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Abstract: The global navigation satellite system (GNSS) and inertial navigation system (INS) in-
tegrated navigation system have been widely used in Intelligent Transportation Systems (ITSs).
However, the positioning error of integrated navigation systems is rapidly divergent when GNSS
outages occur. Motion constraint and back propagation (BP) neural networks can provide additional
knowledge to solve this issue. However, the predictions of a neural network have outliers and
motion constraint is difficult to adapt according to the motion states of vehicles and boats. Therefore,
this paper fused a BP neural network with motion constraints, and proposed a motion-constrained
GNSS/INS integrated navigation method based on a BP neural network (MC-BP method). The
pseudo-measurement of the GNSS was predicted using a fitting model trained by the BP neural
network. At the same time, the prediction outliers were detected and corrected using motion con-
straint. To assess the performance of the proposed method, simulated and real data experiments were
conducted with a vehicle on land and a boat offshore. A classical GNSS/INS integration algorithm,
a motion-constrained GNSS/INS algorithm, and the proposed method were compared through
data processing. Compared with the classical GNSS/INS integration algorithm and the motion-
constrained GNSS/INS algorithm, the positioning accuracies of the proposed method were improved
by 90% and 64%, respectively, in the vehicle land experiment. Similar performances were found in
the offshore boat experiment. Using the proposed MC-BP method, improved meter-level-positioning
results can be achieved with the GNSS/INS integration algorithm when GNSS outages occur.

Keywords: motion constraint; BP neural network; integrated navigation system; INS; GNSS outages

1. Introduction

Intelligent transportation systems (ITSs) including unmanned driving vehicles, un-
manned boats, intelligent logistics, and shared travel put forward high requirements for
the accuracy and reliability of vehicle and boat navigation [1]. In order to obtain more
precise navigation and positioning results, two (or more) types of integrated navigation
and positioning technologies are generally adopted [2]. The fusion of the global navigation
satellite system (GNSS) and an inertial navigation system (INS) is a common method [3].
An INS has the advantages of full autonomy, a fast sampling rate, and high accuracy within
integration times. Using an INS, 3D positioning and velocity data can be achieved in all
types of weather [4]. However, INS positioning errors cumulatively increase over time [5].
In most cases, users can obtain high-precision 3D positioning and velocity data using a
GNSS [6]. However, GNSS signals are vulnerable to interference and their sampling rates
are low [6]. GNSSs and INSs have complementary functions. Integrated GNSS and INS
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navigation systems have been widely used in the fields of air, land, and sea navigation [7].
However, GNSS signals are often blocked by trees, buildings, and viaducts in urban settings
and are blocked by large oil-drilling platforms and cross-sea bridges in marine settings,
resulting in less visibility for satellites and serious multipath issues. Reliable position
information cannot be obtained, the measurement updates anomalies, and then the posi-
tioning solutions of integrated navigation systems rapidly become divergent [8]. Therefore,
how to keep the GNSS/INS integrated navigation system working normally when GNSS
outages occur is an urgent problem [9–11]. Three methods are usually used to overcome
the above problems.

One category is the use of external auxiliary sensors including barometers, odometers
(ODs), and vision cameras [12]. Godha [13] first obtained a vehicle’s forward velocity by
incorporating an OD into an integrated navigation system. Yan [14] added ODs to the
GNSS/INS integrated navigation system and decimeter-level positioning was achieved. Li
and Zhai [5,15] combined vision cameras with a GNSS/INS integrated navigation system,
which effectively improved the positioning accuracy in complex urban environments.
These methods can effectively improve the positioning accuracy during GNSS outages.
However, the methods of using extra sensors increase the cost, and data processing is
more complicated.

Another category is the use of motion constraints to overcome divergence errors in
positioning. Common motion constraints include elevation constraints, velocity constraints,
and attitude constraints. Motion constraint algorithms are derived from a vehicle’s inherent
motion characteristics. During GNSS outages, the constraint values of the motion constraint
algorithm can be introduced to a filter as pseudo measurements to replace missing GNSS
measurements [14]. Godha [13] proposed an elevation constraint based on the small change
of vehicle elevation over a short time, which effectively reduced the elevation error, but the
improvement in the horizontal positioning accuracy was not obvious. Dissanayake [16]
proposed the idea of nonholonomic constraint (NHC), and pointed out that it was better to
set the lateral velocity and vertical velocity of the vehicle to zero when no jump or sideslip
phenomenon occurred. In view of an urban environment, Klein, et al. [17] proposed an
attitude angular velocity constraint, and the initial value of the horizontal attitude angle
was set to 0. Niu et al. [18] proposed a heading angular velocity constraint that could
improve the positioning accuracy of low dynamic vehicles. The above motion constraint
information is established by a vehicle in an ideal motion state, which generally yields
a constant constraint. However, the actual motion of a vehicle or boat is very complex,
which reduces the effectiveness of a constant motion constraint algorithm, especially for the
velocity constraint [19]. In order to an achieve an adaptive velocity constraint according to a
vehicle’s motion, Liu et al. [19] analyzed the relationship between NHC and vehicle’s state
of motion, and connected vehicle lateral velocity with both forward velocity and heading
angular velocity. However, in subsequent vehicle lateral velocity constraint modeling, only
a relatively simple linear multiplication adaptive adjustment formula was used.

