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Abstract: In recent years, sparse recovery-based space-time adaptive processing (SR-STAP) technique
has exhibited excellent performance with insufficient samples. Sparse Bayesian learning algorithms
have received considerable attention for their remarkable and reliable performance. Its implementa-
tion in large-scale radar systems is however hindered by the overwhelming computational load and
slow convergence speed. This paper aims to address these drawbacks by proposing an improved
iterative reweighted sparse Bayesian learning algorithm based on expansion-compression variance-
components (ExCoV-IIR-MSBL). Firstly, a modified Bayesian probabilistic model for SR-STAP is
introduced. Exploiting the intrinsic sparsity prior of the clutter, we divide the space-time coefficients
into two parts: the significant part with nontrivial coefficients and the irrelevant part with small
or zero coefficients. Meanwhile, we only assign independent hyperparameters to the coefficients
in the significant part, while the remaining coefficients share a common hyperparameter. Then the
generalized maximum likelihood (GML) criterion is adopted to classify the coefficients, ensuring
both accuracy and efficiency. Hence, the parameter space in Bayesian inference will be significantly
reduced, and the computational efficiency can be considerably promoted. Both theoretical analysis
and numerical experiments validate that the proposed algorithm achieves superior performance with
considerably improved computational efficiency in sample shortage scenarios.

Keywords: airborne radar; space-time adaptive processing; sparse Bayesian learning

1. Introduction

Moving target detection is a fundamental function of radar systems for military
surveillance and reconnaissance. Space-time adaptive processing (STAP) has become an
effective and mature clutter suppression technique for airborne early warning phased
array radar systems [1–3]. The optimal STAP filter is constructed using the ideal clutter
plus noise covariance matrix (CNCM). In practice, the ideal CNCM is unknown a priori
and is typically estimated using independent and identically distributed (i.i.d.) samples
around the cell under test (CUT). According to the well-known Reed–Mallet–Brennan
criterion [4], the number of i.i.d. samples with at least twice the system degree of freedom
(DOF) is required to ensure a performance loss under 3 dB. Unfortunately, sufficient i.i.d.
samples are often challenging to obtain due to various terrains, artificial structures and
array configurations.

Over the past few decades, many STAP methods have been developed to improve
clutter suppression performance in heterogeneous environments, including classical data-
dependent reduced-rank (RR) methods [5–8] and data-independent reduced-dimension
(RD) methods [9–12]. Although the required number of training samples is reduced to twice
the reduced dimension, the requirement is still difficult to meet under severe non-stationary
clutter environments for modern large-scale radar systems.

During the recent fifteen years, many sparse recovery-based STAP (SR-STAP) algo-
rithms have been proposed by exploiting the underlying connection between the com-
pressed sensing technique and the intrinsic sparsity prior of the clutter spectrum [13–21].
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With the help of sparse recovery theory, these SR-STAP algorithms have shown excel-
lent clutter suppression performance with limited samples. Depending on the sparse
recovery algorithms, SR-STAP can be generally classified into several categories, such as
convex relaxation [13–15], greedy algorithms [16], Bayesian inference [17–19], and other
methods [20,21].

Convex relaxation substitutes the `0 norm with the `1 norm as the sparse penalty. The
`1 norm optimization problem has shown that sparse solutions can be stably obtained
under certain conditions [22]. It has been extensively applied to the least absolute shrinkage
and selection operator (LASSO) and basis pursuit (BP) based STAP methods [23]. Most
convex relaxation methods require careful tuning of the regularization parameter, and inap-
propriate parameter selection will jeopardize the performance of clutter suppression as well
as slow-moving target detection [14,15]. However, choosing an appropriate regularization
parameter is quite challenging in practice.

In recent years, sparse Bayesian learning (SBL) has drawn much effort due to its
preferable advantages, such as automatic self-regulation [18] and flexibility in exploiting
the potential signal structure [24]. SBL was first proposed by Tipping in 2001 [25] and
introduced to the field of STAP by Duan in 2017, termed M-SBL-STAP [17]. Numerous
empirical results indicate that the SBL based SR-STAP can provide satisfactory performance
and is quite robust to noise and high coherence dictionary [19]. However, M-SBL-STAP
faces an overwhelming computational burden and large memory requirements, hindering
its implementation in large-scale radar systems. Many efficient SBL based STAP algorithms
have been developed to address this issue. In [18], Wang proposed a fast-converging SBL
algorithm by combining an approximation term, but the global convergence property of the
algorithm is not guaranteed. An iterative reweighted based M-SBL (M-SBL-IR`2,1) STAP
algorithm was proposed by Liu [19], which exhibits better reconstruction accuracy and has
a favourable convergence speed.

Our experience with numerous simulation experiments demonstrates that the ma-
jority of the space-time coefficients to be recovered are zero or close to zero, and only a
few have nontrivial values, owing to the sparse nature of the clutter. Therefore, in this
paper, we are inspired to propose an improved Bayesian probabilistic model for SR-STAP,
exploiting the aforementioned sparsity feature of the clutter. Instead of assigning a separate
hyperparameter to each space-time coefficient in the conventional Bayesian model, only
the significant coefficients are assigned independent hyperparameters, while the remaining
irrelevant coefficients share a common hyperparameter. As a result, the parameter space to
be updated will be dramatically reduced, and the computational efficiency will naturally be
promoted. In [26], a heuristic expansion-compression variance-component based method
(ExCoV) has been proposed to guide us to classify those hyperparameters.

Specifically, the main contributions of this paper are summarized as follows:

1. By exploiting the inherent sparsity nature of the clutter, the space-time coefficients
are divided into two disjoint groups, i.e., the significant and irrelevant groups, thus
reducing redundancy, scaling down the parameter space and yielding an improved
Bayesian probabilistic model for SR-STAP with reduced computational complexity
and reduced memory requirements.

