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Abstract: High-spatiotemporal resolution soil moisture (SM) plays an essential role in optimized
irrigation, agricultural droughts, and hydrometeorological model simulations. However, producing
high-spatiotemporal seamless soil moisture products is challenging due to the inability of optical
bands to penetrate clouds and the coarse spatiotemporal resolution of microwave and reanalysis
products. To address these issues, this study proposed a framework for multi-source data merging
based on the triple collocation (TC) method with an explicit physical mechanism, which was dedicated
to generating seamless 1 km daily soil moisture products. Current merging techniques based on
the TC method often lack seamless daily optical data input. To remedy this deficiency, our study
performed a spatiotemporal reconstruction on MODIS LST and NDVI, and retrieved seamless daily
optical soil moisture products. Then, the optical-derived sm1, microwave-retrieved sm2 (ESA CCI
combined), and reanalysis sm3 (CLDAS) were matched by the cumulative distribution function
(CDF) method to eliminate bias, and their weights were determined by the TC method. Finally,
the least squares algorithm and the significance judgment were adopted to complete the merging.
Although the CLDAS soil moisture presented anomalies over several stations, our proposed method
can detect and reduce this impact by minimizing its weight, which shows the robustness of the
method. This framework was implemented in the Naqu region, and the results showed that the
merged products captured the temporal variability of the SM and depicted spatial information in
detail; the validation with the in situ measurement obtained an average ubRMSE of 0.046 m3/m3.
Additionally, this framework is transferrable to any area with measured sites for better agricultural
and hydrological applications.

Keywords: soil moisture; triple collocation; spatiotemporal interpolation; ESA CCI SM; MODIS; CLDAS

1. Introduction

Soil moisture (SM) is a crucial part of the water [1] and carbon cycle [2]. It has a
considerable impact on the land–atmosphere interactions as one of the primary input
factors for various land surface and hydrological models [3,4]. To monitor vegetation
growth [5,6], weather [7], and extreme climates, such as drought and flood [8–10], high
spatial resolution and spatiotemporally continuous SM products are essential.

The SM information is mainly acquired by in situ measurement, remote sensing re-
trieval, and model assimilation. Among them, the in situ measurement with the highest
accuracy can be regarded as the “true value”, but is limited by high cost and weak spatial
representation [11,12]. In addition, the change in SM affects vegetation growth, tempera-
ture, and evapotranspiration, which can be detected by optical remote sensing. Therefore,
various indices including vegetation index, temperature index, and thermal inertia index
were developed [13–15] to indirectly estimate SM. Optical SM products offer a high spa-
tiotemporal resolution. For vegetated land, optical signals are only affected by vegetation,
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which allows for calibrating the vegetation effects on SM retrieval. However, clouds and
rain contaminated the optical remote sensing signals, preventing their applications in
monitoring soil and vegetation conditions.

Compared with optical remote sensing, microwave SM is based on the physical process
of electromagnetic wave propagation and interaction with the soil [16,17]. Due to the stark
contrast between the dielectric constants of dry soil (3) and liquid water (80), more moisture
content in the soil mixture presents a higher dielectric constant. The conversion between
SM and the dielectric constant is conducted by dielectric models. Microwave remote
sensing can be categorized into active and passive modes. The active microwave SM
retrievals include change detection algorithms [18] and iterative optimization [19]. Passive
microwave SM retrieval has the following three categories: (i) Reverse-order solutions
based on the radiative transfer model, such as the single channel algorithm (SCA) [20]
for soil moisture active passive (SMAP) mission. (ii) Iterative methods based on radiative
transfer model, such as multi-angle algorithm [21] for soil moisture and ocean salinity
(SMOS) mission, dual-channel (DCA) [22], multi-temporal dual-channel (MT-DCA) [23],
and multi-channel collaborative algorithm (MCCA) [24] for SMAP, etc. (iii) Microwave
remote sensing index-based methods, such as the land parameter retrieval model (LPRM)
algorithm [25] in Advanced Microwave Scanning Radiometer (AMSR-E). Although passive
microwaves can obtain relatively accurate SM, they are constrained by coarse spatial
resolution, which is often tens of kilometers. In addition, the microwave propagates within
vegetation layers with multiple paths, thus both the soil and vegetation contribute to the
received signals. It is challenging to completely isolate the soil and vegetation components,
resulting in poor performances over high vegetation conditions [26,27].

