Local Persistent Ionospheric Positive Responses to the Geomagnetic Storm in August 2018 Using BDS-GEO Satellites over Low-Latitude Regions in Eastern Hemisphere
Abstract
:1. Introduction
2. Ionospheric TEC Extraction
3. Detection Method of Ionospheric Anomaly
4. Data Sources
5. Solar and Geomagnetic Conditions of the Storm
6. Ionospheric Disturbance Responses
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Cai, X.; Burns, A.G.; Wang, W.; Qian, L.; Solomon, S.C.; Eastes, R.W.; McClintock, W.E.; Laskar, F.I. Investigation of a neutral “tongue” observed by GOLD during the geomagnetic storm on May 11, 2019. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028817. [Google Scholar] [CrossRef]
- Yue, X.; Wang, W.; Lei, J.; Burns, A.; Zhang, Y.; Wan, W.; Liu, L.; Hu, L.; Zhao, B.; Schreiner, W.S. Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 9234–9249. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, S. A study of the morphology of ionospheric storms. J. Geophys. Res. 1959, 64, 305–321. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Astafyeva, E.I.; Demyanov, V.V.; Edemskiy, I.K.; Gavrilyuk, N.S.; Ishin, A.B.; Kosogorov, E.A.; Leonovich, L.A.; Lesyuta, O.S.; Palamartchouk, K.S.; et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather Space Clim. 2013, 3, A27. [Google Scholar] [CrossRef] [Green Version]
- Muella, M.; Paula, E.R.; Monteiro, A.A. Ionospheric scintillation and dynamics of fresnel-scale irregularities in the inner region of the equatorial ionization anomaly. Surv. Geophys. 2013, 34, 233–251. [Google Scholar] [CrossRef]
- Tesema, F.; Damtie, B.; Nigussie, M. The response of the ionosphere to intense geomagnetic storms in 2012 using GPS-TEC data from east Africa longitudinal sector. J. Atmos. Sol.-Terr. Phys. 2015, 135, 143–151. [Google Scholar] [CrossRef]
- Wen, D.; Yuan, Y.; Ou, J.; Zhang, K. Ionospheric response to the geomagnetic storm on August 21, 2003 over China using GNSS-based tomographic technique. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3212–3217. [Google Scholar] [CrossRef]
- Huo, X.; Yuan, Y.; Ou, J.; Zhang, K. Monitoring the daytime variations of equatorial ionospheric anomaly using IONEX data and CHAMP GPS data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 105–114. [Google Scholar] [CrossRef]
- Astafyeva, E.; Zakharenkova, I.; Förster, M. Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi-instrumental overview. J. Geophys. Res. Space Phys. 2015, 120, 9023–9037. [Google Scholar] [CrossRef] [Green Version]
- Shults, K.; Astafyeva, E.; Adourian, S. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. J. Geophys. Res. Space Phys. 2016, 121, 10303–10315. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, Q.; Shah, M.; Hong, Z. Atmospheric-ionospheric disturbances following the April 2015 Calbuco volcano from GPS observations. Adv. Space Res. 2017, 60, 2836–2846. [Google Scholar] [CrossRef]
- Savastano, G.; Komjathy, A.; Verkhoglyadova, O.; Mazzoni, A.; Crespi, M.; Wei, Y.; Mannucci, A.J. Real-time detection of tsunami ionospheric disturbances with a stand-alone GNSS receiver: A preliminary feasibility demonstration. Sci. Rep. 2017, 7, 46607. [Google Scholar] [CrossRef] [PubMed]
- Cherniak, I.; Zakharenkova, I. Ionospheric total electron content response to the great American solar eclipse of 21 August 2017. Geophys. Res. Lett. 2018, 45, 1199–1208. [Google Scholar] [CrossRef]
