 2487. [Google Scholar] [CrossRef]
- Shahtahmassebi, A.R.; Yang, N.; Wang, K.; Moore, N.; Shen, Z. Review of shadow detection and de-shadowing methods in remote sensing. Chin. Geogr. Sci. 2013, 23, 403–420. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Fischer, B.; Rojasconejo, J.; Johnson, M.S.; Morillas, L.; Lyon, S.W.; Manzoni, S.; Garcia, M. Drone-Based Hyperspectral and Thermal Imagery for Quantifying Upland Rice Productivity and Water Use Efficiency after Biochar Application. Remote Sens. 2021, 13, 1866. [Google Scholar] [CrossRef]
- Wang, S.; Hong, Z. Clustering-based shadow edge detection in a single color image. In Proceedings of the 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), Shenyang, China, 20–22 December 2013; pp. 2057–2206. [Google Scholar]
Date | Fight High | EC System | f1 | f2 | f3 | f4 | ||||
---|---|---|---|---|---|---|---|---|---|---|
ET | ET1 | R2/RMSE/rRMSE | ET2 | R2/RMSE/rRMSE | ET3 | R2/RMSE/rRMSE | ET4 | R2/RMSE/rRMSE | ||
6 June 2019 | 120 m | - | 152.58 | 94.11 | 139.56 | 93.14 | ||||
80 m | 150.12 | 96.51 | 139.59 | 93.39 | ||||||
6 July 2019 | 120 m | 193.77 | 212.49 | 0.75/ 24.98/ 11.41% | 201.19 | 0.63/ 8.87/ 4.59% | 210.49 | 0.74/ 22.46/ 10.52% | 200.64 | 0.64/ 8.30/ 4.31% |
12 July 2019 | 80 m | 239.75 | 265.71 | 241.41 | 263.56 | 245.48 | ||||
16 July 2019 | 40 m | 237.32 | 266.43 | 252.13 | 263.13 | 250.97 | ||||
26 July 2019 | 40 m | 268.31 | 266.67 | 274.43 | 264.05 | 271.30 |
Date | EC-T | Sunlit Leaves | Shaded Leaves | All Leaves | ||||
---|---|---|---|---|---|---|---|---|
T | R2/RMSE/ rRMSE | T | R2/RMSE/ rRMSE | T | R2/RMSE/ rRMSE | |||
26 June 2020 | 10:30 | 0.25 | 0.28 | 0.83/ 0.055/ 22.47% | 0.23 | 0.84/ 0.041/ 16.69% | 0.28 | 0.88/ 0.038/ 15.31% |
15:30 | 0.36 | 0.33 | 0.31 | 0.32 | ||||
7 July 2020 | 9:30 | 0.14 | 0.23 | 0.12 | 0.21 | |||
13:30 | 0.31 | 0.35 | 0.24 | 0.32 | ||||
17:30 | 0.25 | 0.28 | 0.23 | 0.26 | ||||
28 July 2020 | 9:30 | 0.39 | 0.44 | 0.37 | 0.42 | |||
13:00 | 0.30 | 0.37 | 0.27 | 0.35 | ||||
13 August 2020 | 10:30 | 0.23 | 0.27 | 0.16 | 0.25 | |||
12:30 | 0.16 | 0.18 | 0.13 | 0.19 | ||||
14:30 | 0.20 | 0.25 | 0.20 | 0.24 | ||||
16:30 | 0.19 | 0.24 | 0.18 | 0.21 | ||||
18:30 | 0.10 | 0.15 | 0.09 | 0.11 | ||||
28 August 2020 | 10:30 | 0.13 | 0.14 | 0.09 | 0.13 | |||
12:30 | 0.26 | 0.27 | 0.22 | 0.25 | ||||
14:30 | 0.30 | 0.43 | 0.28 | 0.35 | ||||
16:30 | 0.37 | 0.36 | 0.31 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Xuan, J.; Zhang, T.; Bai, X.; Tian, F.; Ortega-Farias, S. Effect of the Shadow Pixels on Evapotranspiration Inversion of Vineyard: A High-Resolution UAV-Based and Ground-Based Remote Sensing Measurements. Remote Sens. 2022, 14, 2259. https://doi.org/10.3390/rs14092259
Lu S, Xuan J, Zhang T, Bai X, Tian F, Ortega-Farias S. Effect of the Shadow Pixels on Evapotranspiration Inversion of Vineyard: A High-Resolution UAV-Based and Ground-Based Remote Sensing Measurements. Remote Sensing. 2022; 14(9):2259. https://doi.org/10.3390/rs14092259
Chicago/Turabian StyleLu, Saihong, Junjie Xuan, Tong Zhang, Xueer Bai, Fei Tian, and Samuel Ortega-Farias. 2022. "Effect of the Shadow Pixels on Evapotranspiration Inversion of Vineyard: A High-Resolution UAV-Based and Ground-Based Remote Sensing Measurements" Remote Sensing 14, no. 9: 2259. https://doi.org/10.3390/rs14092259
APA StyleLu, S., Xuan, J., Zhang, T., Bai, X., Tian, F., & Ortega-Farias, S. (2022). Effect of the Shadow Pixels on Evapotranspiration Inversion of Vineyard: A High-Resolution UAV-Based and Ground-Based Remote Sensing Measurements. Remote Sensing, 14(9), 2259. https://doi.org/10.3390/rs14092259