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Abstract: Landscape structure is as much a driver as a product of environmental and biological
interactions and it manifests as scale-specific, but also as multi-scale patterns. Multi-scale structure
affects processes on smaller and larger scales and its detection requires information from different
scales to be combined. Herein, we propose a novel method to quantify multi-scale spatial structural
diversity in continuous remote sensing data. We combined information from different extents with an
empirical Bayesian model and we applied a new entropy metric and a value co-occurrence approach
to capture heterogeneity. We tested this method on Normalized Difference Vegetation Index data in
northern Eurasia and on simulated data and we also tested the effect of coarser pixel resolution. We
find that multi-scale structural diversity can reveal itself as patches and linear landscape features,
which persist or become apparent across spatial scales. Multi-scale line features reveal the transition
zones between spatial regimes and multi-scale patches reveal those areas within transition zones
where values are most different from each other. Additionally, spatial regimes themselves can be
distinguished. We also find the choice of scale need not be informed by typical length-scales, which
makes the method easy to implement. The proposed multi-scale approach can be applied to other
contexts, following the roadmap we pave out in this study and using the tools available in the
accompanying R package StrucDiv.

Keywords: multi-scale landscape features; spatial structural diversity; Empirical Bayesian model;
structural diversity entropy; landscape patterns

1. Background

Landscape structure is closely linked to both climate change [1,2] and biodiversity
loss [3,4], because it locates ecological, environmental and anthropogenic phenomena that
shape the earth’s surface [5]. Spatial structural diversity—hereafter, structural diversity—
refers to the arrangement of landscape elements in horizontal space. It is both an aspect of
biodiversity [6], and a mediator of ecological processes [7]. Quantifying structural diversity
is critical, because it indicates alterations in the extent and structure of the world’s biomes,
including tundra and taiga [8,9]. In the northern high latitudes, climate change takes
effect faster than in lower latitudes [10–12], which is particularly worrisome because boreal
forests are among the largest carbon sinks and vast amounts of methane are stored in tundra
soils. The transitioning of tundra and taiga biomes manifests through shifts in vegetation
structure [13–15] and in mountainous regions, rising temperatures enable vegetation to
migrate to higher altitudes [16]. While latitudinal and altitudinal vegetation changes are
established climate change effects [17], quantification methods can be improved. With
the rise of remote sensing technology, unprecedented amounts of information are at our
disposal [18], yet methods to assess landscape heterogeneity are still dominated by the
‘patch mosaic paradigm’. This means that many studies employ categorical land cover class
(LCC) data [19,20], a reductionist approach that is only slowly being overcome [21,22].
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Methods to quantify the diversity aspect of landscape structure frequently build upon
the mathematical formulation of entropy [23–25], which is perhaps the most widely used
measure of diversity in different ecological systems [26,27]. In the study at hand, we
employ a new entropy metric designed to quantify structural diversity in continuous raster
data [28]. Further, methods to assess landscape structure inevitably involve spatial scale,
which largely determines which structures are detected. More commonly, landscapes are
decomposed into hierarchical levels of scale [7,29]. In a less common approach, information
from different scales is combined to detect structures that dominate on multiple scales [30,
31]. Although such multi-scale landscape structures play an important role for ecological
and environmental processes [32,33], methods to detect such structures have received little
attention. Herein, we propose a novel method to include spatial scale in the quantification
of landscape heterogeneity in continuous data, and we introduce an empirical Bayesian
approach to combine information from hierarchical levels of scale. We employed the metric
structural diversity entropy to quantify multi-scale structural diversity in continuous remote
sensing data.

Spatial scale is inherent to the world we live in and its importance for remote sens-
ing, landscape ecology, biodiversity research and for science as a whole has long been
recognized [34,35]. Natural processes tend to be scale-dependent, meaning that they op-
erate on some scales but not on others, and they tend to manifest as and interact with
scale-dependent spatial structures [34,36]. The prominent concept of hierarchically ordered
scales [30,31,37] is described by so-called scale breaks [29] that separate spatial scale do-
mains [7]. These are the typical process-inherent scales that are characterized by no or
monotonic change of patterns [34]. For example, animal body mass corresponds with
scale breaks in landscape structure [29] and forest habitat was found separable into scale-
domains [38]. Yet, interactions between environmental and biological processes occur
across scales and landscape structure can be as much the outcome as the origin of such
associations [39]. Reduced habitat heterogeneity and climate change increase the risk of
environmental damage by pest species, for example due to bark beetle outbreaks, which
are caused by interlinked ‘cross-scale drivers’ [40]. Biodiversity loss also affects ecosystem
functioning across scales of time and space and largely due to anthropogenic influences [41].
Methodological advancements to account for associations across multiple scales are there-
fore timely contributions to oppose the inseparable ecological and environmental crises of
the 21st century.

Ref. [30] suggested there be two fundamental ways to capture cross-scale interactions:
in an ‘indirect’ approach, methods developed for one spatial scale are repeated on several
scales, whereas a ‘direct’ approach incorporates multiple scales in its model formulation.
For example, ref. [42] used step-wise multiple linear regression as an indirect approach to
determine the scale on which soil fauna diversity was best explained by landscape struc-
ture. Nested windows were exploited in direct approaches to detect targets [43–45] and
for classification [46]. Direct approaches to decompose landscape structure include scale
space decomposition [22,47], Fourier-based textural ordination [21] and fractal-based ap-
proaches [48,49]. Bayesian methods offer flexibility in complicated hierarchical settings and
although their use remains limited [50], they have been employed as direct approaches to
address mismatches between process scales and pixel resolution [51], and to model species
distributions when multiple drivers interact at multiple scales [50]. Although empirical
Bayesian methods have a long history in statistics [52], their benefits for ecological and
geostatistical applications have only more recently gained attention [53,54]. Both empirical
and fully Bayesian methods are based on the fundamental idea that prior information ‘and
new data are combined [. . . ] to produce posterior knowledge’ [55], while the empirical
Bayesian approach can be interpreted as an approximation to a fully Bayesian one. The
main distinction between the two is that in an empirical Bayesian model, specific param-
eters of the prior are estimated from the data instead of being integrated in the Bayesian
framework [56,57]. This means that uncertainty estimation is compromised, although
on the other hand, empirical Bayesian methods do not face issues of convergence of the
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sampled hyperparameter [58]. Moreover, computation is faster [57], which suggests a
promising future in big data applications, such as earth observation.