Alternatively, hydrological or land surface process models driven by atmospheric data
can simulate SM. By assimilating remote sensing, station data into these process models,
reanalysis SM products with a daily or even sub-daily temporal resolution and continuous
spatial coverage, were obtained. Furthermore, reanalysis data provide the root zone SM,
which is more critical than surface SM for vegetation growth, but it was limited by coarse
spatial resolution and insufficient precision.

Considering the strengths and weaknesses of each product, the uncertainty can be
reduced by multi-source data fusion to get an optimal estimation. Nevertheless, it is a vital
issue to determine the optimal weights for each data in the fusion process. The Kalman filter
is one of the most common methods for assigning weights [28], but most studies adopted
prior knowledge to define the relative error of each product. Therefore, the relative weights
are subjective, and the results are not necessarily optimal. In recent years, some studies
were carried out on data fusion using the triple collocation (TC) method, which calculates
the relative errors of three datasets that are independent and linearly connected to the true
value. For example, the TC method was used to merge precipitation data [29] and estimate
terrestrial water storage [30]. In terms of the SM data merging, Zeng et al. investigated
the TC approach to combine ERA-Interim reanalysis data, microwave satellite data, and in
situ measurement data [31]. Peng et al. merged microwave, JULES model simulation, and
site data into triplets to obtain fine spatial resolution SM [32]. Moreover, the well-known
ESA CCI SM products are based on the TC method, which merged active microwave
(ERS1/2 SCAT, ASCAT-A/B/C) and passive microwave (SMMR, SSM/I, TMI, AMSRE,
WindSat, SMOS, FY-3B/C/D MWRI, GPM, AMSR2, and SMAP) products to obtain the
long-term (1978-2021) SM datasets [33,34].

However, the current TC merging of SM is mainly conducted with microwave, model
simulation, and site data. Compared with these data, optical data have the advantage
of high spatial resolution, but only a few studies introduced optical data under clear-sky
conditions into triples [35] due to the issue of pixel contamination by clouds and rain.
To solve this problem, our study proposed a temperature difference-vegetation index to
retrieve SM from MODIS vegetation and land surface temperature (LST) data after applying
spatiotemporal interpolation [36]. Then, using the ESA CCI SM products as a reference,
the CDF matching approach was performed to match optical and reanalysis SM products.
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The matched three data were formed into triples, and their relative errors were estimated
by the TC method. Finally, the weight of each product was calculated by the least squares
algorithm, resulting in a merged SM product after a significant test. This study combined
the strengths of optical, microwave, and reanalysis data to obtain seamless daily 1 km SM
products with satisfactory accuracy.

2. Study Area and Materials
2.1. Ground Measurement Data

The study region is in Naqu (Figure 1), which is in the heart of the Tibetan Plateau,
China. The Naqu SM observation network (CTP-Naqu) covers the longitude range of
91.5 to 92.5◦E and the latitude range of 31 to 32◦N [37]. At a resolution of 1 km, the entire
study area includes 10,000 pixels. This study used the SM data at a depth of 0–5 cm over all
stations during 2017–2020.

Figure 1. Distribution of CTP-Naqu in situ SM stations. The text above the black dots in the image on
the right shows the name of each site.

The land cover type in CTP-Naqu is mainly sparse alpine grassland, and the climate
type is cold and semi-arid [38]. The soil freezes in November and begins to thaw in May of
the following year due to the cold climate [39]. Soil freezing will affect the measurement of
SM. Therefore, the data from May to October of each year were chosen for this study.