- Song, Q.; Ding, F.; Zhang, X.; Liu, H.; Mao, T.; Zhao, X.; Wang, Y. Medium-scale traveling ionospheric disturbances induced by Typhoon Chan-hom over China. J. Geophys. Res. Space Phys. 2019, 124, 2223–2237. [Google Scholar] [CrossRef]
- de Oliveira, C.; Espejo, T.; Moraes, A.; Costa, E.; Sousasantos, J.; Lourenço, L.F.D.; Abdu, M.A. Analysis of plasma bubble signatures in total electron content maps of the low-latitude ionosphere: A simplified methodology. Surv. Geophys. 2020, 41, 897–931. [Google Scholar] [CrossRef]
- Yadav, S.; Sunda, S.; Sridharan, R. The impact of the 17 March 2015 St. Patrick’s Day storm on the evolutionary pattern of equatorial ionization anomaly over the Indian longitudes using high-resolution spatiotemporal TEC maps: New insights. Space Weather 2016, 14, 786–801. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Coster, A.J.; Zhang, S.R.; Ma, G.-Y.; Hao, Y.-Q.; Xiao, Z. A case study of the large-scale traveling ionospheric disturbances in the eastern Asian sector during the 2015 St. Patrick’s Day geomagnetic storm. Ann. Geophys. 2019, 37, 673–687. [Google Scholar] [CrossRef] [Green Version]
- Mengist, C.K. Response of ionosphere over Korea and adjacent areas to 17 March 2015 geomagnetic storm. Adv. Space Res. 2019, 64, 183–198. [Google Scholar] [CrossRef]
- Qian, L.; Wang, W.; Burns, A.G.; Chamberlin, P.C.; Coster, A.; Zhang, S.R.; Solomon, S.C. Solar flare and geomagnetic storm effects on the thermosphere and ionosphere during 6-11 September 2017. J. Geophys. Res. Space Phys. 2019, 124, 2298–2311. [Google Scholar] [CrossRef]
- Reddybattula, K.D.; Panda, S.K.; Ansari, K.; Peddi, V. Analysis of ionospheric TEC from GPS, GIM and global ionosphere models during moderate, strong, and extreme geomagnetic storms over Indian region. Acta Astronaut. 2019, 161, 283–292. [Google Scholar] [CrossRef]
- Zakharenkova, I.; Cherniak, I.; Krankowski, A. Features of storm-induced ionospheric irregularities from ground-based and spaceborne GPS observations during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 2019, 124, 10728–10748. [Google Scholar] [CrossRef]
- Dugassa, T.; Jbhc, D.; Mn, E. Statistical study of geomagnetic storm effects on the occurrence of ionospheric irregularities over equatorial/low-latitude region of Africa from 2001 to 2017. J. Atmos. Sol.-Terr. Phys. 2020, 199, 105198. [Google Scholar] [CrossRef]
- Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S.M.; Amory-Mazaudier, C.; Fleury, R. Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 3421–3438. [Google Scholar] [CrossRef] [Green Version]
- Bolaji, O.S.; Adebiyi, S.J.; Fashae, J.B.; Ikubanni, S.O.; Adenle, H.A.; Owolabi, C. Pattern of latitudinal distribution of ionospheric irregularities in the African region and the effect of March 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 2020, 125, e27641. [Google Scholar] [CrossRef]
- Sharma, S.K.; Singh, A.K.; Panda, S.K.; Ahmed, S.S. The effect of geomagnetic storms on the total electron content over the low latitude Saudi Arab region: A focus on St. Patrick’s Day storm. Astrophys. Space Sci. 2020, 365, 35. [Google Scholar] [CrossRef]