2. The space-time coefficients are partitioned into the significant and irrelevant groups
according to the generalized maximum likelihood (GML) criterion, which preserves
both accuracy and efficiency, unlike the conventional SBL cost function.

3. We extend and modify the real-value ExCoV method to complex-value STAP ap-
plications to approximately maximize the GML objective function. Using the Ex-
CoV scheme, it is unnecessary to specify convergence thresholds and maximum
iteration times.

4. Extensive experiments as well as detailed comparative analyses are presented, such
as clutter suppression performance and target detection performance, etc.

Notations used in this paper are as follows: vectors, matrices and scalars are denoted
by bold lowercase, bold uppercase and italic letters, respectively. (·)∗, (·)T and (·)H
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stand for conjugate, transpose and conjugate transpose. ⊗ and � are the Kronecker and
Hadamard (elementwise) product. trace(·) is the trace operator. C represents the set of
complex values. ‖ · ‖F and ‖ · ‖2,0 are respectively defined as the Frobenius norm and `2,0
mixed norm, which is the number of non-zero elements of the vector formed by the `2
norm of each row. E[ · ] denotes the expectation operator.

The remainder of the paper is organized as follows. In Section 2, the airborne radar
signal model is established. The formulation of SR-STAP model is presented in Section 3.
The proposed algorithm is introduced in Section 4. The computational complexity analysis
is presented in Section 5. Experiments and analyses are carried out on Section 6. Finally,
Section 7 discuss the conclusions.

2. Signal Model

In this research, assume that an airborne pulsed-Doppler early warning radar system
with a side-looking uniform linear array (ULA), as depicted in Figure 1, has N omnidi-
rectional elements with half wavelength interelement spacing d = λ/2 and transmits M
coherent pulses over a coherent processing interval (CPI) at the fixed pulse repetition
frequency (PRF) fr. The aircraft platform is cruising with a constant velocity vp.
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Figure 1. Geometric configuration of an airborne surveillance radar system. 
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Figure 1. Geometric configuration of an airborne surveillance radar system.

Based on the well-known Ward clutter model [27], the ground can be divided into
different range rings. The radar returns are composed of numerous evenly distributed and
mutually uncorrelated clutter patches in azimuth angles θ. Considering the impact of range
ambiguities, a general space-time snapshot x ∈ CNM×1 from the CUT can be formulated as

x =
Nr
∑

r=1

Nc
∑

i=1
αr, is( fd r, i

, fs r, i ) + n

=
Nr
∑

r=1

Nc
∑

i=1
αr, i

(
st( fd r, i

)⊗ ss( fs r, i )
)
+ n

(1)

where αr, i and s( fd r, i
, fs r, i ) denote the complex amplitude and space-time steering vector

from the corresponding clutter patch; Nc is the number of independent clutter patches
in a iso-range ring; Nr represents the number of range ambiguities; the vector n is the
thermal noise and modelled as a zero-mean complex Gaussian random process; s( fd r, i

, fs r, i ),

st( fd r, i
) =

[
1, ej2π fd r, i , · · · , ej2π(M−1) fd r, i

]T
and ss( fs r, i ) =

[
1, ej2π fs r, i , · · · , ej2π(N−1) fs r, i

]T

stand for space-time, temporal and spatial steering vectors, respectively. According to the
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geometric configuration of the radar platform shown in Figure 1, the normalized spatial
frequency fs r,i and normalized Doppler frequency fd r, i

are defined as follows:

fs r, i =
d
λ

cos ϕr cos θi (2)

fd r, i
=

2vp

λ fr
cos ϕr cos θi (3)

where ϕr and θi are the elevation and azimuth angle of the (r, i)-th clutter patch, respectively.
Since the clutter patches are mutually independent, the ideal clutter plus noise covari-

ance matrix (CNCM) of the CUT can be expressed as

R =
Nr

∑
r=1

Nc

∑
i=1

E
{
|αr,i|2

}
s( fd r,i

, fs r,i )s
H( fd r,i

, fs r,i ) + σ2I (4)

where σ2 denotes the noise power.
Under the linearly constrained minimum variance (LCMV) criterion, the optimum

STAP weight vector, which maximizes signal-to interference-plus-noise ratio (SINR), can
be given by

w =
R−1starget

sH
target R

−1starget
(5)

where starget is the space-time steering vector of the desired target.

3. Sparse Recovery Based STAP Model Specification

For the grid-based SR-STAP algorithms [23], the whole continuous spatial-temporal
plane is uniformly discretized into K = Ns Md grids, where Ns = ρsN(ρs > 1) is the number
of normalized spatial frequency bins in the spatial domain and Md = ρd M(ρd > 1) is the
number of normalized Doppler frequency bins in the temporal domain. ρs and ρd are the
resolution scales. Then Φ =

[
s( fd, 1, fs, 1), · · · , s( fd, Md

, fs, Ns)
]

is defined as the NM × K
overcomplete dictionary matrix consisting of K grids. The SR-STAP signal model for the
multiple measurement vectors (MMV) case X = [x1, x2, . . . , xL] ∈ CNM×L can next be
reformulated as

X = ΦA + N (6)

where L is the number of IID space-time snapshots; A = [a1, a2, . . . , aL] ∈ CK×L denotes the
space-time coefficients matrix where the non-zero rows indicate the potential presence of clutter
components, and each column has the same sparsity support; N = [n1, n2, . . . , nL] ∈ CNM×L

is the zero mean Gaussian white noise matrix.
Since K � NM, the problem of estimating A is fundamentally underdetermined. The

canonical cost function of SR-STAP problem is formulated by

min
A
‖X−ΦA‖2

F + η‖A‖2,0 (7)

where η is a nonnegative regularization parameter controlling the trade-off between the
sparse penalty and data fidelity, and thus the choice of η is critical to the recovery perfor-
mance. Unfortunately, finding the `2,0 norm optimal representation requires a combinatorial
search (also known as NP-hard [28]) and, therefore, is difficult to obtain.