Using an artificial neural network (ANN) algorithm is an applicable method to im-
prove the positioning accuracy during GNSS outages. An ANN algorithm is suitable
for predicting good results for nonlinear systems. Many researchers have built a variety
of neural networks to aid INSs when GNSS outages occur [20–23]. The main idea of an
ANN-aided GNSS/INS integrated system algorithm is to mimic the mathematical rela-
tionship between the navigation information and the vehicle’s dynamical data to maintain
high navigation accuracy when GNSS outages occur [21]. Rashad et al. [22] first used a
basis function (RBF) neural network to predict the positioning error between an INS and a
GNSS. EI-Sheimy et al. [23] used a multi-layer feed-forward network to fit the relationships
between time, velocity, yaw and position error, and velocity. Fang et al. [21] used LSTM to
predict GNSS position increments during GNSS outages, and also pointed out that an ANN
algorithm had the disadvantage of the predicted value inevitably containing outliers. In
addition to predicting error correction values (INS errors) or pseudo-measurement (GNSS
velocity and position result or increments), an ANN can also be used to solve the adaptive
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problem of motion constraint parameters. Zhang et al. [24] used an RBF to predict vehicle
lateral and vertical velocity directly. Brossard et al. [25] used the convolutional neural
network (CNN) to achieve the optimal estimation of the observed variance in an NHC
when processing moving vehicles.

In short, a motion constraint algorithm is very stable when GNSS outages occur.
However, the constraint value cannot be adapted according to a vehicle’s motion state.
The GNSS pseudo-measurement predictions gained by using a neural network algorithm
inevitably have outliers. In view of the above problems, this paper proposes a motion-
constrained GNSS/INS integrated navigation method based on a BP neural network
(MC-BP). In this method, a BP neural network is continuously trained to obtain a fitting
model between GNSS positioning increments and integrated navigation system positioning
increments when GNSS signals are available. During GNSS outages, the trained fitting
model can predict the GNSS positioning increments. At the same time, the outliers of the
predicted values are detected and corrected using motion constraint. Then, the pseudo
measurement values of the GNSS are obtained. These pseudo measurements can allow the
extended Kalman filter (EKF) of the integrated navigation system to work normally.

The remaining sections of this paper are organized as follows: Section 2 introduces
the principles of the BP neural network algorithm and motion constraint algorithm, and
proposes the MC-BP method. Section 3 assesses the performance of the algorithm proposed
in this paper through two sets of experiments: one on land and the other on sea. The
conclusions are drawn in Section 4.

2. Methodology
2.1. Classical GNSS/INS Loosely Coupled Integrated Procedure

A classical GNSS/INS loosely coupled integrated procedure can be expressed as
follows [8]:

xk = f (xk−1) + ηk (1)

zk = h(xk) + vk (2)

where x is the error state vector, f is the system nonlinear state function, η is a noise
distribution matrix whose variance matrix is Qk, Z is the observation vector, h is a system
nonlinear state function of the observation equation, and v is the noise distribution matrix
whose variance matrix is Rk. The state vector x of the loosely coupled model in the
navigation coordinate system is a 15-dimensional vector:

x = [δϕE δϕN δϕU δvE δvN δvU δpE δpN δpU εx εy εz ∇x ∇y ∇z]T (3)

where δϕE δϕN δϕU are the attitude errors, δvE δvN δvU are the velocity errors, δpEδpN δpU
are the position errors, ε is the three-axis gyro bias, and ∇ is the three-axis accelerometer
bias [8]. The Jacobian matrix is obtained by expanding f (xk−1) and h(xk) at xk−1 and xk,
respectively, using the Taylor expansion [21]:

Fk−1 =
∂ f
∂x
|(x=xk−1)

(4)

Hk =
∂h
∂x
|(x=xk)

(5)

where k− 1 and k represent the state labels, respectively, and Fk−1 and Hk are the Jacobian
matrix. If the 15-dimensional state vector is rewritten in discrete time, the process of the
EKF is given as follows [25]:

xk,k−1 = f (xk−1) (6)

Pk,k−1 = Fk−1Pk−1FT
k−1 + Qk−1 (7)

Kk = Pk,k−1HT
k (HkPk,k−1HT

k + Rk)
−1

(8)
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xk = xk,k−1 + Kk(zk − h(xk,k−1))
−1 (9)

Pk = (I − Kk Hk)Pk,k−1 (10)

where P is the covariance matrix of the state, Kk is the gain matrix, and I is the unit matrix.

2.2. Motion-Constrained GNSS/INS Integrated Navigation Method Based on BP Neural Network
2.2.1. Pseudo Measurement Prediction Model Based on BP Neural Network

In practical applications, GNSS measurements can be lost or abnormal due to the
occurrence of GNSS outages. As a consequence, Equation (9) cannot proceed normally.
ANN-aided navigation systems have shown impressive performances in the pseudo mea-
surement prediction [20–23].

Brossard et al. [25] pointed out that training a neural network is quite difficult and
slow. Setting an adapter with a recurrent architecture makes the training even more
difficult. Simple CNN-like shallow neural network architecture can effectively overcome
the above problems. However, a CNN is generally used for deep learning. Both BP and RBF
belong to the category of feed-forward neural networks and have their own advantages.
The generalization ability of RBF is better than that of the BP network in many aspects.
However, the structure of a BP network is simpler than that of an RBF network when
solving problems with the same accuracy requirements. Therefore, a BP neural network
was selected for use in this paper. Neural networks can avoid overfitting by using a
relatively small number of parameters. The BP neural network is one of the most widely
used neural networks, which is usually called artificial neural network that is based on
an error back-propagation algorithm. The structure of a BP neural network is as shown
in Figure 1. There are three layers in a classical BP neural network structure including an
input layer, a hidden layer, and an output layer [26].
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Figure 1. Topology structure and error propagation process of a three-layer BP neural network.