In natural landscapes, certain structures can persist across multiple scales [59] and dom-
inate environmental and ecological processes on both smaller and larger scales [32,33,60].
To ‘characterize the multiple-scale structure of a landscape’ [30], information from different
levels must be combined. ‘Linear scale space and blob-feature detection’ [31,61] has been
used to identify homogeneous features that emerge as ‘some structures persist through
scale, while others disappear’ [31]. Because scale-specific structural diversity was pre-
viously found to emerge as landscape features, such as patches and linear features, we
hypothesized some of these structures may endure across scales. In this study, the term
spatial feature refers to ‘an area that is (i) detected with a certain method and (ii) composed
of similar values, which are the output values of the method that was used to detect the
feature’ [28]. We previously quantified scale-specific structural diversity in Normalized
Difference Vegetation Index (NDVI) data, which is an established proxy for photosynthesis
and hence for vegetation cover and productivity [62,63]. Our study region in the northern
high latitudes depicts a distinct value gradient along a transect, which we established as the
transition zones between two spatial regimes [28]. Structural diversity features originate
from these transition zones, which gives reason to believe that these zones represent the
underlying, scale-independent diverse structure that drives the emergence of scale-specific
features. We will use the term multi-scale features to describe the phenomenon of landscape
features that persist across scales, and we hypothesized that multi-scale structural diversity
features can be detected with the right method specifications and that these features reveal
the transition zones between spatial regimes.

Ref. [57] underlined the suitability of empirical Bayesian approaches for ‘combining
information’ from different publications involving the same study area and we exploited
this ability, yet the information we combined originates from different spatial extents within
the same study area. We chose data resolution based on previous studies of vegetation
change in tundra and taiga biomes [8,62,63] and we tested the effect of different size
extents and the sensitivity of feature detection to three ways of combining these extents.
We integrated information from different spatial scales by nesting smaller, inner extents
inside larger, outer ones and we combined information with a direct approach, using
an empirical Bayesian model. We tested the influence of different extents in the study
area where we previously detected scale-specific features [28,64] and we also quantified
structural diversity in NDVI data of northern Eurasia. Additionally, we simulated data
depicting random patches, random noise and a linear value gradient. We expected the
edges between patches and the surrounding area to be detected as multi-scale structural
diversity features. We call them edges, because the value change is abrupt. Further, we
expected to detect no multi-scale features and also no scale-specific features in random
noise data or in linear gradient data. We hypothesized that when inner and outer scale are
of similar size, multi-scale features would be similar to scale-specific ones and when the
outer scale is much larger than the inner scale, we expected features to appear in front of a
relatively homogeneous background. We expected the size of features to depend on the
size of the inner scale and with an increasingly large outer scale, we ultimately expected the
feature type to remain constant, i.e., to persist across scales. A detailed list of expectations
can be found in Section 2.7. We completed our analysis by testing the effect of different
pixel resolutions.

With this study, we propose a new method to quantify landscape heterogeneity that
persists across scales in continuous remote sensing data. We strive to ‘learn more about
how scale affects pattern’ [65] and we hope to serve the remote sensing community and
others who may benefit from statistical methods to detect multi-scale structural diversity
features.
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2. Methods
2.1. Study Region, Data and Software

Our study area of 241,332 km2 is situated between 66.63◦ to 68.61◦ North and 165.02◦

to 174.83◦ East in the tundra and taiga ecosystems of northern Siberia (Figure 1). The energy
and the water balance connect vegetation, soil and atmosphere through manifold ecological
processes, yet temperature and precipitation are the main environmental variables that
govern the extent of the world’s biomes [66]. For this reason, we previously investigated
spatial structure in NDVI and also in land surface temperature and latent heat. We included
topography because the study region comprises a mountain, and land cover class data
for additional information. Our analysis revealed that the value gradient in NDVI data
corresponds to a transition zone between two spatial regimes, which we called bareland
regime and vegetation regime. The bareland regime is located in high elevation areas on
steep slopes and is characterized by low NDVI values, low temperatures and strong
temperature gradients, high variability in latent heat and the predominant land cover
types being bareland, moss, lichens and shrubs. The vegetation regime populates low
elevation areas and is characterized by high NDVI, warmer temperatures and a balanced
latent heat flux. The predominant land cover types are forest and grassland. The regimes
are detectable because all data reveal what we call correspondent structure, which refers
to similar spatial structure in the same places [28]. These regimes may also be called
ecosystems [67]; however, we use the term regime because it can also describe simulated
data. We used a biweekly NDVI time-series product from the MODIS sensor, averaged
over the 2018 growing season [68] and we chose a pixel resolution of 1 km2, because it
has been promoted to investigate vegetation changes in tundra and taiga habitats [8,62,63].
Although we conducted most tests on the study region, we also quantified multi-scale
structural diversity for the whole of northern Eurasia (50◦ to 70◦ North and 25◦ West to
180◦ East), using the same data. We complemented the analysis with coarser resolution
data of the study region, created with mean NDVI aggregation.
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Figure 1. (a) Average NDVI of the growing season 2018 in the study region, (b) NDVI histogram
with superimposed density estimate, (c) categorical land cover of the study region, (d) barplot of
LCCs. Adapted from [28].
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We obtained data from Google Earth Engine [69], geo-referenced to latitude and
longitude and used the programming language R for all further data processing [70]. In the
northern high latitudes, quality issues of satellite imagery commonly cause data gaps and
we closed the few missing values with a local neighborhood average. For verification, we
complemented our experiment with a simulation of three different types of spatial structure:
random structure, randomly placed patches and a linear gradient (Figure 2A,B(a,c,e)). First,
we defined random structure as the absence of auto-correlation; hence, the random structure
simulation can be called a white noise image. Second, we simulated four randomly placed
patches with a radius of 14 pixels. The surrounding area and the inside of patches were
simulated to have random structure and patches are distinguished from the surrounding
area only by a value offset. Third, we simulated a linear north–south gradient. The images
have 90 rows and columns and we simulated all three landscape structure types with 10
and 100 gray levels (GLs) (i.e., unique values). We simulated a steep and abrupt value
change between patches and the surrounding area, which means that both are comprised
of 5 or 50 GLs, respectively. In random patch data, the patches and the surrounding
area (simulated as random noise) can be interpreted as two spatial regimes, whereas
random noise and linear gradient data comprise only one regime. We used the raster
package for all basic handling of raster data, spam and fields for simulation [71–73] and
we developed our own R package StrucDiv for scale-specific and multi-scale structural
diversity quantification [74].