- Brunini, C.; Azpilicueta, F. GPS slant total electron content accuracy using the single layer model under different geomagnetic regions and ionospheric conditions. J. Geod. 2010, 84, 293–304. [Google Scholar] [CrossRef]
- Kunitsyn, V.; Kurbatov, G.; Yasyukevich, Y.; Padokhin, A. Investigation of SBAS L1/L5 signals and their application to the ionospheric TEC studies. IEEE Geosci. Remote Sens. Lett. 2015, 12, 547–551. [Google Scholar] [CrossRef]
- Zhao, X.; Jin, S.; Mekik, C.; Feng, J. Evaluation of regional ionospheric grid model over China from dense GPS observations. Geod. Geodyn. 2016, 7, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Xuhai, Y.; Zhe, Z.; Zhao, K. High-precision ionosphere monitoring using continuous measurements from BDS GEO satellites. Sensors 2018, 18, 714. [Google Scholar] [CrossRef] [Green Version]
- Padokhin, A.M.; Tereshin, N.A.; Yasyukevich, Y.V.; Andreeva, E.S.; Nazarenko, M.O.; Yasyukevich, A.S.; Kozlovtseva, E.A.; Kurbatov, G.A. Application of BDS-GEO for studying TEC variability in equatorial ionosphere on different time scales. Adv. Space Res. 2018, 63, 257–269. [Google Scholar] [CrossRef]
- Bai, X.; Cai, C. Independent temporal and spatial variation analysis of ionospheric TEC over Asia-Pacific area based on BDS GEO satellites. Meas. Sci. Technol. 2020, 31, 45004. [Google Scholar] [CrossRef]
- Huang, F.; Lei, J.; Otsuka, Y.; Luan, X.; Liu, Y.; Zhong, J.; Dou, X. Characteristics of medium-scale traveling ionospheric disturbances and ionospheric irregularities at mid-latitudes revealed by the total electron content associated with the Beidou geostationary satellite. IEEE Trans. Geosci. Remote Sens. 2020, 59, 6424–6430. [Google Scholar] [CrossRef]
- Luo, X.; Lou, Y.; Gu, S.; Li, G.; Xiong, C.; Song, W.; Zhao, Z. Local ionospheric plasma bubble revealed by BDS geostationary earth orbit satellite observations. GPS Solut. 2021, 25, 117. [Google Scholar] [CrossRef]
- Hu, L.; Lei, J.; Sun, W.; Zhao, X.; Wu, B.; Xie, H.; Yang, S.; Wu, Z.; Zheng, J.; Ning, B.; et al. Latitudinal variations of daytime periodic ionospheric disturbances from Beidou GEO TEC observations over China. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028809. [Google Scholar] [CrossRef]
- Abunin, A.A.; Abunina, M.A.; Belov, A.V.; Chertok, I.M. Peculiar solar sources and geospace disturbances on 20–26 August 2018. Solar Phys. 2020, 295, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Huang, F.; Zhong, J.; Zhang, R.; Kuai, J.; Lei, J.; Liu, L.; Ren, D.; Ma, H.; Yoshikawa, A.; et al. Persistence of the long-duration daytime TEC enhancements at different longitudinal sectors during the August 2018 geomagnetic storm. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028238. [Google Scholar] [CrossRef]
- Lei, J.; Huang, F.; Chen, X.; Zhong, J.; Ren, D.; Wang, W.; Yue, X.; Luan, X.; Jia, M.; Dou, X.; et al. Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017? J. Geophys. Res. Space Phys. 2018, 123, 3217–3232. [Google Scholar] [CrossRef]
- Ren, D.; Lei, J.; Zhou, S.; Li, W.; Huang, F.; Luan, X.; Dang, T.; Liu, Y. High-speed solar wind imprints on the ionosphere during the recovery phase of the August 2018 geomagnetic storm. Space Weather 2020, 18, e2020SW002480. [Google Scholar] [CrossRef]