2.2. Data for Merging
2.2.1. ESA CCI SM Products

The European Space Agency (ESA) provides the SM products of the Climate Change
Initiative (CCI) project, which consists of active, passive, and combined products, with
a spatial resolution of 25 km and a period of more than 40 years (1978–2021). ESA CCI
SM team updates the algorithm every year and has to date released 13 versions of the
product [33,40]. The latest version (V 07.1) SM was selected in the study, which improves
spatiotemporal coverage compared with the previous version. In addition, previous studies
have shown that the combined product has the best performance in the Naqu region [41,42]
among the three products, thus we chose the combined product.

2.2.2. CLDAS SM Product

The reanalysis SM product was derived from the China Land surface Data Assimilation
System (CLDAS-V 2.0 near real-time product, 0.0625 × 0.0625◦) by China Meteorological
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Administration. Based on the data fusion and assimilation technology, CLDAS leverages
multiple forcing variables to drive the various land surface models (e.g., CLM and Noah-
MP) to obtain SM [43,44]. In addition, CLDAS SM data consider five soil layers to capture
the vertical profiles. To match the sensed depth of the satellite, the daily data at a depth of
0–5 cm were used in this study.

2.2.3. MODIS Product

MODIS sensors are carried on the Aqua and the Terra spacecraft. For the LST, this
study adopted the MYD11A1 product from the Aqua spacecraft with local overpass times at
1:30 pm and 1:30 am, respectively. The temperature difference between the two overpasses
was considered as a proxy for the maximum temperature difference on that day. In
addition, an 8-day normalized differential vegetation index (NDVI) product was produced
by combining two 16-day NDVI data from Aqua (MYD13A2) and Terra (MOD13A2) at
1 km resolution. Moreover, we used the MODIS land cover type product (MCD12Q1)
and selected the IGBP classification layer to mask pixels with water and participate in the
error calculation.

2.2.4. DEM Data

The Space Shuttle Radar Topographic Mapping Mission (SRTM) [45] provided the
3 arc-second digital elevation model (DEM) data that were used in the LST interpolation.

3. Methods

As shown in Figure 2, all data were preprocessed and resampled to 1 km at first.
Soil moisture retrieval from optical data was carried out as follows: (i) Daily NDVI prod-
ucts were generated by Savitzky-Golay (SG) filter algorithm [46] and linear interpolation.
(ii) The multi-temporal interpolation method was utilized to create the daily seamless
LST product using daily NDVI, DEM, and MODIS LST data. (iii) Temperature difference-
vegetation index (TDVI) was proposed to retrieve SM from the interpolated NDVI and LST.
Subsequently, we combined optical (TDVI-based), microwave (ESA CCI combined), and
reanalysis (CLDAS) soil moisture products into triples. The deviation between the three
products was corrected using the CDF matching algorithm, and the relative error of each
product was estimated by the TC approach. Finally, the merged daily SM products at 1 km
resolution were obtained based on the least square merging and relevant significance test,
followed by an evaluation against station observations.

3.1. Retrieve Cloud-Free Daily Optical SM
3.1.1. Obtain Daily MODIS NDVI

This study used 16-day MODIS NDVI (MYD13A2 and MOD13A2) rather than daily
NDVI. This is due to the fact that the 16-day NDVI was synthesized by selecting high-
quality pixels, which considerably decreased the number of pixels that were missing or
of poor quality due to cloud contamination. The MYD13A2 and MOD13A2 data were
combined to obtain 8-day synthetic NDVI data.

The steps involved in interpolating NDVI data include the following. First, the
pixel_reliability layer was utilized to control the quality, and then the SG filter method was
conducted to reduce the noise in the NDVI image. The SG filter is a polynomial smoothing
algorithm based on the least squares principle for smoothing time series data. Finally,
pixel-by-pixel linear interpolation is performed on the time series to acquire daily NDVI
data [47].
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Figure 2. Schematic diagram of our proposed merging method to obtain 1 km spatial resolution daily
SM by spatiotemporal interpolation and triple collocation.