Shannon Entropy of Simulated Data

(A) 10 GRAY LEVELS

(a) Random patches (b) WSLI 7, D

(c) Random noise (d) WSLI 3, D

(e) Linear gradient (f) WSLI 7, D

(B) 100 GRAY LEVELS

(a) Random patches (b) WSLI 7, D

(c) Random noise (d) WSLI 3, D

(e) Linear gradient (f) WSLI 7, D

Figure 2. Simulated data: (A,B) (a) random patches, (c) random noise, (e) linear gradient data.
Structural diversity of (b) random patches, (d) random noise, (f) linear gradient data. The outer scale
is the domain, D, in all cases, the inner scale is defined by WSLI . Structural diversity entropy with
δ = 0 was employed in all cases.
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2.2. Structural Diversity

Shannon entropy (−∑n
i=1 pi log pi) [75] has been applied to spatial contexts for

decades [23,76] and all approaches have in common that spatial information must be
contained in the probabilities pi. This issue has been tackled in various ways, mostly using
categorical data [24,25,76]. We employed a method that considers structure through the
spatial arrangement of co-occurring values, based on [77]. Spatial arrangement is defined
by the distance between two pixel values vi and vj and by the angle that specifies their
relative positions [77,78]. We chose distance 1 and the direction-invariant option, which
considers all angles (Figure S2), after confirming near-isotropy with semi-variograms. The
frequencies of co-occurring values are gathered in the gray level co-occurrence matrix
(GLCM), which is normalized by the total number of pixel pairs n in an area. Hence, i and j
index positions in the GLCM, which contains the empirical co-occurrence probabilities of
vi and vj (Figure S2). To detect scale-specific heterogeneity, structural diversity entropy is
calculated on these empirical probabilities:

Structural diversity entropy = −
m

∑
i,j=1

pij ln pij |vi − vj|δ, δ ∈ {0, 1, 2},

with m being the number of GLs in the area under consideration. To combine information
across scales, posterior probabilities ppost

ij were employed, as explained in Sections 2.3
and 2.4.

Structural diversity entropy contains Shannon entropy as a particular case (δ = 0) [75],
but it can further capture value differences (δ ∈ {1, 2}). Shannon entropy operates only on
probabilities associated with value pairs and can be interpreted as β structural diversity,
while including within-pair differences enables the metric to quantify γ structural diversity
(using the product). The second-order texture metrics contrast and dissimilarity can detect
landscape features similar to those detected with structural diversity entropy specified
with δ ∈ {1, 2}; however, they cannot detect line features, because they only capture α
structural diversity [28]. We previously found that metric formulation, spatial scale and the
number of GLs determine which type of structural diversity features are detected and we
based our experimental design on these results [28] (Tables S2 and S4). Shannon entropy
is sensitive to the number of GLs, which also affects computation [79]. Consequently, we
reduced NDVI to 10 and to 100 GLs and tested all metric formulations and scales on both
data.

2.3. Spatial Scale

We used data in raster format, which means that spatial scale is represented by data
resolution, distance and extent [80]. Data resolution is based on previous research, distance
is determined by values being direct neighbors and extent is the main subject of our
experiment. We combined information from different extents in three ways, i.e., with three
nesting schemes, which differ by the representation of the outer scale, and we employed
both data-inherent and uninformed scales (Figure 3). This allowed us to test the sensitivity
of feature detection to (i) the size of the outer scale, (ii) how the outer scale is positioned
in relation to the inner scale and (iii) whether the outer scale must be chosen based on
data-inherent scales. These aspects determine the level of knowledge about data-inherent
scales required to implement the method and also computational effort.
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Domain	
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Figure 3. Three nesting schemes, (a) inner moving window MWI,u nested inside outer moving
window MWO,u, (b) MWI,u nested inside blocks Be, and (c) MWI,u nested inside the domain.

The area within which pixel pair associations are considered represents the spatial
scale on which scale-specific structural diversity is quantified. Hence, if the whole domain
D ⊂ R2 is considered, one value is obtained, which represents structural diversity of the
domain. To capture structures within the domain, we used square, overlapping moving
windows MWu, u = 1, . . . , w with w being the number of pixels in the domain. Moving
windows shift by one pixel at a time and the size of MWu is defined by the window side
length (WSL). The WSL is in units pixel, which here is the same as km. The WSL is an odd
number; hence, moving windows are centered on one pixel and this center pixel receives
the structural diversity value. The output map is called structural diversity map and it
depicts scale-specific structural diversity in D, quantified on the scale WSL ×WSL.

The inner scale was always defined by moving windows. Inner moving windows
(MWI,u) were placed inside larger, outer extents and we used pixel co-occurrences on the
outer scale as prior information. First, we used double moving windows, meaning that we
nested MWI,u inside larger, outer moving windows MWO,u (Figure 3a). Hence, the prior
information for each pixel is retrieved from an area that is placed perfectly around the pixel.
Second, we nested MWI,u inside stationary blocks Be, e = 1, . . . , f , meaning that blocks do
not move. The domain is separated into several square blocks and windows move inside
each block. This means that block and window are not centered on the same pixel and
inside every Be, all windows are informed by the same prior (Figure 3b). Last, we used D
as the prior scale for all MWI,u (Figure 3c).

When the nesting scheme relies on blocks, the output map can depict edges between
them. To reduce this edge effect, we separated D into blocks in such a way that Be overlap
with each other and when we merged the blocks back together (after structural diversity
had been quantified), we did this in a spatially weighted manner. More specifically, we
merged blocks with a linear weight between zero and one. Moving windows create edges
with missing values (NA-edges) when they reach the edges of Be or D. The size of the
NA-edge is determined by the WSL of the moving window (NA-edge-width = 0.5 ×
(WSL − 1)). When MWI,u were nested inside D, we treated NA-edges the same way as we
treated them in the uni-scale approach—we removed them. This means that the structural
diversity map is smaller than the input raster. When double moving windows are used,
it is the WSL of the outer window that defines the width of the NA-edge. The NA-edge
around blocks restricts the overlap, which must be WSLI − 1 ≤ overlap ≤ 0.5 ×WSLB.
When blocks of specified size and overlap are fitted inside the domain, there may be edges
that are too small to fit another block. These edges were cut off, which leads to different
size structural diversity maps.

We based the choice of scales on typical scales on which structural diversity features
were previously detected and on feature-inherent scales which we obtained with semi-
variogram and effective range estimation (Tables S2 and S3). Line features were detected
with structural diversity entropy using δ = 0 and an ideal WSL range of 5–11. Narrow line
features, also called borders, were detected with δ = 2 and WSL 3–5. Different size patch
features were detected with δ ∈ {1, 2} and WSL 7–19 (Table S2). We defined inner scales
accordingly, with WSLI ∈ {3, 7, 13} and outer scales with WSLO ∈ {7, 13, 19, 35}. WSL 19 is
at the upper end of the ideal WSL range to detect patch features and WSL 35 was associated
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with large smoothed structures and is hence not a typical scale for feature detection. We
chose these scales to test the effect of MWO,u being similar or much larger than MWI,u
and we chose the largest outer windows to be the same size as the smallest blocks, in
order to compare the results from different nesting schemes applied to the same scale. We
additionally chose block sizes based on the effective range of the largest typical features
and we tested another arbitrary, i.e., uninformed, block size (Table S3). The effective range
can be interpreted as the average feature radius and we chose WSLB to be large enough
to fit the typical features inside (see Figure S3 for a schematic representation). We chose
overlaps to lie at the median position between minimum and maximum overlap. The
domain represents the largest possible outer scale for the empirical Bayesian approach we
employed. The complete experimental design can be found in Table S4.