Many recent alternative tractable approaches have been developed to find sparse
solutions efficiently [13–21]. Motivated by the predominance of the SBL algorithms in
SR-STAP, we resort to SBL for accurately recovering A from X in this research.

4. Proposed Algorithm

Following the conventional sparse Bayesian learning framework, all the unknowns are
treated as stochastic variables with assigned independent probability distributions. First of
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all, the noise matrix is modelled as white complex Gaussian noise with unknown power σ2;
thus the observed Gaussian likelihood function of the measurements X for the MMV case
can be expressed as.

p(X|A, σ2) =
L
∏
l=1
CN (X·l

∣∣ΦA·l , σ2I)

= 1
(πσ2)

NML exp
[
−σ−2‖X−ΦA‖2

F

] (8)

Since measurements are mutually independent and identically distributed, we sup-
pose each column of the space-time coefficient matrix A·l is assigned with the same
zero-mean complex Gaussian prior γ, governing the prior variance of each unknown
space-time coefficient.

p(A|γ) =
L
∏
l=1
CN (A·l |0, Γ)

= π−KL|Γ|−L exp
(
−

L
∑

l=1
AH
·l Γ−1A·l

) (9)

where 0 ∈ CK×1 is a zero vector, γ = [γ1, γ2, . . . , γK] is the unknown variance hyperpa-
rameters corresponding to the rows in A, and covariance matrix Γ is a diagonal matrix,
where γ is its diagonal elements, i.e., Γ = diag(γ).

Further, following the Bayesian theorem, the posterior probability density p(A
∣∣X,γ, σ2)

can be easily calculated by

p(A|X,γ, σ2) =
p(X|A,σ2)p(A|γ)

p(X|γ,σ2)

=
p(X|A,σ2)p(A|γ)∫

p(X|A,σ2)p(A|γ)dA

(10)

The posterior probability p(A
∣∣X,γ, σ2) obeys a multivariate complex Gaussian distri-

bution CN (µ, Σ) with mean and covariance respectively given by

µ = ΓΦH
(

σ2I + ΦΓΦH
)−1

X (11)

Σ = Γ− ΓΦH
(

σ2I + ΦΓΦH
)−1

ΦΓ (12)

Thus, with a fixed Γ, the estimated sparse recovery solution Ã of M-SBL is

Ã = ΓΦH
(

σ2I + ΦΓΦH
)−1

X (13)

Accordingly, for γi → 0 , the corresponding row Ãi· of the space-time coefficient matrix
will be zeros as well. In other words, if γ is sparse, the corresponding space-time coefficient
estimation Ã will also be sparse.

The hyperparameters vector can be estimated by performing the type-II maximum
likelihood procedure or evidence maximization in γ space [29]. Mathematically, the cost
function can be expressed as minimizing the marginal likelihood function L(γ) with respect
to γ:

γ̃ = arg min
γ
L(γ)

= arg min
γ
− ln p(X|γ, σ2)

= arg min
γ
− ln

∫
p(X

∣∣A, σ2)p(A
∣∣γ)dA

= arg min
γ

L ln|P|+
L
∑

l=1
xH

l P−1xl

(14)
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After the unknown coefficients A have been integrated out, P stands for the covariance
of the measurements X with the hyperparameters γ and σ2.

P , σ2I + ΦΓΦH (15)

This minimization can be performed by an iterative reweighted SBL based algo-
rithm [19,30], which will be modified and described in the following part of this paper.

As we can observe from (11) and (12), the computational bottleneck is mainly mani-
fested in large-scale matrix multiplication and matrix inversion operations. The storage
requirement is also heavy. Moreover, during each iteration, a hyperparameter space (γ, σ2)
of dimension K + 1 needs to be updated. These factors make SBL based STAP algorithms
considerably slower than other types of sparse recovery algorithms, even though excellent
clutter suppression performance can be achieved with limited training samples.

In fact, due to the intrinsic sparsity of the clutter spectrum on the spatial-temporal
plane, only a few rows of A have nontrivial magnitudes, and the remaining elements are
strictly zero (or close to zero). It implies that most of the hyperparameters in γwill converge
to zeros, and they are redundant. Therefore, we can naturally consider partitioning the
space-time coefficients into two parts: the significant elements part and the complemen-
tary irrelevant elements part. Instead of assigning independent hyperparameters to all
coefficients in the conventional SBL framework, we can only allocate independent hyperpa-
rameters to significant coefficients part, while the remaining irrelevant coefficients share
an identical hyperparameter. Consequently, the dimension of the hyperparameter space
can be reduced to be proportional to the sparsity level of the clutter, which is much smaller
than K [23]. As a result, the computation complexity will be greatly mitigated, and the
memory consumption will be reduced, particularly in large-scale modern radar systems.

Next, define Θ = {1, 2, · · · , K} as the complete index set. The index set of significant
coefficients is denoted by Θα with size Kα, and the complementary index set of irrelevant
coefficients is denoted by Θβ = Θ\Θα with cardinality Kβ = K− Kα. Accordingly, we will
also divide dictionary matrix Φ and space-time coefficients matrix A into two submatrices,
i.e., Φα ∈ CNM×Kα , Φβ ∈ CNM×Kβ , Aα ∈ CKα×L and Aβ ∈ CKβ×L, respectively. For
more details:

• Φα is the submatrix of Φ corresponding to the significant coefficients index set Θα,
e.g., if Θα = {2, 8, 9}, then Φα = [s2, s8, s9], where si is the ith column of Φ.