3.1.2. Develop Seamless MODIS LST

This study adopted a multi-temporal interpolation method to interpolate LST, which
assumes that the LST variation characteristics in different pixels under similar environmen-
tal conditions (including seasons, altitudes, and vegetation) are highly correlated [36,48,49].
For two LST images acquired with a close date interval (d0 and d1), the following relation-
ship exists:

LSTd1 = f
(

LSTd0 , NDVId1 , DEM
)

(1)
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where NDVId1 represents the NDVI image corresponding to the d1 day, and DEM is the
digital elevation of the study area. With a linear assumption, the relationship f becomes:

LSTd1 = a·LSTd0 + b·DEM + c·NDVId1 + d (2)

where a, b, c, and d represent regression coefficients.
Based on the above principles, quality control was performed on all LST images by the

QC layer at first, then, the images with more than 90% clear-sky LST pixels were selected
as the reference images (LSTd0), and the other images were interpolated images (LSTd1).
In addition, the date interval between d0 and d1 should be within 30 days to avoid the
seasonal variation of LST. If the date interval is greater than 30 days, we searched for
reference images of adjacent years. The specific reference image information is shown in
Tables S1 and S2 in the Supplementary Materials.

Next, clear-sky pixels were selected in the interpolated image, and the LSTs in the
reference image corresponding to these clear-sky pixels were found. Subsequently, the
regression coefficients in Equation (2) are fitted using the ancillary remote sensing dataset
(NDVI, DEM) of the corresponding location. Finally, based on Equation (2) with known
regression coefficients, the LST estimation of missing pixels in the interpolated images
was completed.

Through the above process, the percentage of valid LST pixels for each image was
above 90%. To produce a seamless LST image, the remaining pixels were interpolated using
the inverse distance weight (IDW) technique.

3.1.3. Generate Cloud-Free Daily SM Product

In optical remote sensing, many studies have used surface temperature, vegetation
index, and albedo as indicators of SM, such as the temperature vegetation dryness in-
dex (TVDI) [14], apparent thermal inertia (ATI) [50], and vegetation supply water in-
dex (VSWI) [51]. Inspired by the above index, we proposed a temperature difference-
vegetation index (TDVI), defined as the ratio between diurnal temperature difference
(LSTday − LSTnight) and NDVI:

TDVI =
LSTday − LSTnight

NDVI
(3)

This index and the measured SM have a strong correlation. Therefore, cloud-free
daily TDVI data can be calculated using cloud-free daily LST and NDVI data, and then the
cloud-free daily SM product over the study area was retrieved by the fitted relationship
between TDVI and the measured SM.

3.2. Multi-Source SM Products Merging

To merge multi-source SM products, all data were adjusted to a unified numerical
range through bias correction, and the relative error of each data was estimated by the TC
method. Then, the weight of each product was calculated by the least squares technique
according to the relative error. Finally, the merging of multi-source data was completed
based on the significance test.

3.2.1. Bias Correction Using CDF Matching

Due to discrepancies in sensor frequencies, observation principles, and retrieval algo-
rithms, different SM products have certain systematic biases that need to be removed before
data merging. This study adopted the CDF matching technique, which is considered as an
enhanced non-linear method for eliminating the statistical moment difference between two
datasets [52,53], and does not change the trend of the data. Additionally, the reference data
quality influences the accuracy in merging the product [54]. We used ESA CCI combined
SM data as the reference data since previous studies [55,56] demonstrated its excellent
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accuracy. The CLDAS and TDVI-based SM products were normalized to have the same
range and distribution as the ESA CCI combined SM by CDF matching.

3.2.2. Error Estimation by Triple Collocation

Without relying on the true value, the TC technique [57] possesses the ability to
calculate the error of each product, which requires that the errors of the three data are
uncorrelated. We selected optical, microwave, and CLDAS data to build triples. The data
sources and algorithms are different, thus the precondition of error irrelevance is satisfied.

The TC method assumes a linear correlation between the SM product and the true value:
SMx = αx + βxθ + εx
SMy = αy + βyθ + εy
SMz = αz + βzθ + εz

(4)

where θ is the true SM; SMi (i ∈ {x, y, z}) represent three SM products matched by the CDF
method; the additive and multiplicative deviations from the true value are represented by
α and β, respectively; and ε is the random error.