2.4. Beta-Binomial Model in an Empirical Bayesian Setting

In the uni-scale approach, the GLCM contains the empirical probabilities that pixel
values are spatially arranged in a specific way (defined by distance and angle). Instead of
using empirical probabilities, we now updated these probabilities, π, with an empirical
Bayesian approach, using the outer scale as prior information and the inner scale as data.
Employing posterior probabilities means that we want to know how likely it is that a
certain spatial arrangement occurs on the inner scale, given its frequency on the outer scale.
The parameters of the prior distribution are therefore estimated with data from the outer
scale. The beta-binomial model is a simple, yet powerful model, where the prior and the
posterior both follow a beta distribution (Equations (1) and (3)) and the likelihood follows a
conditional binomial distribution (Equation (2)) [81,82]. This renders the model well-suited
for our problem, because the beta distribution is appropriate for modeling probabilities and
the binomial distribution captures frequencies. The beta-binomial model allows to combine
these different entities. The posterior density is proportional to the prior × the likelihood:

posterior ∝ prior× likelihood.

The prior is assumed to follow a beta distribution, whereby the αpr and the βpr parameters
must be larger than 0 to avoid the case of a degenerate distribution:

p(π) ∼ beta(αpr, βpr), αpr, βpr > 0, (1)

having the probability density function:

f (π) =
1

B(αpr, βpr)
παpr−1(1− π)βpr−1, αpr, βpr > 0, 0 < π < 1,

where B is the beta function [83,84]. The parameters α and β of the beta distribution can
be expressed by number of successes k and the number of elements in the system n. In
our case, k are scale-specific frequencies of certain spatial arrangements and n is the total
number of pixel pairs in the area: kI ≤ kO and nI < nO. The data is assumed to follow a
conditional binomial distribution:

p(kI |nI , π) ∼ bin(nI , π). (2)

Hence, the likelihood can be described with the probability mass function:

f (kI |π) =

(
nI
kI

)
πkI (1− π)nI−kI , kI = 0, 1, . . . , nI .

The posterior is then a beta distribution:

p(π|nI , kI , nO, kO) ∼ beta(αpo, βpo), αpo = kI + kO, βpo = nI − kI + nO − kO (3)
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We used posterior mean estimates of π, which allows to reduce the problem to determining
frequencies and number of pixel pairs at the inner and at the outer scale:

E(π|nI , kI , nO, kO) =
αpo

αpo + βpo
=

kI + kO

nI + nO
. (4)

The posterior mean estimates of π, i.e., ppost
ij , are then estimated for every pixel pair and

structural diversity entropy is calculated based on these posterior probabilities.

2.5. Simulation

We quantified structural diversity entropy in simulated random patch, random noise
and linear gradient data with δ ∈ {0, 1, 2} and the same inner scales we applied to NDVI
data: WSLI ∈ {3, 7, 13}. For the outer scale, we tested WSLO ∈ {13, 35}, except when
WSLI = 13, then we only tested WSLI 35. We tested one block size, WSLB = 35, and we
nested inner windows inside the domain.

2.6. Structural Diversity in Northern Eurasia and in Different Resolution Data

Based on the results from the NDVI experiment in the study region, we specified
methods to quantify structural diversity in northern Eurasia and also in coarser resolution
NDVI data of the study region. In both cases, we tested inner scales of WSLI 9 or 7,
respectively, with δ = 0 on 10 GL data. We tested WSLI 13 with δ = 2 on 100 GL data. In
northern Eurasia, we employed blocks of WSLB 200 as the outer scale and in the study
region we used the domain. In the study region, we additionally tested inner scales of
WSLI 3 with δ = 0 on 10 GL data. We tested three aggregation factors in the study region:
2, 6 and 10. An aggregation factor of 2 means that the larger pixel comprises 2 × 2 original
pixels, and so forth.

2.7. Detailed Hypotheses

With this methodological background, we can refine our hypotheses to a detailed list:

1. As outlined in Section 1, we expected to detect multi-scale features in the same places
as scale-specific features, because all scale-specific features were found to originate
from transition zones. However, the type of scale-specific features depends on the
scale, which permits no hypothesis for the type of multi-scale features expected.

2. In simulated random patch data, we expected the edges between patches and the
surrounding area to persevere as rings; hence, these rings would resemble multi-scale
features.

3. In white noise and linear gradient data, we expected to detect no multi-scale features
and also no scale-specific features, independent of metric formulation, scale and GLs.
However, some random structure may emerge, simply because values are not all the
same.

4. In the uni-scale approach, structural diversity is quantified based on all the informa-
tion available on the considered scale. In the nested scales approach, prior information
is only included about the value pairs that are present on the likelihood scale. This
affects the structural diversity value assigned to the center pixel directly, because it is
the sum of the individual metrics and hence is influenced by the number of elements
that are summed up. We expected this to affect the smoothing of the structural diver-
sity map. We further expected features to be contained to the inner scale and the size
of features to be determined entirely by MWI,u.

5. When the inner and the outer scale are relatively similar in size, then kI approximates
kO and nI approximates nO. This happens when double moving windows of similar
size are employed. In this case, the depicted diverse structures are ‘produced’ by
approximately equal amounts of information from the prior and from the likelihood.
On the other hand, prior and likelihood will not differ that much, because inner and
outer scale are of similar size and also because they are centered on the same pixel.
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Therefore, we expected to see similar features compared to the uni-scale approach and
we expected the smoothing of scale-specific and of multi-scale features to be similar.

6. When the outer scale is much larger than the inner scale, then kO and nO dominate
over kI and nI and will eventually be much larger because the number of pixel pairs
increases rapidly with the WSL (Figure S3). An exception are cases where value pairs
are very rare on the outer scale, but frequent on the inner scale. Yet, such rare cases
may not be visible, because only one particular ppost

ij might be affected. However
when the prior dominates, then the spatial structure in the resulting map is mostly
based on prior information. The larger the outer scale in relation to the inner scale,
the stronger this relation will be. In such situations, the differences between features
detected with and without prior information can be directly attributed to differences
between the inner and the outer scale.

7. When the outer scale is the domain or a block, spatial structure is driven by kI ,
because kO, nO and nI are constant. Therefore, as the outer scale increases and the
prior dominates the posterior, we expected diversity maps to eventually not differ
anymore in terms of the types and sizes of features they depict.