• Aα is the submatrix of A corresponding to the index set Θα, e.g., if Θα = {2, 8, 9},
then Aα = [A2· ; A8· ; A9·], where Ai· is the ith row of A.

Then (9) can be reformulated as

p(A
∣∣∣γ) = p(Aα

∣∣∣γΘα
; Θα)p(Aβ

∣∣∣γΘβ
; Θβ)

=
L
∏
l=1

(
CN (Aα·l

∣∣∣0, Γα) · CN (Aβ·l

∣∣∣0, γΘβ
I)
)

= π−KL|Γα|−L(γΘβ
)−LKβ

· exp
(
−

L
∑

l=1

(
AH

αlΓ
−1
α Aαl + γ−1

Θβ
AH

βlAβl

)) (16)

where Γα and γΘβ
I denote the covariance matrix of the significant part Aα and irrelevant

part Aβ, respectively.
If all the coefficients belong to the Θα index set and Kα = K, then the above probabilistic

model will degenerate to the original SBL full model in (9). Similarly, according to the index
sets Θα and Θβ, (11) and (12) can be respectively partitioned into submatrices

µα = ΓαΦH
α P−1X (17)

µβ = γΘβ
ΦH

β P−1X (18)

Σα = Γα − ΓαΦH
α P−1ΦH

α Γα (19)
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Σβ = γΘβ
IKβ
− γ2

Θβ
ΦH

β P−1ΦH
β (20)

where the covariance matrix P in (15) now can be rewritten as

P = σ2I + ΦαΓαΦH
α + γΘβ

ΦβΦH
β (21)

For the sake of expression simplicity, we define the set of all unknowns:

ψ = (γΘα
, γΘβ

, σ2, Θα) (22)

Now, let us consider estimating the most superior and efficient coefficient index sets
Θα and Θβ, i.e., the optimal representation. According to [26], the generalized maximum-
likelihood (GML) criterion can be used to assign the hyperparameters, and its equivalence
with the canonical optimization problem in (7) is demonstrated. The GML criterion maximizes:

GML(ψ) = ln p(X|ψ)− ln|I(ψ)| (23)

where the first term is the same marginal likelihood function in (14) with Θα fixed, enforcing
the estimate fit the measurements; the second term I(ψ) is the Fisher information matrix
(FIM) for the hyperparameters. Based on the well-known FIM for the Gaussian measure-
ment model [31], we can deduce the block-partitioned FIM result for the hyperparameters
vector (the detailed derivation is shown in Appendix A).

I(ψ) =
[IγΘα ,γΘα

(ψ) IγΘα ,γΘβ
(ψ)

IH
γΘα ,γΘβ

(ψ) IγΘβ
,γΘβ

(ψ)

]
(24)

with each block computed as

IγΘα ,γΘα
(ψ) = 2L

(
ΦH

α P−1Φα

)
�
(

ΦH
α P−1Φα

)
(25)[

IγΘα ,γΘβ
(ψ)

]
i
= 2LΦH

α (:, i)P−1ΦβΦH
β P−1Φα(:, i) (26)

IγΘβ
,γΘβ

(ψ) = 2L · trace(P−1ΦβΦH
β P−1ΦβΦH

β ) (27)

Since the hyperparameter space is nested, namely any Θα is a subset of Θ, the more pa-
rameters in the set Θα, the larger the value ln p(X|ψ) will be, which reduces the model mis-
match. Therefore, there will always be a tendency to choose the complete set Θα = Θ [31].
However, the second term increases as the set Θα grows, penalising the growth of the
set. The GML criterion is, therefore, able to maintain a balance between underfitting and
overfitting of the model, ensuring both accuracy and efficiency.

Nevertheless, directly applying the GML criterion (23) to obtain the optimal param-
eter index sets still requires an exhaustive search and is hard to implement in practical
applications. Subsequently, we will employ an ExCoV based method to maximize the
objective function approximately [32]. The fundamental idea is interleaving the expan-
sion/compression step and the parameter update step. In each expansion or compression
procedure, we modify the current estimate of Θα by one element per step to obtain a larger
GML(ψ). Then followed by the parameter update step, the hyperparameters (γΘα

, γΘβ
, σ2)

are updated for a fixed index set Θα. Subsequently, we introduce the three main iteration
steps involved in ExCoV: expansion step, compression step and parameter update step.

A. Expansion step. In this step, we determine the index q ∈ Θβ
(p) corresponding to

the row of µβ
(p) with the largest `2 norm

q = arg max
q∈Θβ

(p)
‖
(
µβ

(p)
)

q·
‖

2
(28)
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where the superscript (·)(p) represents the iteration number. Then the index q is moved
from Θβ

(p) to Θα
(p), i.e.,Θα

(p+1) = Θα
(p) ∪ {q} and Θβ

(p+1) = Θβ
(p)\{q}, yielding

Kα
(p+1) = Kα

(p) + 1, Kβ
(p+1) = Kβ

(p) − 1. The new expanded vector γΘα
(p+1)

(p) can be

expressed as γΘα
(p+1)

(p) =
[
γΘα

(p)
(p); γΘβ

(p)
]
.

B. Compression step. Here, we determine the index t ∈ Θα
(p) corresponding to the

smallest element of γΘα
(p)

(p)

t = arg min
t∈Θα

(p)

(
γΘα

(p),t

)(p)
(29)

Then the index t is moved from Θα
(p) to Θβ

(p), i.e., Θβ
(p+1) = Θβ

(p) ∪ {t} and
Θα

(p+1) = Θα
(p)\{t}, yielding Kα

(p+1) = Kα
(p) − 1, Kβ

(p+1) = Kβ
(p) + 1. The new com-

pressed vector γΘα
(p+1)

(p) can be constructed as γΘα
(p+1)

(p) =[
γΘα

(p) ,1
(p), · · · ,γΘα

(p) ,t−1
(p),γΘα

(p) ,t+1
(p), · · · ,γΘα

(p) ,Kα
(p)

(p)
]
.