The input layer vector is x = (x1, x2, . . . xn)
T , the hidden layer vector is

H = (H1, H2, . . . Hm)
T , and the output layer vector is y = (y1, y2, . . . yi)

T . BP neural
networks include signal-forward propagation and error-backward propagation. When
calculating the error output, it is carried out in the direction from input to output, and the
adjustment of weights is carried out in the direction from output to input [26].

In an ANN-aided navigation systems algorithm, the selection of the input layer and
output layer of a neural network is very important. Research shows that OINS − ∆PGNSS
mapping models have good performances [21]. In this model, ∆PGNSS is the increment
of the GNSS position, and OINS contains the specific force, angular velocity, velocity, and
heading angle. The parameters in OINS are also the main factors that affect the values of
the increments of INS position ∆PINS. In addition, the position increment accuracy of a
GNSS/INS integration algorithm is better than that of INS individually when GNSS signals
are available. To reduce the number of input parameters and increase the training speed,
only the increments of the integrated navigation system position ∆PINT were used as input,
and ∆PGNSS was the output of the pseudo-measurement prediction model based on the BP
neural network. The factors of the input layer and output layer are expressed as follows:
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xj =
[
∆Pn−j

INT , . . .∆Pn−1
INT ,∆Pn

INT

]
(11)

yj =
[
∆Pn−j

GNSS, . . . ∆Pn−1
GNSS, ∆Pn

GNSS

]
(12)

where xj is the position increment result of the GNSS/INS integrated navigation system
in a training window period, yj is the position increment result of the GNSS integrated
navigation system in a training window period, and j is the epoch of a training window
period. In this paper, the position increments of the integrated navigation system and the
position increments of GNSS in three directions were trained separately, by subtracting
the actual position increment output by the neural network directly and the actual GNSS
position increment that was output by the GNSS:

ej = ∆Pj
BP − ∆Pj

GNSS (13)

where, if the error ej was greater than the expected value, back-propagation of the error
was performed, and the weights were adjusted until the ej was within the ideal range. In
addition, the hidden layer of the neural network is set to 3, the maximum iteration times
for training were 300, the initial learning rate was 0.01, and the training method was the
gradient descent method.

2.2.2. Vehicle Motion Constraints Algorithms

The pseudo-measurement predicted by the BP network-trained model could have
outliers. To detect and correct the outliers, motion constraints including elevation constraint,
velocity constraint, and attitude constraint were adopted in this paper.

• Elevation Constraint Algorithm

When a vehicle moves on a relatively flat area, its elevation does not change greatly in
a short time [17]. The elevation of a vehicle in a navigation coordinate system is shown in
Figure 2.
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In the construction of constraint equations for elevation, a constant can be used.
However, the observation value of elevation is not constant in an actual observation.
Therefore, this paper used the elevation of the last sampling epoch to constrain the elevation
of the current epoch. The elevation constraint equation is as follows [17]:

hn
k = hn

k−1 + σh, E(σh) = 0 (14)

where h is the elevation,σh is the elevation measurement error of the vehicle in the naviga-
tion coordinate system, and E is the expectation value.

• Velocity Constraint Algorithm

There are two nonholonomic constraints when a wheeled vehicle moves on the ground.
If the vehicle does not slide or jump off the ground, the vertical velocity and lateral velocity
of the vehicle should be 0 [16] (Equation (15)). Vertical velocity and lateral velocity in the
body coordinate system are shown in Figure 3.
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vb
x = 0, vb

z = 0 (15)

Although many models can be used to determine whether a vehicle slides or jumps
when it is moving, the vehicle state of motion and the tire and ground characteristics
should be known prior to using these models. As a consequence, the modeling is very
complex [16]. To overcome this issue, this paper took the lateral velocity noise and vertical
velocity noise of a vehicle GNSS sensor in the body coordinate system as constraints [17].
The constraint equations are as follows:

vb
x = 0 + σb

x , E
(

σb
x

)
= 0 (16)

vb
z = 0 + σb

z , E
(

σb
z

)
= 0 (17)

where vb
x, vb

z are the lateral velocity and vertical velocity of a vehicle in the body coordinate
system, respectively, and σb

x , σb
z are the lateral velocity error and vertical velocity errors

of the vehicle, respectively. Since the velocity parameters were directly measurable, the
modified velocity was used to recalculate the position of the vehicle [27].

• Attitude Constraint Algorithm

When a vehicle moves on a relatively flat area, its pitch angle and roll angle change
little, and the variation in horizontal attitude angle (pitch angle and roll angle) is about
0 [17]. This paper used the horizontal attitude of the last epoch to constrain the horizontal
attitude of the current epoch. The attitude constraint equations are as follows [18]:

θn
x(k) = θn

x(k−1) + ωx + ηroll , E(ηroll) = 0 (18)

θn
y(k) = θn

y(k−1) + ωy + ηpitch, E
(

ηpitch

)
= 0 (19)

where θn
x , θn

y are the vehicle roll angle and pitch angles, respectively, ωx, ωy are the zero
biases of the gyroscope, and ηroll , ηpitch are the random walk noises of the gyroscope. Since
the attitude parameters were directly measurable, the modified attitude was used to correct
the position of the vehicle [27].

It should be mentioned that all of the motion constraint settings above were based
on vehicle inherent motion characteristics. The available motion constraints for boats are
tested in the simulated and real data experiments in Section 3.