(a) When the outer scale is a block, we expected features to appear before a
relatively homogeneous background inside each block, because in each block,
the denominator is the same for every MWI,u and so is kO. Yet, we expected
the different blocks to have slightly different background values, because kO is
expected to be different in each block.

(b) When the outer scale is D, we expected features to appear before a relatively
homogeneous background in the whole structural diversity map, because the
denominator and kO are the same for every MWI,u in the whole domain.

3. Results

The results reveal that combining information from different scales allows to detect
multi-scale structural diversity features with certain method specifications. Some multi-
scale features persist, while others emerge across scales (Figure 4). Multi-scale features
populate the same places as scale-specific features, which supports Hypothesis 1. Addi-
tionally, the spatial regimes themselves (bareland and vegetation) can be detected, which
will be referred to as regime-separation and further explained in Section 3.3. The size of
the inner and outer extent affects the results, but feature detection is not improved by
employing typical length-scales of structural diversity features. Further, GL-dependency is
affected by the use of prior information, as explained below. Structural diversity entropy
is highest when no prior information is employed and lowest when the outer scale is the
domain and this is the case for all data, all inner scales and all GLs and independent of
δ. As the outer scale is increased, metric values decrease continuously and mild value
fluctuations occur only in a few cases (Figure S11). Most structural diversity maps can be
found in Supplementary Materials S7. For better comparison, the color scale of all maps
is set to a minimum of 0, which is the minimum value structural diversity entropy can
take, independent of δ. We suggest that bounding lower metric values to 0 for display is
advisable because otherwise small and large value differences may receive equal weights.
Similarly, in cases where spatial structure is obscured by very high values, we display
the 95% quantile. This reveals that the correspondent structure is detected by all method
formulations, which in some cases reveals features and in other cases regime separation.
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Multi-Scale Structural Diversity

Persisting Features

100 GLs,
WSLI 13,

SDE, δ = 2

10 GLs,
WSLI 7,

SDE, δ = 0

10 GLs,
WSLI 13,

SDE, δ = 0

Emerging Features

10 GLs,
WSLI 7,

SDE, δ = 1

10 GLs,
WSLI 13,
SDE, δ = 1

10 GLs,
WSLI 7,

SDE, δ = 2

10 GLs,
WSLI 13,

SDE, δ = 2

Regime-Separation (Left) and Small-Scale Structure (Right)

100 GLs,
WSLI 7,

SDE, δ = 0
95% quantile

10 GLs,
WSLI 3,

SDE, δ = 0
95% quantile

Figure 4. Structural diversity entropy (SDE), quantified wit δ ∈ {0, 1, 2}, the outer scale is D in all
cases. Minimum values displayed are set to 0.

3.1. Multi-Scale Structural Diversity Features in NDVI Data

Multi-scale line features and patches are detected in NDVI data. Multi-scale line
features resemble the transition zones between the bareland and the vegetation regime and
multi-scale patch features originate from these transition zones (Figure 4). These results
support Hypothesis 1. These features persist across scales or become apparent as the outer
scale is increased. In all cases, they evolve to those features detected when the outer scale is
the domain, supporting Hypothesis 7. Multi-scale line features are detected in data with
10 GLs, with inner scales of WSLI ∈ {7, 13} and independent of δ (Figures 5A, 6A, S5A,
S7A, S8A and S10A). Comparing multi-scale and scale-specific structural diversity maps
reveals that multi-scale line features are scale-specific line features that persist across scales.
However, these line features become narrower (i.e., more defined) when prior information
is included and as the outer scale increases (Figures 5A and S5A). The smoothing that
is inevitable when larger moving windows are used to detect scale-specific line features
disappears when prior information is included. This is in line with Hypothesis 4, where we
expected smoothing to at least be affected.

In data with 10 GLs, scale-specific patch features morph into line features with both
WSL ∈ {7, 13} and independent of δ when prior information is included (Figures 6A, S7A
and S8A). In data with 100 GLs, the scale-specific patch features detected with WSL 13 and
δ = 2 persist across scales and hence qualify as multi-scale structural diversity features
(Figure 6B(b–i)). When δ = 1, patches become less defined as the outer scale increases (in
100 GL data). This is particularly the case for WSL 7, but also for WSL 13 (Figures S7B and
S8B).



Remote Sens. 2022, 15, 14 12 of 25

SDE, δ = 0, WSLI 7

(A) 10 GRAY LEVELS

(a) NDVI 10 GLs (b) no prior

(c) WSLO 13 (d) WSLO 19

(e) WSLO 35 (f) WSLB 35

(g) WSLB 54 (h) WSLB 72

(i) WSLB 84 (j) nesting in D

(k) D, 95% quantile

(B) 100 GRAY LEVELS

(a) NDVI 100 GLs (b) no prior

(c) WSLO 13 (d) WSLO 19

(e) WSLO 35 (f) WSLB 35

(g) WSLB 54 (h) WSLB 72

(i) WSLB 84 (j) nesting in D

(k) D, 95% quantile

Figure 5. Structural diversity entropy (SDE), δ = 0, WSLI 7. Minimum values displayed are set to 0.
(A,B) (k) Nesting in D, 95% quantiles.

To sum up, multi-scale line features are detected with inner scales of WSL ∈ {7, 13} in
data with 10 GLs and independent of δ, while multi-scale patch features are detected with
WSL 13 in 100 GL data and with δ = 2 and to some extent with δ = 1.

3.2. Multi-Scale Structural Diversity in Simulated Data

In simulated patch data, multi-scale structural diversity features are detected as rings
(Figure 2A(b)), which supports Hypothesis 2. These features are detected with the same
method specifications that reveal multi-scale features in NDVI data. Structural diversity
quantified in 10 GL data with WSLI ∈ {7, 13} reveals line features in NDVI data (for
example, Figures S7A and S8A) and rings in random patch data (for example, Figures S12A
and S13A), independent of δ. The findings suggest these to be ideal method specifications
to detect multi-scale features. Structural diversity maps of simulated random noise data
reveal either no or random structure, which supports Hypothesis 3 (Figure 2A,B(d)). Linear
gradient data returns no or random structure in most cases, partly supporting Hypothesis 3
(Figure 2B(f)). However, when data has 10 GLs and WSLI ∈ {7, 13}, values are strati-
fied into stripes, which is particularly pronounced with large outer scales (for example,
Figures 2A(f)), S33A and S134A).
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SDE, δ = 2, WSLI 13