C. Parameters update step. In [26], the original ExCoV algorithm employs the expectation-
maximization (EM) method for Bayesian inference to estimate the hyperparameters, which
usually requires extensive iterations to converge [18]. To overcome this drawback and thus
further improve code running speed, an iterative reweighted M-SBL strategy is modified
to update hyperparameters.

In this step, we firstly assume that the index sets Θα and Θβ are known and fixed. We
next present the derivation of the parameters update step based on the iterative reweighed
`2,1 M-SBL algorithm from [19] modified by the previous proposed Bayesian probabilistic
model (details can be seen in Appendix B), which can remarkably accelerate the convergence

speed. Then, the hyperparameters
(
γΘα

(p+1)
(p+1), γΘβ

(p+1), (σ2)
(p+1)

)
can be updated by

γΘα,i
(p+1)

(p+1) =


1
L

L
∑

l=1

∣∣∣µα
(p+1)
il

∣∣∣2
sH

i

(
P(p+1)

)−1
si


1
2

(30)

γΘβ

(p+1) =


1
L

Kβ

∑
j=1

L
∑

l=1

∣∣∣µβ
(p+1)
jl

∣∣∣2
Kβ · trace

((
P(p+1)

)−1
ΦβΦH

β

)


1
2

(31)

(σ2)
(p+1)

=
‖X−Φµ‖2

F + L(σ2)
(p)
(

N − (σ2)
(p) · trace

(
(P(p+1))

−1))
NML

(32)

where P(p+1) =
((

σ2)(p)I + ΦαΓ
(p)
α ΦH

α + γΘβ
(p)ΦβΦH

β

)
.

We term the proposed algorithm as an improved iterative reweighted sparse Bayesian
learning algorithm based on expansion-compression variance components (ExCoV-IIR-
MSBL). Figure 2 illustrates the processing flowchart of the proposed algorithm and its
procedures are summarized as follows.
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Step1 Initialization: Calculate the minimum norm solution of the space-time coefficients

µ(0) = ΦH
(

ΦHΦ
)−1

X (33)

Then we can utilize the prior knowledge provided by the inertial navigation system
and radar system to initialize K(0)

α

K(0)
α = bN + β(M− 1)c (34)

where β = 2vp/( frd) represents the slope of the clutter ridge [33] and b·c denotes rounding-

up operation; or simply set K(0)
α = 1, since the ExCoV method is insensitive to the initial

value of Ka. Hence, the index set Θ(0)
α is constructed using the rows of µ(0) corresponding

to the first K(0)
α largest `2 norm. Subsequently, K(0)

β = K− K(0)
α and Θ(0)

β = Θ\Θ(0)
α .

Step2 Cycle Initialization: Set the initial values for the hyperparameters (γΘα
, γΘβ

, σ2).

(
σ2
)(0)

=
1

NML
‖X−ΦA‖2

F (35)

γ
(0)
Θα ,i =

1
L

L

∑
l=1

∣∣sH
i xl
∣∣2∣∣sH

i si
∣∣2 ,

(
si ∈ Φα and i = 1, · · · , K(0)

α

)
(36)

γΘβ

(0) = min
i

(
γΘα ,i

)(0) (37)

Generally, these parameters can be initialized to an arbitrary positive vector, but it
would be more beneficial if a rough estimate could be given. Then the initial values of the

optimal record are set to ψ̂ =
(
γ
(0)
Θα

, γΘβ
(0),
(
σ2)(0), Θ(0)

α

)
and µ̂ = µ(0).

Step3 Expansion: Apply the aforementioned expansion step, yielding the updated
Θα

(p+1),Θβ
(p+1) and γΘα

(p+1)
(p).
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Step4 Parameter Update: With the aforementioned modified iterative reweighted M-SBL up-

date step, the updated parameters setψ(p+1) = (γΘα
(p+1)

(p+1), γΘβ
(p+1)

(p+1), (σ2)
(p+1), Θα

(p+1))

and space-time coefficients estimate µ(p+1) are obtained.
Step5 Optimal Estimates Update: During the iterations, we shall record the opti-

mal unknown parameters set ψ̂ that maximizes the GML, and the corresponding space-
time coefficients estimates µ̂α and µ̂β in the latest iteration cycle. After the unknown

parametersψ(p+1) = (γΘα
(p+1)

(p+1), γΘβ
(p+1)

(p+1), (σ2)
(p+1), Θα

(p+1)) are updated, the new

GML(ψ(p+1)) can be calculated using (23). Next, we will verify whether the following
condition holds

GML
(
ψ(p+1)

)
> GML

(
ψ̂
)

(38)

If the inequality holds, then we set ψ̂ = ψ(p+1), µ̂α = µα
(p+1) and µ̂β = µβ

(p+1);
instead, keep ψ̂, µ̂α and µ̂β unchanged.

Step6 Termination Condition Check: In this step, we would verify whether the
expansion is still required to continue [26].

GML
(
ψ(p+1)

)
< min

{
GML

(
ψ(p+1−T)

)
,

1
T

T−1

∑
t=0

GML
(
ψ(p−t)

)}
(39)

where T is the length of a sliding average window. This condition will help us to determine
if there is still a need for the expansion operation and prevents premature termination. If
the inequality is satisfied, then the expansion operation is terminated, and Step7 begins;
otherwise, the expansion continues and returns to Step3.

Step7 Compression: Apply the aforementioned compression step, yielding the up-
dated Θα

(p+1), Θβ
(p+1) and γΘα

(p+1)
(p).