Since the errors between products and true values are independent, according to the
covariance calculation formula, the following equation can be obtained:

Cij = Cov
(
SMi, SMj

)
=

{
βiβ jσ

2
θ , f or i 6= j

β2
i σ2

θ + σ2
εi

, f or i = j
(5)

where σ2 is the random error variance. Let λi = βiσθ , the above equation transforms into:

Cij =

{
λiλj, f or i 6= j
λ2

i + σ2
εi

, f or i = j
(6)

By multiplying and subtracting Equation (6) in pairs, the error variance value of each
data can be calculated as: 

σ2
εx = σ2

x −
σxzσxy

σyz

σ2
εy = σ2

y −
σyzσxy

σxz

σ2
εz = σ2

z −
σxzσyz

σxy

(7)

Note that only pixels with more than 100 samples are retained in TC error calculation,
as the results are unreliable when the number is less than 100 [58]. Furthermore, when
the computed error variance σ2

εi
of any product is negative, the error variances of other

products in the triplet are invalid. To fill the invalid pixels generated by the above two
cases, we averaged all error variances of valid pixels under the same land cover type, and
then assigned this average value to the invalid pixels for the same cover type.

3.2.3. Weight Estimation via Least Square Merging

A least square merging technique introduced by Yilmaz et al. was successfully adopted
to merge thermal infrared, passive microwave, and model SM products [59]. It is advanta-
geous to combine various SM products since it minimizes random errors. The least squares
merging form is as follows:

SMmerge = wxSMx + wySMy + wzSMz (8)

where SMmerge is merged SM and wi is the weight of each SM product. To obtain an
unbiased merged estimate, the sum of wi is equal to 1.

The purpose of the least square method is to minimize the error variance of the merged
SM product (σ2

εm ), which has a cost function (J) form:

J = σ2
εm = w2

xσ2
εx + w2

yσ2
εy + w2

zσ2
εz (9)
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J = σ2
εm = w2

xσ2
εx + w2

yσ2
εy +

(
1− wx − wy

)2
σ2

εz (10)

Setting ∂J
∂x = 0 and ∂J

∂y = 0, wi can be obtained:
wx =

σ2
εy σ2

εz

σ2
εx σ2

εy+σ2
εx σ2

εz+σ2
εy σ2

εz

wy =
σ2

εx σ2
εz

σ2
εx σ2

εy+σ2
εx σ2

εz+σ2
εy σ2

εz

wz =
σ2

εx σ2
εy

σ2
εx σ2

εy+σ2
εx σ2

εz+σ2
εy σ2

εz

(11)

Equation (11) indicates that the weight of one product is proportional to the uncertainty
of the other two products. When only two products are available, the formula for wi is:

wx =
σ2

εy

σ2
εx+σ2

εy

wy =
σ2

εx
σ2

εx+σ2
εy

(12)

Gruber et al. [60] proposed the defining of weights according to the signal-to-noise
(SNR) ratio attributes of dataset rather than error variances. However, all the data were uni-
fied into the same data space by CDF matching (Section 3.2.1), thus Equations (11) and (12)
are feasible.

3.2.4. Merging Based on Correlation Significance Level

The reliability of TC is weak when one or more of the products in the triplet have
low temporal coverage or poor quality. Therefore, if a product in a triple is not strongly
linked with the other products, TC results are frequently regarded as inaccurate. A scheme
based on a correlation significance level (p-value) of 0.05 [32,60] was adopted to increase
the spatial coverage of the merged SM products.

As shown in Table 1, the merging scheme on each pixel contains four cases. In the
first case, the TC weighted average approach (Section 3.2.3) was applied when all three
products are significantly correlated (p-value < 0.05). In the second case, when one product
in the triplet is closely related to the other two products, we chose this product. In the third
case, the correlation significance level is present in only two products. We calculated the
arithmetic mean of these two products. Finally, the pixel was ignored if there is no strong
association between the three products.