• Outlier Detection and Correction based on Motion Constraints

As mentioned above, implementing motion constraints in both the system state and
measurement models can enhance the EKF filter performance without the use of other
sensors. Motion constraints can also be used to obtain vehicle position increments through
single filtered calculation. Figure 4 shows the relationship between a space’s virtual
observation (green ellipse) and real observation (red triangle), as well as measurement
updates from motion constraints. As shown in Figure 4a, if the virtual observation space
is too small, the motion constraint error ellipse cannot contain the real motion constraint
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observation value [24]. In order to overcome this issue, enlarging the observation variance
of the virtual observation is necessary, as shown in Figure 4b.
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A constraint value that is too large or too little will affect the performance of the
algorithm proposed in this paper. After experimental verification, the tripling motion
constraint standard deviation is regarded as a reasonable value. As a consequence, triple
motion constraint standard deviation was used to calculate the position increments in
this paper. These position increments were used to detect and correct the outliers of the
predictions of the BP neural network-trained model. The relative equations are as follows:

∆Ppre = ∆Ppre−GNSS, ∆Ppre−GNSS ≤ ∆Pmc(3τ) (20)

∆Ppre = ∆Pmc(τ), ∆Ppre−GNSS > ∆Pmc(3τ) (21)

where τ is the standard deviation of the motion constraints including the lateral velocity
constraint, the vertical velocity constraint, the elevation constraint, and the horizontal atti-
tude constraint. ∆Ppre−GNSS is smaller than ∆Pmc(3τ) and the prediction value ∆Ppre−GNSS
is reasonable [28], which can be brought into the EKF for measurement updating as the
∆Ppre. Otherwise, the prediction value ∆Ppre−GNSS is recognized as an outlier, and the
position is directly calculated by the ∆Pmc(τ).

2.2.3. Steps of the Proposed MC-BP Method

The algorithm flowchart proposed in this paper is shown in Figure 5, where, λ, l, h are
the points of latitude, longitude, and height output by the integrated navigation system,
respectively. The system principle is shown in Figure 5.

By combining the advantages of a BP neural network and motion constraints, a new
GNSS/INS integrated navigation method (MC-BP method) was proposed. The flowchart of
the algorithm proposed in this paper is shown in Figure 5. There were two system working
states in this method. The green dotted box shows the data processing flowchart when the
GNSS signals are available, while the red dotted box shows the data processing flowchart
when GNSS outages occur.
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(1) GNSS signals are available:

• The position increments ∆PINT = (∆P1
INT , ∆P2

INT , . . . ∆Pj
INT)

T
gained from the inte-

grated navigation system are used as the input for the BP neural network;

• The position increments ∆PGNSS = (∆P1
GNSS, ∆P2

GNSS, . . . ∆Pj
GNSS)

T
from the GNSS

are used as output for the BP neural network;
• The training process is continued between the input layer and the output layer of the

BP neural network, and a fitting model is obtained. At the same time, the position
increments ∆Pmc(3τ) of the vehicle for the next epoch are obtained by using the motion
constraint algorithm.

(2) GNSS outages:

• Assuming a GNSS outage occurs at the epoch of m + 1, and the GNSS cannot be

obtained. At this time, the position increments ∆Pm+1
INS = (∆λm+1

INS , ∆φm+1
INS , ∆hm+1

INS )
T

output by the INS are brought into the trained model to obtain the predicted values

of the position increments ∆Pm+1
pre−GNSS = (∆λm+1

pre−GNSS, ∆φm+1
pre−GNSS, ∆hm+1

pre−GNSS)
T

for
the GNSS;

• The position outliers are detected and corrected using Equations (20) and (21), and the
∆Ppre is obtained.

• The pseudo-measurement is introduced, which is obtained by ∆Ppre using the EKF
and the final GNSS/INS integration navigation results are obtained.

3. Experiments and Analysis

Since boats are affected by various kinds of environmental factors in the ocean such as
waves, wind, and biology, they present axial movements along the x, y, and z directions.
In actual sea conditions, waves also affect the lateral velocity of boats. In addition, boats
also have a sliding phenomenon when turning. Niu et al. [29] proposed that vehicles in
the form of bicycles swing during cycling, so an NHC would no longer be applicable in
this situation. Theoretically, an NHC is no longer applicable to boats moving in complex
offshore conditions [30]. In order to assess the availability of motion constraints for boats
and to choose applicable constraints for boats, this paper first designed a set of simulation
experiments. To evaluate the performance of the proposed MC-BP method, real data
experiments were conducted on land and offshore with vehicles and boats, respectively.

3.1. Boat Motion Constraint Simulation Experiment

In this simulation experiment, the boat first moved with a constant velocity of 1 m/s for
60 s, made a uniformly accelerated turn with an acceleration of 0.1 m/s2 for 60 s, and finally
performed a uniform linear motion for 60 s. The starting point of the simulation experiments
was 36.0264◦ N, 120.3045◦ E. The motion trajectory of the simulation experiment for the
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boat is shown in Figure 6a. The pitch angles and roll angles are shown in Figure 6b. The
navigation information in Figure 6a was used as a reference result for the simulation
experiments. The simulated GNSS measurement data were generated by adding a pseudo-
random error to the simulated reference value of the trajectory. The average value of the
pseudo-random error was approximately ±0.05 m, which was the positioning accuracy of
the GNSS sensor used in the real test.
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In order to reduce the abnormal filtering results of the positioning caused by noise
constraints that are too loose or tight, three constraint schemes were designed in this
simulation experiment. The velocity constraint, attitude constraint, and elevation constraint
were adopted using Equations (14) and (17)–(19). Considering that the sea level changes
little in a short time, the elevation constraints of the three schemes were uniform. The
constraint values of the constraints for scheme 1 were the same as the positioning accuracy
of the sensor used in the simulation experiment [13]. The inertial navigation equipment
inertial+ was produced by OXTS. The constraint values of schemes 2 and 3 were larger than
that of scheme 1. The velocity and attitude constraints of the three schemes are shown
in Table 1. To simulate a GNSS outage occurrence, only the inertial navigation solution
was used. The positioning errors using pure INS and INS with the three motion constraint
schemes of the simulated experiments are shown in Figure 7.