Step8 Parameter Update: With the aforementioned iterative reweighted M-SBL update

step, the updated parameters setψ(p+1) = (γΘα
(p+1)

(p+1), γΘβ
(p+1)

(p+1), (σ2)
(p+1), Θα

(p+1)) and

space-time coefficients estimate µ(p+1) are obtained.
Step9 Optimal Estimates Update: Verify whether the condition (38) holds. If the

inequality holds, then we set ψ̂ = ψ(p+1), µ̂α = µα
(p+1) and µ̂β = µβ

(p+1); instead, keep
ψ̂, µ̂α and µ̂β unchanged.

Step10 Termination Condition Check: In this step, we would verify whether the
compression is still required to continue and check the same condition (39) in Step6. If the
inequality is satisfied, then the compression operation is terminated, and Step11 begins;
otherwise, the compression continues and returns to Step7.

Step11 Globally Optimal Estimates Update: Moreover, we keep a record of the

globally optimal parameter set ψ̂F and the corresponding coefficients µ̂F in the entire
iteration cycles, verifying the condition

GML
(
ψ̂
)
> GML

(
ψ̂

F
)

(40)

If the inequality holds, then the globally optimal estimates ψ̂F and µ̂F can be updated
with ψ̂ and µ̂; instead, keep them unchanged.

Step12 Algorithm Iteration Termination Check: If the globally optimal index set
Θ̂α

F is consistent between two consecutive cycles. The proposed algorithm is next termi-
nated and the final globally optimal space-time coefficients µ̂F and noise power

(
σ2)F

are output.
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Otherwise, the globally optimal index set Θ̂α
F is updated, then the algorithm contin-

ues. We reset the iteration index p = 0, K(0)
α = K̂α

F, and calculate the initial values for the
space-time coefficients

µ(0) = µ̂F + ΦH
(

ΦHΦ
)−1(

X−Φµ̂F
)

(41)

Step13 STAP Weight Calculation: Once the estimated sparse recovery solution Ã = µ̂F

and σ̃2 =
(
σ2)F is obtained, the CNCM can be reconstructed from

R̃ =
1
L

L

∑
l=1

K

∑
i=1

∣∣∣Ãil

∣∣∣2sisH
i +σ̃2INM (42)

Then the STAP weight w can be obtained by using (5).
Step14 Output: Give the filtered output of the cell under test y = wHxCUT.
From the above steps, it is worth noting that the proposed algorithm is fully automatic and

does not require setting any convergence threshold as well as the maximum iteration number.

5. Computational Complexity Analysis

In this Section, we will analyse the computational complexity of the proposed ExCoV-
IIR-MSBL algorithm and compare it with some state-of-the-art SR-STAP algorithms, includ-
ing M-CVX [34], M-OMP [35], M-FOCUSS [36], M-IAA [21], M-SBL [17], M-FCSBL [18]
and M-SBL-IR`2,1 [19]. Their computational complexity would be measured by the number
of complex multiplications in a single iteration. The results are listed in Table 1, where rs
stands for the clutter sparsity level.

Table 1. Computational complexity comparison.

Algorithm Computational Complexity for a Single Iteration

M-CVX O
(
(KL)3

)
M-OMP O

(
r3

s + r2
s NM + 2rs NM + NMKL

)
M-FOCUSS O

(
2(NM)2K + (NM)3 + NMKL

)
M-IAA O

(
2(NM)2K + (NM)3 + NMKL

)
M-SBL O

(
3K2NM + 2(NM)2K + (NM)3 + NMKL

)
M-FCSBL O

(
5(NM)2K + (NM)3 + 3K + L

(2KL + 4K + L)NM

)
M-SBL-IR`2,1 O

(
3K2NM + 3(NM)2K + (NM)3 + NMKL

)
ExCoV-IIR-MSBL O

(
K2

α NM + 2(NM)2K + 2(NM)3+

(NM)2L + NMKL

)

In the conventional sparse Bayesian learning probabilistic model, the computational
load is greatly centred on the parameter update step, see (11) and (12). The computational
complexity is in the order of O

(
3K2NM + 2(NM)2K + (NM)3 + NMKL

)
, with large-scale

matrix multiplication and matrix inversion dominating a major part. Moreover, the memory
requirement is O

(
K2). Therefore, these drawbacks make the MSBL-STAP challenging to

implement in modern large-scale airborne radar systems, despite achieving an excellent
clutter suppression performance with only a few snapshots.

The primary computational burden of the proposed algorithm is concentrated on
the parameter update and GML criterion calculation steps. Since the parameter space
dimension is significantly reduced, the scale of matrix multiplication is also significantly
decreased, given that Kα � K. In addition, unlike other SBL algorithms, the proposed
algorithm no longer needs to update the variance matrix (12); hence, the computational
complexity can be further reduced. As a result, the computational complexity is in the
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order of O
(

K2
αNM + 2(NM)2K + 2(NM)3 + (NM)2L + NMKL

)
, and the required mem-

ory consumption is O(NMK). It can be seen that the computational load and memory
consumption of the proposed algorithm have been remarkably reduced. These advantages
make the proposed algorithm more suitable for modern large-scale airborne radar systems.

For a more intuitive comparison of the above-mentioned algorithms, we plot Figure 3,
illustrating the relationship between the number of complex multiplications and the number
of pulses. We assume that ρs = ρd = 4, N = 8, L = 8, and Kα is set to be the rank of clutter.
It can be seen from Figure 3 that the M-SBL-IR`2,1 has nearly the same computational load as
M-SBL, and the proposed algorithm has the lowest computational complexity among these
compared SBL based algorithms and is close to the M-IAA and M-FOCUSS algorithms.

 
Figure 3 

 
Figure 4 

Figure 3. Computational complexity of different compared SR-STAP algorithms.