Table 1. Merging scheme based on Pearson correlation with a significance level of 0.05.

If (p-Value < 0.05)?
Decision

C–E * C–T E–T

X X X TC weighted average
X X 7 C
7 X X T
X 7 X E

X 7 7
Arithmetic mean

(C,E)

7 X 7
Arithmetic mean

(C,T)

7 7 X
Arithmetic mean

(E,T)

7 7 7
Disregard pixel

(NaN)
* C represents CLDAS SM data, T refers to TDVI-based SM data, and E is ESA CCI combined SM data.
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3.3. Spatiotemporal Analysis Method

To investigate how the four SM products (CLDAS, ESA CCI combined, TDVI-based,
and merged SM) change in temporal and spatial dimensions over the study period (every
May to October from 2017 to 2020), we employed the Hovmöller diagram [61], which
averages all the values in a longitude or latitude row, places the average values on one
axis, and the other axis represents time. The longitude or latitude axis reveals the spatial
distribution of SM, while the time axis shows the seasonal and inter-annual variation of SM.

4. Results and Discussions
4.1. TDVI-Based SM Retrieval

Since the land cover is quite homogeneous (sparse alpine grassland) in this study,
building a station-by-station relationship is not necessary. We averaged the SM of all
stations and the corresponding TDVI values across the study region, and then fitted the
relationship between them. As seen in Figure 3, TDVI and the measured SM exhibit a
negative correlation. The mechanism between TDVI and SM is explained as follows:

Figure 3. Logarithmic relationship between site-averaged SM and pixel-averaged TDVI.

First, the amount of soil moisture influences the soil thermal inertia since water has a
large specific heat capacity. Additionally, soil thermal inertia reflects the ability of soil to
resist temperature changes; the more soil moisture, the higher the thermal inertia, and the
lower the soil temperature. Therefore, the soil temperature difference and SM within a day
are negatively correlated.

Moreover, SM is closely related to vegetation growth. When the vegetation coverage
is high, it reduces the evaporation of surface SM, and the vegetation index reflects the
growth of vegetation; the more luxuriant the vegetation, the higher the index, thus SM
and vegetation index have a positive association. Eventually, the TDVI was obtained by
dividing the soil diurnal temperature difference by the vegetation index, which can better
describe the variation of soil moisture.

A logarithmic relationship exists between site-averaged SM and pixel-averaged TDVI.
Utilizing the logarithmic equation obtained by fitting, the SM value for each pixel could be
acquired from the TDVI value.

4.2. Triple Collocation Analysis
4.2.1. Effect of LST Interpolation on Triple Collocation

Figure 4 illustrates that despite the 4-year time period of this study (2017–2020), only
39.68% of the 10,000 pixels in the study area had triples with days greater than 100, and the
maximum number of days is only 138. If the LST is not interpolated, more than half of the
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weights derived by the TC approach are not available, and the resulting merged products
will have a considerable number of missing pixels. The triplet ratio is increased to 99.93%
after interpolation, and most pixels are available for more than 300 days.

Figure 4. A comparison histogram of the number of available triples (orange columns are the number
of triples before LST interpolation, green columns are after interpolation).

The ratio of available triples before and after interpolation has significantly increased.
Given this, LST interpolation efficiently addresses the issue of a severe lack of optical data
pixels and enables the optical SM data under all weather conditions to participate in the
TC analysis.

4.2.2. Error and Weight Analysis

Figure 5 exhibits the errors and weights of CLDAS, ESA CCI combined, and TDVI-
based SM products. Due to the CDF matching operation, the error here is the relative error
between each SM data. Among the three products, ESA CCI combined SM has the smallest
overall error, which supports our decision to use it as the reference data for CDF matching.
The error of TDVI-based SM product ranks second, which proves that the SM retrieved
through our developed TDVI index is reliable. The CLDAS error is the largest, and we also
discovered that the CLDAS product contains unreasonable values on some stations, which
may be caused by inappropriate parameter settings (detailed analysis in Section 4.3.1).