(A) 10 GRAY LEVELS

(a) NDVI 10 GLs (b) no prior

(c) WSLO 19 (d) WSLO 35

(e) WSLB 35 (f) WSLB 54

(g) WSLB 72 (h) WSLB 84

(i) nesting in D (j) D, 95% quantile

(B) 100 GRAY LEVELS

(a) NDVI 100 GLs (b) no prior

(c) WSLO 19 (d) WSLO 35

(e) WSLB 35 (f) WSLB 54

(g) WSLB 72 (h) WSLB 84

(i) nesting in D (j) D, 95% quantile

Figure 6. Structural diversity entropy (SDE), δ = 2, WSLI 13. Minimum values displayed are set to 0.
(A,B) (j) Nesting in D, 95% quantiles.
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3.3. Regime-Separation and GL-Dependency

When Shannon entropy is applied to data with 100 GLs without prior information,
the scale-dependent maximum of the metric is responsible for structureless diversity maps.
When prior information is included, structural diversity maps converge towards a situation
where the two spatial regimes can be distinguished: the bareland regime by lower and
the vegetation regime by higher entropy values (for example, Figures 5B, 7B, S6B and
S7B). In other words, regime-separation is achieved when prior information is included,
which reduces the GL-dependency of Shannon entropy. Regime-separation can also be
observed in simulated random patch data where scale-specific rings morph into separate
regimes (for example, Figures 2B(b), S12B and S15B). Most of the time, the same method
specifications reveal regime-separation in both NDVI and random patch data. Both data
reveal regime-separation with δ ∈ {0, 1} and independent of WSLI when data has 100 GLs.

SDE, δ = 0, WSLI 3

(A) 10 GRAY LEVELS

(a) NDVI 10 GLs

(b) no prior (c) no prior, 95% quantile

(d) WSLO 7 (e) WSLO 13

(f) WSLO 19 (g) WSLO 35

(h) WSLB 35 (i) WSLB 54

(j) WSLB 72 (k) WSLB 84

(l) nesting in D (m) D, 95% quantile

(B) 100 GRAY LEVELS

(a) NDVI 100 GLs

(b) no prior (c) no prior, 95% quantile

(d) WSLO 7 (e) WSLO 13

(f) WSLO 19 (g) WSLO 35

(h) WSLB 35 (i) WSLB 54

(j) WSLB 72 (k) WSLB 84

(l) nesting in D (m) D, 95% quantile

Figure 7. Structural diversity entropy (SDE), δ = 0, WSLI 3. Minimum values displayed are set to 0.
(A,B) (c) No nesting, 95% quantiles, (A,B) (m) Nesting in D, 95% quantiles.
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Disagreement between structural diversity maps of NDVI and random patch data
arises from (1) data with 10 GLs and inner scales of WSLI 3 and (2) data with 100 GLs
and δ = 2. When (1) WSLI 3 is applied to data with 10 GLs, random patch data depicts
regime separation with all δ ∈ {0, 1, 2} (S11, S14, S17). In NDVI data, a mix of transition
zones and regime separation appears, but is obstructed by small-scale structure and only
visible within 95% quantiles. Separate regimes can be recognized with δ = 0 (Figure 7A)
and narrow, not well defined transition zones with δ ∈ {1, 2}, when 95% quantiles are
displayed (Figures S6 and S9). In case (2), when δ = 2, WSLI ∈ {7, 13} and data has
100 GLs, patch data reveals rings that evolve to separate regimes (S18, S19). Yet, 95%
quantiles of NDVI data reveal line features that appear almost identical to those multi-scale
line features detected in data with 10 GLs (Figures 6B(j) and S10B(k)). We suspected this
disagreement to be influenced by the width of transition zones in NDVI vs. edges in
patch data, which have virtually no width. We therefore tested patch data with wider
edges, i.e., transition zones and we chose one of the structural diversity maps to do so.
More specifically, we chose a map created with Shannon entropy in 10 GL random patch
data, using WSLI 7. We binned this data to 100 GLs and calculated structural diversity
entropy, using δ = 2 and WSLI ∈ {7, 13}. The results depict rings, not regime separation
(Figure 8). This means that these method specifications allow to distinguish between edges
and transition zones.

Regime-Separation vs. Feature Detection

(a) transition zones (b) SDE (c) SDE

Figure 8. (a) Random patches surrounded by transition zones, (b) structural diversity entropy (SDE),
δ = 2, inner scale WSLI 7, outer scale D, (c) SDE, δ = 2, inner scale WSLI 13, outer scale D.

3.4. Spatial Scale

Ideal inner scales to detect multi-scale structural diversity features are defined by
WSLI ∈ {7, 13}. The size of multi-scale features depends only on the size of the inner scale,
which supports Hypothesis 4. Regime-separation and narrow line features can be detected
on inner scales of WSLI 3, but maps are obscured by small-scale structure in the latter case
(Figure 7A,B(l,m)). While the sheer size of the outer scale affects the results, scales based on
the effective range of structural diversity features do not improve feature detection. Using
either the double moving window nesting scheme or the block nesting scheme, those outer
scales that were chosen based on feature-typical length-scales lead to very similar results
compared to scales that were chosen arbitrarily. Furthermore, differences between blocks
and outer moving windows of the same size are minor, with structural diversity maps and
metric values being the same or very similar (for example, Figure 5A,B(e,f)). Hypothesis 5
is supported because multi-scale and uni-scale structural diversity maps are most similar
when inner and outer moving windows are of similar size (for example, Figure 5A(b,c)).
As the outer scale increases, features either persist or emerge into what is depicted when
the outer scale is the domain (NDVI data), supporting Hypothesis 7. When the outer
scale is the domain, simulated patch features or the rings surrounding them are depicted
before a relatively homogeneous background, as expected in Hypothesis 7b. In NDVI data,
structure is visible in the background. When the outer scale is a block, structural diversity
of simulated patch data reveals blocks in different colors in some cases and features appear
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before a relatively homogeneous background in each block, in line with Hypothesis 7a
(Figures S12A(e), S13B(e), S15A(e) and S16B(e)). In NDVI data, blocks are never depicted in
different background colors.

As the outer scale increases, ‘rectification’ can be observed in all structural diversity
maps of data with 10 GLs and independent of δ when WSLI ∈ {7, 13} are used. This means
that line and ring features appear angular or cornered (for example, Figure 6A(g–i)). In
random patch data, this can even occur with a uni-scale approach (S19A). In random noise
and linear gradient data, small rectangles appear (for example, Figures S27A and S30A).

3.5. Multi-Scale Structural Diversity in Northern Eurasia

Structural diversity in northern Eurasia reveals large patterns, some appearing rather
like lines, others more like patches or ‘areas’, such as high diversity in the whole of
northern Europe. High structural diversity is detected in the same places with both method
specifications. When the study region is ‘zoomed in’, structural diversity features are
virtually identical to those detected when the method is applied directly to the study region.
More specifically, the line features in Figure 9A(b) are similar to those in Figures 5A(j) and
S5A(i), which is reasonable since we used WSLI 9 in northern Eurasia and WSLI 7 and 13
in the study region. Patches in Figure 9B(b) are virtually identical to those in Figure 6B(i).