6. Numerical Experiment

In this section, numerous experiments are performed with simulated data to evaluate
the performance of the proposed algorithm. The simulated data are generated by the
well-known Ward clutter model introduced in the previous section. The main simulation
parameters of a side-looking ULA are listed in Table 2. The dictionary resolution scales
are set to be ρs = ρd = 4. Furthermore, all the simulation results are averaged over 100
independent Monte-Carlo trails.

Table 2. Simulation Parameters.

Parameter Value

Array element number N 8
Pulse number M 8

PRF fr 2000 Hz
Wavelength λ 0.3 m
Bandwidth B 2.5 MHz

Platform velocity vp 150 m/s
CNR 50 dB

Clutter patch number Nc 1801

First of all, we examine the average code running time of the proposed algorithm and
compare it with other state-of-the-art SR-STAP algorithms, as listed in Table 3. M-CVX, M-IAA,
M-OMP, M-FOCUSS, M-SBL, M-FCSBL and M-SBL-IR`2,1 are employed as benchmarks. Note
that all the simulations are operated on the same workstation with Intel Xeon 4114 CPU
@2.2GHz and 128 GB RAM.
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Table 3. Running Time Comparison.

Algorithm Average Running Time

M-CVX 94.06 s
M-SBL 11.75 s

M-FOCUSS 10.48 s
M-SBL-IR`2,1 6.16 s

M-FCSBL 2.20 s
M-IAA 2.15 s

ExCoV-IIR-MSBL 0.57 s
M-OMP 0.01 s

As seen from Table 3, since the parameter space is dramatically shrunk, the average
running time of the proposed ExCoV-IIR-SBL is remarkably faster than the other compared
SBL based STAP algorithms. It is even better than M-FOCUSS and M-IAA since the
proposed algorithm can reach the steady state with fewer iterations with the help of a
modified iterative reweighed parameter update step. Thus, the efficiency of the proposed
algorithm is demonstrated.

In the following experiments, we assess the clutter suppression performance via the
metric of signal to interference plus noise ratio (SINR) loss [27], defined as the ratio of
output SINR to the optimum output SNR in a noise-only environment, i.e.,

SINRloss =
σ2

NM

∣∣wHs( fd, fs)
∣∣2

wHRw
(43)

where R is the clairvoyant CNCM of the CUT, and w is the STAP weight.
Next, the clutter suppression performance in the ideal case is considered. The SINR

loss performance of the proposed algorithm is evaluated and compared with other state-
of-the-art SR-STAP algorithms, including M-CVX, M-IAA, M-OMP, M-FOCUSS, M-SBL,
M-FCSBL and M-SBL-IR`2,1. The number of i.i.d. training samples are set to be L = 9.
Figure 4 depicts the curves of the SINR loss against the normalized Doppler frequency.
As clearly illustrated in Figure 4, the proposed algorithm achieves the same near-optimal
performance as M-IAA and the other three SBL based algorithms, revealing that the novel
Bayesian probabilistic model proposed in this paper for STAP can accurately reconstruct
the CNCM with a smaller parameter space. The performance of M-FOCUSS is found to be
slightly inferior to theirs. Meanwhile, the proposed ExCoV-IIR-MSBL consumes the least
running time among these three SBL based algorithms on this basis.

 
Figure 3 

 
Figure 4 Figure 4. SINR loss comparison of different algorithms in the ideal case.
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To more explicitly demonstrate the clutter suppression performance, Figure 5 plots the
spatial-temporal adapted responses, given the STAP weight formed by the abovementioned
algorithms. The presumed main lobe is located at a normalized spatial frequency of 0
with a normalized Doppler frequency of 0.2. From Figure 5, it is evident that the proposed
method is able to maintain high gain at the presumed target location while precisely
forming notches at the clutter ridge, suppressing both main lobe and sidelobe of the clutter
component. Poorly performing algorithms have distorted two-dimensional responses and
cannot accurately form notches at the clutter ridge.
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Note that because of the massive computational complexity of the M-CVX, it will not be
discussed in the subsequent experiments. Then, Figure 6 illustrates the curves of the average
SINR loss versus different a number of training samples. It should be noted that the average
SINR loss is calculated by the mean of SINR loss for fd ∈ (−0.5,−0.05) ∪ (0.05, 0.5) in this
paper. As demonstrated in Figure 6, all algorithms have a certain degree of performance
loss with one snapshot and increase with the number of training samples. ExCoV-IIR-
MSBL apparently exhibits promising performance similar to the M-IAA and other SBL
algorithms under small sample conditions. The proposed algorithm achieves a near-
optimum performance with merely three training samples.
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Subsequently, we verify the target detection performance via the probability of detec-
tion (Pd) versus the target SNR curves, which are acquired by employing the cell-average
constant false alarm rate (CA-CFAR) detector [37]. One hundred targets within the bore-
sight are randomly added to the entire Range-Doppler plane, and the false alarm probability
(Pfa) is fixed to 10−3. Figure 7 shows that the proposed algorithm and other SBL based
algorithms have noticeable improvements compared to M-OMP and M-FOCUSS. This
result indicates that the proposed algorithm has superior target detection performance.
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Besides, we also consider the SINR loss performance under the spatial mismatch case
in the presence of angle-dependent gain-phase error. Specifically, the gain errors among the
antennas are generated by a Gaussian distribution with a standard deviation of 0.03, and
the phase errors are uniformly distributed within [0◦, 2◦]. Figure 8 shows the SINR loss
versus normalized Doppler frequency. From Figure 8, the curves show that all the SR-STAP
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algorithms suffer severe performance degradation due to the model mismatch between the
dictionary and the actual clutter component. The M-IAA has the most serious performance
loss, despite the fact that it can approach near-optimal as the SBL based algorithms in the
ideal case.
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Figure 9 shows the SINR loss versus the number of samples of above referred algo-
rithms in the non-ideal case. As depicted in Figure 9, the proposed algorithm can yield a
steady-state with only a few training samples as in the ideal case.
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Figure 9. The average SINR loss versus the number of training samples with gain-phase error.