The weight of each pixel for each product was determined based on the results of the
error. The ESA product had an average weight of 0.418, which had a greater weight in the
central and marginal regions. The TVDI product had a superior weight in the rest of the
region, with an average weight of 0.378. Whereas, the CLDAS product was assigned an
average weight of 0.204, which had a low weight throughout the study area.
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Figure 5. Relative error and weight distribution maps of CLDAS, ESA CCI, and TVDI-based
SM products.

4.3. Merged Soil Moisture Results
4.3.1. Spatiotemporal Variation of SM

The Hovmöller diagrams in Figures 6 and 7 demonstrate that ESA CCI combined SM
product is heavily missing in May and October (dark blue), while the merged products have
the highest spatiotemporal coverage. In addition, we observed that the spatiotemporal
distribution of CLDAS data is entirely different from the other three data throughout 2017
and from May to June in 2018. To further explore this issue, time series plots were produced
between four products and in situ SM data, selecting two of the sites as examples (Figure 8),
and the time series plots for all sites are shown in the Supplementary Materials. In Figure 8,
the CLDAS data deviate from other data in the above period, which further confirms our
findings through the Hovmöller diagram. In addition, the CLDAS soil moistures were
lower than the other products at site BC03 in 2019–2020, which may be due to the high
soil organic matter content (SOC) of the top soil in the Naqu region; therefore, the porosity
and water retention capacity are large, resulting in high soil water content [44,62]. The
surface process models driven by CLDAS products may not consider the effect of SOC and
therefore underestimated the soil moisture. Nevertheless, the CLDAS data also exhibited a
specific cumulative trend, thus we suggested that the probability density matching step
needs more verification in the Naqu region.

It should be emphasized that the anomaly of CLDAS data had no impact on the study
results since the TC technique was used to calculate the relative error of each product.
Section 4.2 shows that the CLDAS error obtained by the TC method was the largest
and it was assigned a low weight. This phenomenon also proves the robustness of our
proposed framework.
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Figure 6. Hovmöller (time-latitude) diagrams of CLDAS, ESA CCI combined, TDVI-based, and
merged SM products for the study period (every May to October from 2017 to 2020).

Figure 7. Hovmöller (time-longitude) diagrams of CLDAS, ESA CCI combined, TDVI-based, and
merged SM products during the study period (every May to October from 2017 to 2020).
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Figure 8. Temporal evolution of ESA CCI combined, CLDAS, TDVI-based, merged and in situ SM at
BC03 and MS3533 sites.

The spatiotemporal distributions of four SM data followed similar patterns except for
the anomalous part. In terms of time variation, SM in each year was relatively low in May,
reached a high level in July and August, then began to decline, and reached a low level
in October. This temporal characteristic is consistent with the time pattern of soil freezing
and thawing on the Tibetan Plateau [63]. Regarding the spatial distribution, SM varied
slightly in longitude or latitude, partly since the averaging process may reduce the spatial
variability. Additionally, there was insufficient spatial heterogeneity since the study area
was small (1◦ × 1◦) and had a uniform land cover.

In summary, the merged product captures the temporal variability of SM well, greatly
improves the spatial resolution, and expands spatial and temporal coverage.

4.3.2. Compared with the In Situ Data

This study evaluated four products using all of the available measured sites during
the study period and selected ubRMSE, RMSE, Correlation, and Bias as the performance
metrics [64]. After removing the stations with no observation data and the total number of
observations less than 50, 48 stations were finally involved in the calculation. The boxplots
in Figure 9 display the metric statistics of the four products. Overall, the ESA CCI combined
SM performs the best, followed by the merged product, TDVI-based SM is the third, and
the CLDAS product performs the poorest. Although the merged results rank second, the
difference with ESA CCI is minimal. The average ubRMSE of the merged SM is close to
0.04 m3/m3 (0.046 m3/m3), achieving satisfactory accuracy. More importantly, the merged
product has a higher spatiotemporal resolution compared with the other products.