Table 1. Motion constraint schemes.

Constraints Scheme 1 Scheme 2 Scheme 3

vertical velocity 0.01 m/s 0.05 m/s 0.1 m/s
pitch 0.2◦ 0.5◦ 1◦

roll 0.2◦ 0.5◦ 1◦

heave 0.1 m 0.1 m

It can be seen from Figure 7 that the errors diverged quickly when the pure INS mode
was used, and the maximum positioning errors in the north, east, and up directions were
402 m, 471 m, and 15.9 m, respectively. When the constraint schemes were introduced, the
positioning error reduced significantly. Compared with schemes 1 and 3, the performance of
scheme 2 was better. Using scheme 2, the maximum positioning errors in the north, east, and
up directions were 23.2 m, 19.5 m, and 1.3 m, respectively. In short, the motion constraints
were able to be used for boats, and the positioning performance was affected by motion
constraints that were too loose or too tight. The usage of an appropriate constraint value
was necessary, and motion constraint scheme 2 was used in the real offshore experiments
described in the following section.
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3.2. Real Data Experiments
3.2.1. Experimental Data and Data Processing Strategy

In this paper, the real data experiments were divided into two experimental scenes:
land and offshore. The land experiment was conducted in the new west coast area of
Qingdao on 28 June 2021, from 07:46:00 to 08:00:00 (GPST). The offshore experiment was
conducted in Houchawan, Qingdao, on 2 August 2021, from 08:20:00 to 08:35:00 (GPST). In
order to assess the performance of the motion-constrained GNSS/INS integrated navigation
method during GNSS outages, the GNSS signal was interrupted artificially. The real data for
both land and offshore were interrupted five times, and the interruption last 60 s each time.
As shown in Figure 8, the interruption sequence and corresponding trajectory are labeled
as 1©~ 5©, respectively. The motion states of the vehicle and boat during the interruptions
included acceleration, deceleration, turning, and traveling straight.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 

  
(a) (b) 

Figure 8. Trajectories of the experiments: (a) on land; (b) offshore. 

The same experimental equipment was used for the land and offshore experiments. 

The inertial navigation system used was inertial+ MEMS inertial navigation equipment 

produced by OXTS. The sampling frequency of the INS was 100 Hz and the sampling 

frequency of the GNSS was 1 Hz. The sensors’ main performance specifications are shown 

in Table 2, and the carriers are shown in Figure 9. Figure 9a depicts the vehicle used in 

the land experiment and Figure 9b shows the boat used in the sea experiment. The GNSS 

positioning method was real-time kinematic (RTK). 

  
(a) (b) 

Figure 9. Experimental instrument and carriers: (a) vehicle; (b) boat. 

Table 2. Navigation and positioning sensor parameters. 

Sensor Type Error Term Value 

gyroscope 
zero bias 2°/√ℎ 

random walk 0.2°/√ℎ 

accelerometer 
zero bias 5 mm·s−2 

random walk 20 mg 

GNSS 

horizontal positioning accuracy 0.02 m(RTK) 

vertical positioning accuracy 0.05 m(RTK) 

velocity measurement accuracy 0.05 m/s(RTK) 

lever arm error 

x 0.014 m 

y 0.342 m 

z 0.568 m 

Figure 8. Trajectories of the experiments: (a) on land; (b) offshore.

The same experimental equipment was used for the land and offshore experiments.
The inertial navigation system used was inertial+ MEMS inertial navigation equipment
produced by OXTS. The sampling frequency of the INS was 100 Hz and the sampling
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frequency of the GNSS was 1 Hz. The sensors’ main performance specifications are shown
in Table 2, and the carriers are shown in Figure 9. Figure 9a depicts the vehicle used in
the land experiment and Figure 9b shows the boat used in the sea experiment. The GNSS
positioning method was real-time kinematic (RTK).

Table 2. Navigation and positioning sensor parameters.

Sensor Type Error Term Value

gyroscope zero bias 2◦/
√

h
random walk 0.2◦/

√
h

accelerometer
zero bias 5 mm·s−2

random walk 20 mg

GNSS
horizontal positioning accuracy 0.02 m(RTK)

vertical positioning accuracy 0.05 m(RTK)
velocity measurement accuracy 0.05 m/s(RTK)

lever arm error
x 0.014 m
y 0.342 m
z 0.568 m

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 17 
 

 

  
(a) (b) 

Figure 8. Trajectories of the experiments: (a) on land; (b) offshore. 

The same experimental equipment was used for the land and offshore experiments. 

The inertial navigation system used was inertial+ MEMS inertial navigation equipment 

produced by OXTS. The sampling frequency of the INS was 100 Hz and the sampling 

frequency of the GNSS was 1 Hz. The sensors’ main performance specifications are shown 

in Table 2, and the carriers are shown in Figure 9. Figure 9a depicts the vehicle used in 

the land experiment and Figure 9b shows the boat used in the sea experiment. The GNSS 

positioning method was real-time kinematic (RTK). 

  
(a) (b) 

Figure 9. Experimental instrument and carriers: (a) vehicle; (b) boat. 

Table 2. Navigation and positioning sensor parameters. 

Sensor Type Error Term Value 

gyroscope 
zero bias 2°/√ℎ 

random walk 0.2°/√ℎ 

accelerometer 
zero bias 5 mm·s−2 

random walk 20 mg 

GNSS 

horizontal positioning accuracy 0.02 m(RTK) 

vertical positioning accuracy 0.05 m(RTK) 

velocity measurement accuracy 0.05 m/s(RTK) 

lever arm error 

x 0.014 m 

y 0.342 m 

z 0.568 m 

Figure 9. Experimental instrument and carriers: (a) vehicle; (b) boat.