Multi-Scale Structural Diversity, Outer Scale: Blocks of WSLB 200

(A) SDE, δ = 0, WSLI 9, 10 GLs

(a) Northern Eurasia

(b) Study region cropped from (a)

(B) SDE, δ = 2, WSLI 13, 100 GLs

(a) Northern Eurasia

(b) Study region cropped from (a)

Figure 9. Structural diversity entropy (SDE), (A,B) (a) of northern Eurasia (Lambert azimuthal
equal-area projection), (b) of the study region, which was cropped from northern Eurasia.

3.6. Multi-Scale Structural Diversity in Coarser Resolution NDVI Data

Figure 10 reveals the loss of information about structural diversity in the study region
with increasing pixel size and the interaction between this information loss and the inner
scale. On a local inner scale (WSLI 3), an aggregation factor of 2 leads to similar small-scale
structures compared to the original resolution and aggregation factors 6 and 10 reveal



Remote Sens. 2022, 15, 14 17 of 25

structures that could be described as pixely and somewhat incomplete versions of the
transition zones (Figure 10A).

On an inner scale of WSLI 7, an aggregation factor of 2 reveals similar line features
compared to no aggregation. These features appear similar to those detected with WSLI 13
in the original resolution data. With aggregation factors 6 and 10, these line features are
increasingly being fused to one large structure (Figure 10B).

On an inner scale of WSLI 13, aggregation of 2 × 2 pixels reveals that information
about multi-scale patches is lost, but multi-scale line features are still detected. These line
features appear similar to those detected in the original resolution data with the same
method specifications when the 95% quantile is displayed. Aggregation factors of 6 and 10
reveal large, smooth structures (Figure 10C).

Multi-Scale Structural Diversity in Coarser Resolution NDVI Data

(A) SDE, δ = 0, WSLI 3, Outer Scale D, 10 GLs

(a) no aggregation (b) aggregation factor 2 (c) aggregation factor 6 (d) aggregation factor 10

B) SDE, δ = 0, WSLI 7, Outer Scale D, 10 GLs

(a) no aggregation (b) aggregation factor 2 (c) aggregation factor 6 (d) aggregation factor 10

(C) SDE, δ = 2, WSLI 13, Outer Scale D, 100 GLs

(a) no aggregation (b) aggregation factor 2 (c) aggregation factor 6 (d) aggregation factor 10

Figure 10. Structural diversity entropy (SDE), quantified wit δ ∈ {0, 2}, the outer scale is D in all
cases. Minimum values displayed are set to 0.

4. Discussion

One of the the main challenges in the study of landscape heterogeneity is the iden-
tification of significant structures that dominate across multiple spatial scales. Herein,
we propose a novel method to combine information from different spatial scales with an
empirical Bayesian model. This approach offers several advantages:

1. It can reveal the multi-scale character of landscape heterogeneity and detect multi-
scale structural diversify features and spatial regimes. In particular, it can reveal
near scale-invariant structures that are detected across almost all scales (such as line
features in NDVI data).

2. The approach can be implemented without knowledge about typical length-scales of
structural diversity features.

3. The smoothing effect inevitable in uni-scale moving window applications is removed.
4. Block and double moving window schemes can be used interchangeably, which allows

the optimal choice from a computational perspective. The block nesting scheme is
particularly suitable for processing very large data (such as NDVI in northern Eurasia).



Remote Sens. 2022, 15, 14 18 of 25

The following interpretations are valid for the spatial configurations we tested in this
study, which is direction-invariant co-occurrence of values in direct proximity. While some
of the interpretations are naturally quite technical, we place our findings in an ecological
context at the end of this section.

4.1. Multi-Scale Structural Diversity Features

Areas where structural diversity is found to be high on different spatial scales can
reveal themselves as patches and line features. Such multi-scale structural diversity features
can represent or emerge from transition zones between spatial regimes. This means that
transition zones in NDVI data point to a change in landscape structure that alters vegetation
productivity so dramatically that it can be detected across scales. Line features represent
places of β structural diversity (spatial disorder) and multi-scale patches represent areas
of high γ structural diversity (including the value gradient). Shannon entropy is also
a measure of uncertainty [75], which means that transition zones are characterized by
high uncertainty about landscape structure. In contrast, within spatial regimes, much
information is redundant, in the sense that values could be interpolated if only a sample
were available. Our results suggest that linear structural diversity features are quite robust
against method specifications, while in high GL data, additional information manifests
as patches (see Figure 4). The latter can be termed multi-scale hotspots, because they are
detected with the largest exponent [28]. The role of structural diversity hotspots for other
types of biodiversity hotspots is yet to be investigated. However, a positive association was
recently established between potential hotspots of 3D structural complexity of forests and
several high biodiversity ecoregions, suggesting further research may be worth while [85].

4.2. Spatial Scale

From a methods perspective, the smallest scale on which spatial structure can be
quantified is the local scale (here defined by WSL 3), the domain can be interpreted as
the global scale and intermediate scales can be called regional scales. Different behavior
between local and regional scales has also been observed in other second-order texture
metric applications, where regional scales were found to improve classification accuracy [79,
86]. Yet, this issue is not method-specific, for example, fractal dimension, a measure of
complexity, is also affected by unusual behavior on local scales [87]. Different behavior
between local and regional scales is linked to the inseparable relation between resolution
and extent, which also explains why ideal inner windows for feature detection can be
identified. Pixel resolution represents the smallest resolvable scale and together, resolution
and extent restrict the variability in the data and represent the scale of variation [80]. The
scale of variation ultimately defines which landscape structures are resolved by the data.
While both pixel size and extent affect the detection of landscape patterns [88–90], the
former has been addressed more extensively and often under the umbrella terms ‘change
of support’ [51,80] and ‘modifiable aerial unit problem’ [31]. The method presented herein
requires no information about heterogeneity-typical scales; however, the resolution co-
determines the scale on which structures are resolved. The results from section 3.6 unveil
that coarser resolution leads to a loss of information about spatial transition zones in the
NDVI data of our study region. Hence, coarse resolution NDVI data are better suited
for processes that manifest on larger scales (defined by both resolution and extent). In
contrast, if the process under investigation manifests on smaller scales, finer resolution
is necessary. Structural diversity metrics can then reveal landscape features that are not
visible in coarser resolution data. Therefore, data resolution must be chosen with care,
either based on process-typical scales or published research, or alternatively methods to
assess the effect of resolution [31,51] can precede or be combined with the explicit treatment
of extent [91].
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4.3. Regime Separation

The inner scale restricts what size landscape structures can be detected, yet these
structures are detected in relation to the outer scale. This explains why regime separation
requires outer scales that are large enough to contain the regimes. The relative size of
regimes differs, i.e., the bareland regime does not cover the same size area as the vegetation
regime and likewise patches and the surrounding area are of different size. Therefore, kO
differ between regimes. In patch data, kO are the same everywhere within patches and
everywhere within the surrounding area, but distinctly different between them. The results
suggest that in NDVI data, kO are similar everywhere within the bareland regime and
within the vegetation regime, but, again, distinctly different between them.