Furthermore, Figure 10 shows the metrics distribution of the merged SM product at
each site. The product performed better in the northwest part with dense sites and worse
in the northeast part with sparse sites. The reason may be that dense sites will have a
greater impact on the TDVI fitting results. The effect of the number of in situ stations on
the merged results will be further investigated in a subsequent study.
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Figure 9. Comparison of statistical metrics ((a) ubRMSE, (b) RMSE, (c) Correlation, (d) Bias) among
ESA CCI combined, CLDAS, TDVI-based, merged SM in validation with the in situ measurements.

Figure 10. Spatial distributions of (a) ubRMSE, (b) RMSE, (c) Correlation, and (d) Bias for the merged
SM against in situ SM observations.
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4.4. Uncertainty Analysis

The uncertainties in this study are primarily attributed to the following three aspects:
First, when retrieving soil moisture from optical data, there may be an oversaturation

in NDVI, and the effect of vegetation indices, such as enhanced vegetation index (EVI) and
leaf area index (LAI) should be explored in future studies. In addition, the impact of the
number of measured sites on the retrieval results should be further considered.

Second, in estimating the product error by the TC method, this study estimated
the time-invariant error, but the error of SM product varies with vegetation phenology,
surface roughness, and environmental conditions. Therefore, the time-variant error should
be calculated to combine soil moisture products [65,66]. In addition, the CDF matching
method was used in this study to eliminate the bias between products. Although this
method is commonly used, different rescaling techniques will affect the accuracy of TC
error estimation, thus the effectiveness of methods, such as variance and mean matching
and normalization can be further investigated [67].

Finally, in product merging, the nearest neighbor method was adopted to resam-
ple all products to 1 km; however, the original resolutions of ESA CCI and CLDAS are
25 and 6.25 km, respectively. There is a scale difference between them and the 1 km optical
products, which will lead to uncertainty in the results.

5. Conclusions

This paper proposed a framework to generate seamless 1 km daily soil moisture
products by the spatiotemporal interpolation technique and the triple collocation method.
This framework merged optical, microwave, and reanalysis data to leverage their strengths.

First, the interpolation method was used to improve the spatiotemporal coverage of
optical data, which tackled the pain point of a serious lack of optical data and realized
the operation of introducing all-sky optical data into TC triples, which is rare in previous
TC-based merging studies.

Second, a temperature difference-vegetation index was established, which has a close
relationship with the measured SM. This index is a reference for soil moisture retrieval in
the Naqu area. It should be noted that this index serves as a proxy for soil moisture in this
framework, and the soil moisture index can be adjusted in other regions; therefore, our
method is flexible and transferable.

In addition, the merged framework based on the TC method can not only obtain
the merged soil moisture products, but also evaluate the performance of input products.
Through the study, the CLDAS products in the Naqu area were found to exhibit anomalies
in 2017 and the first half of 2018, and the causes of the anomalies were further explored
through site validation. The CLDAS product needs further validation to check its accuracy
in the Tibetan Plateau.

Finally, spatiotemporal analysis and metrics evaluation revealed that the merged
products captured the dynamic changes in soil moisture well, depicted spatial details better,
and achieved satisfactory accuracy.

In conclusion, this research produced a set of high spatiotemporal resolution soil
moisture data that can be utilized as an input variable in atmospheric or land surface
models to facilitate climate and vegetation analysis in the Tibetan Plateau as well as assist
in regional water resource management. Furthermore, the ESA CCI SM and MODIS (or
its successor VIIRS) products have a long time series, allowing us to extend the merged
products to longer periods in future studies.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs15010159/s1. Table S1: The DOY (day of the year) of
LST_day reference images (the ratio of valid pixels >90%); Table S2: The DOY of LST_night reference
images (the ratio of valid pixels >90%); Figure S1–S48: Temporal evolutions of four products (ESA
CCI combined, CLDAS, TDVI-based, and merged) and in situ measured SM over 48 sites.

https://www.mdpi.com/article/10.3390/rs15010159/s1
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