- Moro, J.; Xu, J.; Denardini, C.M.; Resende, L.C.A.; Neto, P.B.; Da Silva, L.A.; Silva, R.P.; Chen, S.S.; Picanço, G.A.S.; Carmo, C.S.; et al. First look at a geomagnetic storm with Santa Maria Digisonde data: F region signatures and comparisons over the American sector. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028663. [Google Scholar] [CrossRef]
- Blagoveshchensky, D.V.; Sergeeva, M.A. Ionospheric parameters in the European sector during the magnetic storm of August 25–26, 2018. Adv. Space Res. 2020, 65, 11–18. [Google Scholar] [CrossRef]
- Sardon, E.; Rius, A.; Zarraoa, N. Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci. 1994, 29, 577–586. [Google Scholar] [CrossRef]
- Zhang, B.; Ou, J.; Yuan, Y.; Li, Z. Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci. China Earth Sci. 2012, 55, 1919–1928. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, B.; Yuan, Y.; Li, Z.; Wang, N. Multi-GNSS triple-frequency differential code bias (DCB) determination with precise point positioning (PPP). J. Geod. 2019, 93, 765–784. [Google Scholar] [CrossRef]
- Ciraolo, L.; Azpilicueta, F.; Brunini, C.; Meza, A.; Radicella, S.M. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 2007, 81, 111–120. [Google Scholar] [CrossRef]
- Xiang, Y.; Gao, Y. Improving DCB estimation using uncombined PPP. Navigation 2017, 64, 463–473. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Hui, L.; Ou, J.; Huo, X. Two-step method for the determination of the differential code biases of COMPASS satellites. J. Geod. 2012, 86, 1059–1076. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chuo, Y.J.; Tsai, H.F. Variations of ionospheric total electron content during the Chi-Chi earthquake. Geophys. Res. Lett. 2001, 28, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Ho, Y.Y.; Jhuang, H.K.; Su, Y.C.; Liu, J.Y. Seismo-ionospheric anomalies in total electron content of the GIM and electron density of DEMETER before the 27 February 2010 M8.8 Chile Earthquake. Adv. Space Res. 2013, 51, 2309–2315. [Google Scholar] [CrossRef]
- Tang, J.; Yao, Y.; Zhang, L. Temporal and spatial ionospheric variations of 20 April 2013 earthquake in Yaan, China. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2242–2246. [Google Scholar] [CrossRef]
- Jiang, W.; Ma, Y.; Zhou, X.; Li, Z.; An, X.; Wang, K. Analysis of ionospheric vertical total electron content before the 1 April 2014 Mw 8.2 Chile earthquake. J. Seismol. 2017, 21, 1599–1612. [Google Scholar] [CrossRef]
- Tao, D.; Cao, J.; Battiston, R.; Li, L.; Ma, Y.; Liu, W.; Zhima, Z.; Wang, L.; Dunlop, M.W. Seismo-ionospheric anomalies in ionospheric TEC and plasma density before the 17 July 2006 M7.7 south of Java earthquake. Ann. Geophys. 2017, 35, 589–598. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Tariq, M.A.; Ahmad, J.; Naqvi, N.A.; Jin, S. Seismo ionospheric anomalies before the 2007 M7.7 Chile earthquake from GPS TEC and DEMETER. J. Geodyn. 2019, 127, 42–51. [Google Scholar] [CrossRef]
- Liu, J.Y.; Le, H.; Chen, Y.I.; Chen, C.H.; Liu, L.; Wan, W.; Su, Y.Z.; Sun, Y.Y.; Lin, C.H.; Chen, M.Q. Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake. J. Geophys. Res. Space Phys. 2011, 116, A04302. [Google Scholar] [CrossRef] [Green Version]
- Lissa, D.; Srinivasu, V.; Prasad, D.; Niranjan, K. Ionospheric response to the 26 August 2018 geomagnetic storm using GPS-TEC observations along 80°E and 120°E longitudes in the Asian sector. Adv. Space Res. 2020, 66, 1427–1440. [Google Scholar] [CrossRef]