From the above experiments, it has been demonstrated that the proposed algorithm
ensures a satisfactory clutter suppression and target detection performance while keeping
a remarkable computational efficiency, thereby making it more suitable for implementation
in modern large-scale radar systems.

7. Conclusions

In this work, to enhance the computational efficiency of the M-SBL based SR-STAP al-
gorithm, we derive a novel algorithm called improved iterative reweighted sparse Bayesian
learning based on expansion-compression variance-components (ExCoV-IIR-MSBL). In-
spired by the intrinsic sparse prior to the clutter, an improved Bayesian probabilistic model
with reduced parameter space is developed for SR-STAP. Furthermore, the GML crite-
rion is utilized to partition the efficient and accurate parameter space. Then we extend
the ExCoV method into the SR-STAP application to obtain the probabilistic model with
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maximized GML objective function and enhance its convergence speed by a modified
M-SBL-IR`2,1 under the proposed Bayesian model. With numerical experiments, we show
that the proposed algorithm outperforms other existing state-of-the-art algorithms with
lower computational complexity.
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Appendix A. Derivation of the FIM in (24)

In this Appendix, we develop the Fisher information matrix (FIM) for the unknown
hyperparameters γ =

[
γΘα

; γΘβ

]
. The FIM is given by

I(ψ) = Ep(X|ψ)

{[
∂

∂γ
ln p(X

∣∣∣∣ψ)][ ∂

∂γ
ln p(X

∣∣∣∣ψ)]T
}

(A1)

where p(X|ψ) is the joint probability density function of X conditioned onψ and Ep(X|ψ){·}
is the conditional expectation of X given ψ. The derivative of p(X|ψ) with respect to the
elements of γ is

∂
∂γk

ln p(X|ψ) = −L ln|P(γ)|
∂γk

−
∂

(
L
∑

l=1
xH

l P−1(γ)xl

)
∂γk

= −L · trace
(

P−1(γ) ∂P(γ)
∂γk

)
−

L
∑

l=1
xH

l
∂P−1(γ)

∂γk
xl

(A2)

Put (A2) into (A1), and the (k, j)th element of the FIM can be expressed as

I(ψ)k,j = Ep(X|ψ)

{[
∂

∂γk
ln p(X

∣∣∣ψ)][ ∂
∂γj

ln p(X
∣∣∣ψ)]}

= Ep(X|ψ)


[
−L · trace

(
P−1(γ) ∂P(γ)

∂γk

)
−

L
∑

l=1
xH

l
∂P−1(γ)

∂γk
xl

]
·
[
−L · trace

(
P−1(γ) ∂P(γ)

∂γj

)
−

L
∑

r=1
xH

r
∂P−1(γ)

∂γj
xr

]


= 2L · trace
(

P(γ)−1 ∂P(γ)
∂γk

P−1(γ) ∂P(γ)
∂γj

)
(A3)

Substitute (21) into (A3), the Equations (25)–(27) are then derived.

Appendix B. Parameter Update Step Derivation

The derivation of (30)–(32) are given in this Appendix. Since the first term ln|P| in
(14) is concave and non-decreasing with respect to γ ≥ 0. Then a quadratic upper bound
auxiliary function of can be formed via the concave conjugate function [30].

ln|P| = min
z≥0

zHγ− h∗(z) (A4)

where h∗(z) denotes the concave conjugate of ln|P|, and z can be divided into
z = [zα; zβ](Kα+1)×1.
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Based on [19], the second term
L
∑

l=1
xH

l P−1xl can be equivalently represented as the

following formulation.

L

∑
l=1

xH
l P−1xl = min

A

1
σ2 ‖X−ΦA‖2

F + ∑
k∈Θα

L
∑

l=1
|Akl |2

γΘα ,k
+ ∑

j∈Θβ

L
∑

l=1

∣∣∣Ajl

∣∣∣2
γΘβ

(A5)

If we drop the minimization from (A4) and (A5), an upper bound on L(γ) in (14) can
be obtained

L(γ) = L(γΘα
, γΘβ

) = L ln|P|+
L
∑

l=1
xH

l P−1xl

≤ L
(

zH
α γΘα

+ z∗βγΘβ
− h∗(z)

)
+ ∑

k∈Θα

L
∑

l=1
|Akl |2

γΘα ,k
+ ∑

j∈Θβ

L
∑

l=1
|Ajl |2

γΘβ
+ 1

σ2 ‖X−ΦA‖2
F

(A6)

Following the basic principles of convex analysis, the optimal z is given by the gradient
of ln|P| with respect to γ, i.e., z = ∇γ ln|P|, then

zi =

{
sH

i P−1si

trace
(

P−1ΦβΦH
β

) zi ∈ zα

zi = zβ
(A7)

Finally, for a fixed z, the Equations (30) and (31) are obtained by setting the derivative
of the upper bound in (A6) with respect to γ to zero.

The noise power can be updated by utilizing the expectation-maximization (EM)
Bayesian inference scheme.

Ep(A|X;ψ)

[
ln p(X

∣∣A, σ2)
]

∝ Ep(A|X;ψ)

[
−NML ln σ2 − σ−2‖Y−ΦA‖2

F

]
= −NML ln σ2 − σ−2Ep(A|X;ψ)

[
‖Y−ΦA‖2

F

]
= −NML ln σ2 − σ−2

(
‖Y−Φµ‖2

F + L · trace
(
ΦHΦΣ

))
= −NML ln σ2 − σ−2

(
‖Y−Φµ‖2

F + Lσ2 · trace
(
I− σ2P−1))

(A8)

Then Equation (32) is given by setting the derivative of (A8) with respect to σ2 to zero.
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