In order to assess the performance of the method proposed in this paper, a classical
GNSS/INS integration algorithm, a motion-constrained GNSS/INS algorithm, and the
proposed MC-BP method were used in the data processing. The tight combined positioning
results post-processed by the GNSS RTK/INS were used as the reference. The motion
constraint schemes of the experiments on land and offshore are shown in Table 3. The
values of the constraints for the land experiment were the same as the positioning accuracy
of the sensor used in this paper. The offshore experiment used constraint scheme 2 of the
simulation experiment. The pitch and roll angle constraints of the land experiment were
smaller than those of the offshore experiment.

Table 3. Motion constraint schemes.

Constraint Content Land Constraint Scheme Offshore Constraint Scheme

vertical velocity 0.05 m/s 0.05 m/s
lateral velocity 0.05 m/s \

pitch 0.2◦ 0.5◦

roll 0.2◦ 0.5◦

heave 0.1 m 0.1 m

3.2.2. Analysis Results of the Vehicle Land Experiment

The positioning errors of the classical GNSS/INS integration algorithm without con-
straints are shown in Figure 10. Figure 11 shows the positioning errors of the motion-
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constrained GNSS/INS algorithm and the proposed MC-BP method. From Figure 10, we
can find that the positioning errors for the classical GNSS/INS integration algorithm in all
three directions diverge rapidly when GNSS outages occur. The maximum positioning er-
rors in the north, east, and up directions were 296.21 m, 336.70 m, and 24.61 m, respectively.
Compared with the classical GNSS/INS integration algorithm, the constrained GNSS/INS
algorithm can effectively reduce the positioning errors of the integrated navigation system
when GNSS outages occur. However, the maximum position errors could still reach tens of
meters (Figure 11). The north and east positioning errors could be reduced to less than 5 m
and that of the up direction can be reduced to less than 1 m by using the MC-BP algorithm
proposed in this paper. In detail, the maximum positioning errors in the north, east, and up
directions were 4.94 m, 4.68 m, and 0.30 m, respectively, for the MC-BP algorithm.
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The RMS values of the positioning errors for the vehicle land experiment during the
period when GNSS was interrupted are displayed in Table 4. It can be seen from Table 4
that the RMS values of the classical GNSS/INS integration algorithm were the largest.
When the motion-constrained GNSS/INS algorithm was added, the positioning accuracy
was improved by 73%, 64%, and 67% in north, east, and up directions, respectively. When
the proposed MC-BP algorithm was added, the positioning accuracy improved by 97%,
96%, and 93%, respectively.

Table 4. RMS values of positioning errors for vehicle land experiment (m).

Direction
Experimental Algorithm

Classical GNSS/INS Integration Motion Constraint MC-BP

North 42.750 11.305 0.955
East 48.362 17.457 1.554
Up 3.580 1.173 0.220

3.2.3. Analysis Results for the Marine Boat Experiment

The positioning errors of the classical GNSS/INS integration algorithm without con-
straints for the offshore experiment are shown in Figure 12. It indicates that the maximum
positioning errors for the east and north direction were 179.52 m and 226.64 m, respectively.
Similar to the vehicle land experiment, the maximum error occurred when the carrier
was turned. Figure 13 shows the positioning errors of the motion-constrained GNSS/INS
algorithm and the proposed MC-BP method. The maximum positioning errors using the
motion-constrained GNSS/INS algorithm in the north, east, and up directions were 8.32 m,
27.64 m, and 0.91 m, respectively. It can be seen that the proposed method has the best
performance. The maximum positioning errors of this method in the north, east, and up
directions were 1.82 m, 7.64 m, and 0.21 m, respectively.
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The statistical results of the positioning errors for the offshore boat experiment during
the period when the GNSS signals were interrupted are displayed in Table 5. It can be
seen from Table 5 that the RMS values for the classical GNSS/INS integration are 26.443 m,
21.935 m, and 1.170 m in the north, east, and up directions, respectively. When the motion-
constrained GNSS/INS algorithm was introduced, the positioning accuracy for these three
directions could be improved by 64%, 26%, and 49% in the three directions, respectively.
When the proposed MC-BP algorithm is added, the positioning accuracy can be improved
by 96%, 91%, and 53%, respectively.
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Table 5. RMS values of positioning errors for offshore boat experiment (m).

Direction
Experimental Algorithm

Classical GNSS/INS Integration Motion Constraint MC-BP

North 26.443 9.485 0.954
East 21.935 16.090 1.979
Up 1.170 0.593 0.545

4. Conclusions

During GNSS outages, the motion constraints for GNSS/INS integration algorithms
have adaptability problems due to the complex state of vehicle motion. At the same time,
GNSS pseudo-measurement predictions from neural network algorithms inevitably have
outliers. With the aiming of solving these problems, a motion-constrained GNSS/INS
integrated navigation method based on a BP neural network was proposed in this paper. In
order to evaluate the performance of this method, simulated and real data experiments were
conducted on land and offshore. The positioning errors of the integrated navigation system
using the three solution strategies of a classical GNSS/INS integration algorithm, a motion-
constrained GNSS/INS algorithm, and the proposed MC-BP method were compared. The
experimental results show the following:

1. Motion constraints were not only applicable for vehicles on land, but also for boats
when based on an appropriate constraint value.