- Mansilla, G.A.; Zossi, M.M. Effects on the equatorial and low latitude thermosphere and ionosphere during the 19–22 December 2015 geomagnetic storm period. Adv. Space Res. 2019, 65, 2083–2089. [Google Scholar] [CrossRef]
- Paul, B.; Kumar, D.B.; Anirban, G. Latitudinal variation of F-region ionospheric response during three strongest geomagnetic storms of 2015. Acta Geod. Geophys. 2018, 53, 579–606. [Google Scholar] [CrossRef]
- Bagiya, M.S.; Hazarika, R.; Laskar, F.I.; Sunda, S.; Gurubaran, S.; Chakrabarty, D.; Bhuyan, P.K.; Sridharan, R.; Veenadhari, B.; Pallamraju, D. Effects of prolonged southward interplanetary magnetic field on low-latitude ionospheric electron density. J. Geophys. Res. Space Phys. 2014, 119, 5764–5776. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.; Burns, A.; Solomon, S.C.; Zhang, S.; Zhang, Y.; Huang, C. Relative importance of horizontal and vertical transports to the formation of ionospheric storm-enhanced density and polar tongue of ionization. J. Geophys. Res. Space Phys. 2016, 121, 8121–8133. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Burns, A.G.; Liu, S.; Gong, J.; Yue, X.; Jiang, G.; Coster, A. Ionospheric response to CIR-induced recurrent geomagnetic activity during the declining phase of solar cycle 23. J. Geophys. Res. Space Phys. 2015, 120, 1394–1418. [Google Scholar] [CrossRef] [Green Version]
Station | Geographic Coordinates | Geomagnetic Coordinates |
---|---|---|
CIBG | 6.4°S, 106.8°E | 15.7°S, 179.5°E |
CPNM | 10.7°N, 99.3°E | 1.3°N, 172.1°E |
DARW | 12.8°S, 131.1°E | 21.3°S, 155.0°W |
DJIG | 11.5°N, 42.8°E | 7.2°N, 116.9°E |
HKSL | 22.4°N, 113.9°E | 12.9°N, 173.7°W |
IISC | 13.0°N, 77.6°E | 4.7°N, 151.0°E |
KAT1 | 14.4°S, 132.2°E | 22.8°S, 153.7°W |
LAUT | 17.6°S, 177.4°E | 20.5°S, 106.8°W |
MAYG | 12.8°S, 45.3°E | 16.9°S, 115.7°E |
NKLG | 0.4°N, 9.7°E | 1.6°N, 82.5°E |
POHN | 6.9°N, 158.2°E | 0.8°N, 129.6°W |
PTGG | 14.5°N, 121.0°E | 5.2°N, 166.7°W |
SEYG | 4.7°S, 55.5°E | 10.4°S, 127.1°E |
SOLO | 9.4°S, 159.9°E | 14.9°S, 125.7°W |
XMIS | 10.5°S, 105.7°E | 19.8°S, 178.3°E |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Gao, X.; Yang, D.; Zhong, Z.; Huo, X.; Wu, X. Local Persistent Ionospheric Positive Responses to the Geomagnetic Storm in August 2018 Using BDS-GEO Satellites over Low-Latitude Regions in Eastern Hemisphere. Remote Sens. 2022, 14, 2272. https://doi.org/10.3390/rs14092272
Tang J, Gao X, Yang D, Zhong Z, Huo X, Wu X. Local Persistent Ionospheric Positive Responses to the Geomagnetic Storm in August 2018 Using BDS-GEO Satellites over Low-Latitude Regions in Eastern Hemisphere. Remote Sensing. 2022; 14(9):2272. https://doi.org/10.3390/rs14092272
Chicago/Turabian StyleTang, Jun, Xin Gao, Dengpan Yang, Zhengyu Zhong, Xingliang Huo, and Xuequn Wu. 2022. "Local Persistent Ionospheric Positive Responses to the Geomagnetic Storm in August 2018 Using BDS-GEO Satellites over Low-Latitude Regions in Eastern Hemisphere" Remote Sensing 14, no. 9: 2272. https://doi.org/10.3390/rs14092272
APA StyleTang, J., Gao, X., Yang, D., Zhong, Z., Huo, X., & Wu, X. (2022). Local Persistent Ionospheric Positive Responses to the Geomagnetic Storm in August 2018 Using BDS-GEO Satellites over Low-Latitude Regions in Eastern Hemisphere. Remote Sensing, 14(9), 2272. https://doi.org/10.3390/rs14092272