4.4. Linear Gradient Stratification and Rectification

The removal of smoothing caused by moving windows comes at the expense of a
smooth field when data has 10 GLs, revealed by rectification and stratification observed
with WSLI ∈ {7, 13}. This is due to the discrete character of 10 GL data and rectification is
also attributable to the use of moving windows. In each moving window, kI compositions
are unique and if the pixel pair arrangement differs strongly from a neighboring window,
this is picked up by an abrupt change in structural diversity entropy values. Because
square windows move in horizontal and vertical directions, these abrupt changes lead to
rectification. In linear gradient data, stratification instead of rectification is visible because
data are organized along a north–south gradient. Each row contains roughly the same
number of different pixel values and the differences between vi and vj are roughly the same
within each row. The same is true for columns, but between rows and columns, differences
are distinct. This spatial organization is revealed as horizontal stripes and their width and
position depends on the outer scale. Perfectly linear gradients on a perfectly placed grid
are unlikely to occur in natural landscapes, although it may be possible to quantify the
level of linearity in artificial landscapes.

4.5. Ecological Context and Possible Applications

Multi-scale structural diversity illuminates the hierarchical character of spatial hetero-
geneity and can delineate a landscape by its role for vegetation activity, energy and water
balances. Interactions between soil, plants and atmosphere organize landscapes in regimes
of spatially stable conditions, such as the bareland and the vegetation regimes in our study
region. Such areas may often correlate with ecosystem types and both the regimes and the
transition zones between them can now be localized. This enables automated monitoring
of vegetation boundaries migrating uphill under warming temperatures [67], because such
transition zones can be detected as delineated line or patch features. The block nesting
scheme allows to detect multiple-scale landscape structure without smoothing effect on a
continental scale. With the bare eye, one must zoom in to appreciate features detected in a
sub-region of northern Eurasia like our study area, but it enables quantitative analyses of
changes in landscape heterogeneity across scales. If structural diversity in northern Eurasia
changes over time, it can indicate major ecosystem shifts related to some of the earth’s
suggested tipping points [92]. This would have profound implications for processes from a
micro- to a planetary level, ranging from microbial soil alterations to changes in the albedo
and shifting climate patterns [13,93,94].

Multi-scale features so prominently define the structure of a landscape that it can be
assumed they also play a crucial role for ecological and environmental processes on small
and large scales [33]. What counts as small or large is defined by the scale of variation;
however, the methods presented herein are invariant to pixel size in the sense that they
operate identically, independent of resolution. With fine enough resolutions, these methods
can likely detect rivers, cliffs, treelines and forest edges or hedgerows in agricultural areas.
Applying these methods to continuous functional diversity maps could also shed light on
the spatial component in the functioning of ecosystems, because it would reveal how traits
such as nitrogen, chlorophyll, cartenoids, canopy height or leaf area, among others, are
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organized in space [95,96]. There are also many ways in which spatial scale is connected to
animal abundance, composition and movement, be it through niche occupation, foraging
behavior, dispersal range or based on landscape connectivity [97–99]. Rather than testing
different size moving windows [98], it is now possible to specifically investigate the effect
of the most dominant heterogeneity features, which comprise information from different
scales.

Combining methods that address the modifiable aerial unit problem with the meth-
ods presented in this study could enable the detection of borders of fragments and also
of transition zones that are characterized by spatially disordered fragments. This may
further illuminate how increasing fragmentation affects biodiversity and environmental
functioning through processes interacting across multiple scales [100,101]. In this context,
it is relevant that the largest exponent can reveal whether data comprises transition zones
or abrupt edges, because the latter would be revealed as separate regimes when δ = 2
is applied to data with many GLs. However, gradual change is detected as line features
or patches. Such information might be particularly useful for studying succession near
edges resulting from forest logging, which affects biodiversity across taxa of flora and
fauna [102,103]. In urban environments, edges have been found some of the most influen-
tial structures for animal behavior [104] that can also demarcate breaks in the division of
water and energy [105].

Further, the empirical Bayesian model used to realize a hierarchical concept of land-
scape heterogeneity is flexible enough to be extended to more spatial scales, temporal scales
and to other thematic areas. This would target several interesting questions, for example,
how information flow from the past to the present can improve our understanding of
ecological and earth system processes, or the likelihood of observed structural diversity,
considering how a landscape was structured in the past. The approach could be further
advanced to become a model predicting future trajectories of structural diversity and
potentially be adapted to include covariates in the process.

5. Conclusions

Structural diversity entropy meets the important challenge of quantifying landscape
heterogeneity in continuous remote sensing data and contributes to a growing suite of
methods that do not rely on the patch-mosaic paradigm [19,20]. The metric captures spatial
disorder and value differences for a comprehensive measure of γ structural diversity. The
empirical Bayesian model presented herein advances scale-specific structural diversity
quantification with a direct model approach that integrates hierarchical levels of spatial
scale. The approach reveals the multi-scale character of structural diversity by combining
information from different scales. We applied this method to NDVI data in the northern
high latitudes and we found that multi-scale structural diversity features, such as patches
and line features, persist or become apparent across scales. Line features resemble the tran-
sition zones between spatial regimes and patches represent those areas within the transition
zones where the value gradient is the steepest. Spatial regimes can also be distinguished
based on their different structures when appropriate method specifications are applied. We
developed three different schemes to nest smaller extents inside larger ones and we find
the following associations: The smallest inner scale on which structural diversity can be
quantified generally reveals additional small-scale structures, while larger inner scales are
suitable for detecting multi-scale features. The outer scale need not be informed by typical
length-scales, but its sheer size affects the results. We provide a roadmap that serves as
a guide for the specification of structural diversity entropy, the choice of scales and GL
reduction (summarized in S1). The theoretical background described in this paper, along
with the tools provided in the R package StrucDiv, allows for this method to be applied
to other contexts. We hope that method and software will be a timely contribution to
the numerous operating and soon-to-come satellite missions delivering ‘new information
on physiological processes related to photosynthesis, transpiration and respiration and
stress detection’ at a planetary level [18]. Our study advances information extraction from
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remote sensing imagery with an approach that holds the potential to reconsider scale in the
characterization of environmental and biological landscape processes.
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