2. For the vehicle land experiment, compared with the classical GNSS/INS integration
algorithm, the positioning accuracy values using the MC-BP method were improved
by over 90% in the north, east, and up directions. The improvement percentages were
larger than 64% compared with the motion-constrained GNSS/INS algorithm. Similar
performances were achieved by the offshore boat experiments.



Remote Sens. 2023, 15, 154 15 of 16

3. The RMS of the positioning errors with the MC-BP method in north, east, and up
directions are 0.955 m, 1.554 m, and 0.220 m when GNSS outages occur, and were
0.954 m, 1.979 m, and 0.545 m for the offshore boat experiment. By using the proposed
MC-BP method, meter-level-positioning results could be provided by the GNSS/INS
integration algorithm during GNSS outages.

In this paper, the velocity prediction was ignored, and a related model was not
established using the BP neural network to consider the vehicle state of motion. In the
future, a BP neural network based on a GNSS/INS adaptive integrated navigation method
considering velocity predictions should be studied further.

Author Contributions: Data acquisition, Y.X. and K.W.; methodology, Y.X., K.W., C.J. and Z.L.; data
processing and experimental analysis, C.Y., D.L., H.Z. and K.W.; article writing and typesetting, K.W.,
Y.X. and Z.L.; financial support, Y.X. and Z.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (42174035),
Talent Introduction Plan for Youth Innovation Team in Universities of Shandong Province (innovation
team of satellite position and navigation) and Shandong Provincial Natural Science Foundation,
China (Grant No. ZR2021QD148).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ning, Z.; Zhang, K.; Wang, X.; Obaidat, M.S.; Guo, L.; Hu, X.; Hu, B.; Guo, Y.; Sadoun, B.; Kwok, R.Y. Joint computing and caching

in 5G-Envisioned internet of vehicles: A deep reinforcement learning-based traffic control system. IEEE Trans. Intell. Transp. Syst.
2020, 22, 5201–5212. [CrossRef]

2. Chiang, K.W.; Duong, T.T.; Liao, J.K. The performance analysis of a real-time integrated INS/GPS vehicle navigation system with
abnormal GPS measurement elimination. Sensors 2013, 13, 10599–10622. [CrossRef]

3. Kim, Y.; An, J.; Lee, J. Robust Navigational System for a Transporter Using GPS/INS Fusion. IEEE Trans. Ind. Electron. 2018, 65,
3346–3354. [CrossRef]

4. Noureldin, A.; Karamat, T.B.; Georgy, J. Fundamentals of Inertial Navigation, Satellite-Based Positioning and Their Integration, 2nd ed.;
Springer: Berlin, Heidelberg, 2013.

5. Li, T.; Zhang, H.P.; Gao, Z.Z.; Niu, X.J.; El-Sheimy, N. Tight Fusion of a Monocular Camera, MEMS-IMU, and Single-Frequency
Multi-GNSS RTK for Precise Navigation in GNSS-Challenged Environments. Remote Sens. 2019, 11, 610. [CrossRef]

6. Yang, Y.X.; Xu, T.H.; Song, L.J. Robust estimation of variance components with application in Global Positioning System network
adjustment. J. Surv. Eng. 2005, 131, 107–112. [CrossRef]

7. Niu, X.J.; Nasser, S.; Goodall, C.; El-Sheimy, N. A Universal Approach for Processing any MEMS Inertial Sensor Configuration for
Land-Vehicle Navigation. J. Navig. 2007, 60, 233–245. [CrossRef]

8. Xiao, Y.M.; Luo, H.Y.; Zhao, F.; Wu, F.; Gao, X.L.; Wang, Q.; Cui, L.Z. Residual Attention Network-Based Confidence Estimation
Algorithm for Non-Holonomic Constraint in GNSS/INS Integrated Navigation System. IEEE Trans. Veh. Technol. 2021, 70,
11404–11418. [CrossRef]

9. Zhang, G.H.; Hsu, L.T. Intelligent GNSS/INS integrated navigation system for a commercial UAV flight control system. Aerosp.
Sci. Technol. 2018, 80, 368–380. [CrossRef]

10. Meng, Y.; Gao, S.S.; Zhong, Y.M.; Hu, G.G.; Subic, A. Covariance matching based adaptive unscented Kalman filter for direct
filtering in INS/GNSS integration. Acta Astronaut. 2016, 120, 171–181. [CrossRef]

11. Jiang, H.T.; Shi, C.; Li, T.; Dong, Y.T.; Li, Y.H.; Jing, G.F. Low-cost GPS/INS Integration with Accurate Measurement Modeling
Using an Extended State Observer. GPS Solut. 2021, 25, 17. [CrossRef]

12. Li, T.; Zhang, H.P.; Gao, Z.Z.; Chen, Q.J.; Niu, X.J. High-accuracy positioning in urban environments using single-frequency
multi-GNSS RTK/MEMS IMU integration. Remote Sens. 2018, 10, 205. [CrossRef]

13. Godha, S.; Cannon, M.E. GPS/MEMS INS Integrated System for Navigation in Urban Areas. GPS Solut. 2007, 11, 193–203.
[CrossRef]

14. Yan, P.H.; Jiang, J.G.; Tang, Y.N.; Zhang, F.N.; Xie, D.P.; Wu, J.J.; Liu, J.H.; Liu, J.N. Dynamic adaptive low power adjustment
scheme for Single-Frequency GNSS/MEMS-IMU/Odometer integrated navigation in the complex urban environment. Remote
Sens. 2021, 13, 3236. [CrossRef]

15. Zhai, R.; Yuan, Y.B. A Method of Vision Aided GNSS Positioning Using Semantic Information in Complex Urban Environment.
Remote Sens. 2022, 14, 869. [CrossRef]

http://doi.org/10.1109/TITS.2020.2970276
http://doi.org/10.3390/s130810599
http://doi.org/10.1109/TIE.2017.2752137
http://doi.org/10.3390/rs11060610
http://doi.org/10.1061/(ASCE)0733-9453(2005)131:4(107)
http://doi.org/10.1017/S0373463307004213
http://doi.org/10.1109/TVT.2021.3113500
http://doi.org/10.1016/j.ast.2018.07.026
http://doi.org/10.1016/j.actaastro.2015.12.014
http://doi.org/10.1007/s10291-020-01053-3
http://doi.org/10.3390/rs10020205
http://doi.org/10.1007/s10291-006-0050-8
http://doi.org/10.3390/rs13163236
http://doi.org/10.3390/rs14040869


Remote Sens. 2023, 15, 154 16 of 16

16. Dissanayake, G.; Sukkarieh, S.; Nebot, E.; Durrant-Whyte, H. The Aiding of A low-cost Strapdown Inertial Measurement Unit
Using Vehicle Model Constraints for Land Vehicle Applications. IEEE Trans. Robot. Autom. 2001, 17, 731–747. [CrossRef]

17. Klein, I.; Filin, S.; Toledo, T. Vehicle Constraints Enhancement for Supporting INS Navigation in Urban Environments. Navigation-
US. 2011, 58, 7–15. [CrossRef]

18. Niu, X.J.; Zhang, H.P.; Chiang, K.W.; El-Sheimy, N. Using Land-Vehicle Steering Constraint to improve the Heading Estimation of
MEMS GPS/INS Georeferencing Systems. In Proceedings of the Geomatics Conference and Symposium of Commission I, SPRS
Convergence in Geomatics Shaping Canada’s Competitive Landscape, Calgary, AB, Canada, 15–18 June 2010.

19. Liu, W.K.; Nong, Q.; Tao, X.L.; Zhu, F.; Hu, H.J. OD/SINS adaptive integrated navigation method with non-holonomic constraints.
Acta Geod. et Cartogr. Sinica. 2022, 51, 9–17.

20. Jaradat, M.A.K.; Abdel-Hafez, M.F. Non-linear auto regressive delay-dependent INS/GNSS navigation system using neural
networks. IEEE Sens. J. 2016, 17, 1105–1115. [CrossRef]

21. Fang, W.; Jiang, J.G.; Lu, S.Q.; Gong, Y.L.; Tao, Y.F.; Tang, Y.N.; Yan, P.H.; Luo, H.Y.; Liu, J.N. A LSTM algorithm estimating pseudo
measurements for aiding INS during GNSS signal outages. Remote Sens. 2020, 12, 256. [CrossRef]

22. Sharaf, R.; Noureldin, A. Sensor integration for satellite-based vehicular navigation using neural networks. IEEE Trans. Neural
Netw. 2007, 18, 589–594. [CrossRef]

23. El-Sheimy, N.; Chiang, K.-W.; Noureldin, A. The utilization of artificial neural networks for multi sensor system integration in
navigation and positioning instruments. IEEE Trans. Instrum. Meas. 2006, 55, 1606–1615. [CrossRef]

24. Zhang, X.H.; Zhou, Y.H.; Zhu, F.; Hu, H.J. A new vehicle motion constraint model with parameter autonomous learning and
analysis on inertial drift error suppression. Acta Geod. Cartogr. Sinica. 2022, 51, 1249–1258.

25. Brossard, M.; Barrau, A.; Bonnabel, S. AI-IMU dead reckoning. IEEE Trans. Intell. Transp. Syst. 2020, 5, 585–595. [CrossRef]
26. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.

[CrossRef]
27. Wu, F.M.; Yang, Y.X. GPS/INS/Odometer integrated navigation algorithm with prior velocity in land vehicle system. J. Astro.

2010, 31, 2314–2320.
28. Han, S.L.; Wang, J.L. Integrated GPS-INS navigation system with Dual-rate Kalman filter. GPS Solut. 2012, 16, 389–404. [CrossRef]
29. Niu, X.J.; Ding, L.Y.; Kuang, J.; Wu, Y.B. A MENS IMU and motion constraint based positioning algorithm for shared bicycles.

J. Chin. Inert. Technol. 2021, 29, 300–306.
30. Nie, T.; He, B.; Bi, G.L.; Zhang, Y.; Wang, W.S. A Method of Ship Detection under Complex Background. ISPRS Int. J. Geo-Inf.

2017, 6, 159–177. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/70.964672
http://doi.org/10.1002/j.2161-4296.2011.tb01788.x
http://doi.org/10.1109/JSEN.2016.2642040
http://doi.org/10.3390/rs12020256
http://doi.org/10.1109/TNN.2006.890811
http://doi.org/10.1109/TIM.2006.881033
http://doi.org/10.1109/TIV.2020.2980758
http://doi.org/10.1038/323533a0
http://doi.org/10.1007/s10291-011-0240-x
http://doi.org/10.3390/ijgi6060159

	Introduction 
	Methodology 
	Classical GNSS/INS Loosely Coupled Integrated Procedure 
	Motion-Constrained GNSS/INS Integrated Navigation Method Based on BP Neural Network 
	Pseudo Measurement Prediction Model Based on BP Neural Network 
	Vehicle Motion Constraints Algorithms 
	Steps of the Proposed MC-BP Method 


	Experiments and Analysis 
	Boat Motion Constraint Simulation Experiment 
	Real Data Experiments 
	Experimental Data and Data Processing Strategy 
	Analysis Results of the Vehicle Land Experiment 
	Analysis Results for the Marine Boat Experiment 


	Conclusions 
	References

