
Citation: Wang, L.; Zhou, Y.; Shen, G.;

Xiong, J.; Shi, H. Forest Height

Inversion Based on Time–Frequency

RVoG Model Using Single-Baseline

L-Band Sublook-InSAR Data. Remote

Sens. 2023, 15, 166. https://doi.org/

10.3390/rs15010166

Academic Editors: Armando Marino

and Michele Martone

Received: 18 October 2022

Revised: 24 December 2022

Accepted: 24 December 2022

Published: 28 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Forest Height Inversion Based on Time–Frequency RVoG
Model Using Single-Baseline L-Band Sublook-InSAR Data
Lei Wang 1, Yushan Zhou 2,*, Gaoyun Shen 1, Junnan Xiong 1 and Hongtao Shi 3

1 School of Civil Engineer and Geomatics, Southwest Petroleum University, Chengdu 640500, China
2 National Tibetan Plateau Data Center, State Key Laboratory of Tibetan Plateau Earth System, Environment

and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences,
Beijing 100101, China

3 School of Environment and Spatial Informatics, China University of Mining and Technology,
Xuzhou 221116, China

* Correspondence: yszhou@itpcas.ac.cn

Abstract: The interferometric synthetic aperture radar (InSAR) technique based on time–frequency
(TF) analysis has great potential for mapping the forest canopy height model (CHM) at regional and
global scales, as it benefits from the additional InSAR observations provided by the sublook decom-
position. Meanwhile, due to the wider swath and higher spatial resolution of single-polarization
data, InSAR has a higher observation efficiency in comparison with PolInSAR. However, the accuracy
of the CHM inversion obtained by the TF-InSAR method is attenuated by its inaccurate coherent
scattering modeling and uncertain parameter calculation. Hence, a new approach for CHM esti-
mation based on single-baseline InSAR data and sublook decomposition is proposed in this study.
With its derivation of the coherent scattering modeling based on the scattering matrix of sublook
observations, a time–frequency based random volume over ground (TF-RVoG) model is proposed
to describe the relationship between the sublook coherence and the forest biophysical parameters.
Then, a modified three-stage method based on the TF-RVoG model is used for CHM retrieval. Finally,
the two-dimensional (2-D) ambiguous error of pure volume coherence caused by residual ground
scattering and temporal decorrelation is alleviated in the complex unit circle. The performance of the
proposed method was tested with airborne L-band E-SAR data at the Krycklan test site in Northern
Sweden. Results show that the modified three-stage method provides a root-mean-square error
(RMSE) of 5.61 m using InSAR and 14.3% improvement over the PolInSAR technique with respect
to the classical three-stage inversion result. An inversion accuracy of RMSE = 2.54 m is obtained
when the spatial heterogeneity of CHM is considered using the proposed method, demonstrating a
noticeable improvement of 32.8% compared with results from the existing method which introduces
the fixed temporal decorrelation factor.

Keywords: time–frequency (TF) analysis; interferometric synthetic aperture radar (InSAR); canopy
height model (CHM); temporal decorrelation

1. Introduction

A forest canopy height model (CHM) is important for the detection of forest harvesting,
forest degradation, and forest fires [1]. Moreover, timely access to accurate estimates of the
above-ground forest biomass would assist in studying the regional and global carbon cycle
and climatic variation [2–5].

At present, ground measurement, light detection and ranging (LiDAR), and interfero-
metric synthetic aperture radar (InSAR) have been widely applied to estimate the CHM for
different forest types (boreal, temperate, and tropical forests). Due to the low efficiency and
the high cost of data acquisition, it is difficult for ground measurement to meet the require-
ments of rapid and large-scale CHM mapping. Meanwhile, the accuracy of the measured
forest CHM is limited by the density of sampling points [6]. LiDAR and InSAR, as active
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remote sensing techniques, have significant advantages over ground-based measurements
in terms of the scope of data observation. However, the application of ground-based or
airborne LiDAR is limited by the coverage of data and the exorbitant price [7,8]. In addition,
the spaceborne LiDAR (e.g., ICESat [9]) is susceptible to cloud interference and has diffi-
culty penetrating dense forests. Fortunately, InSAR has great potential for large-scale and
high-accuracy CHM mapping because of the strong penetration ability of its radar wave,
its independence from weather conditions, and its sensitivity to the vertical distribution of
scatterers [10].

The CHM inversion methods based on the InSAR technique can be divided into three
categories, which are described as follows.

(1) Traditional InSAR inversion: There are two ways to estimate the CHM from InSAR
observations. On the one hand, the CHM can be extracted from the gap between the
center height of the interference phase of the single-polarization InSAR and the external
underlying DEM [11,12]. It is inevitable that the accuracy of the CHM estimates largely
depends on the high-precision of the external underlying DEM, which is generally difficult
to obtain. On the other hand, the degraded random volume over ground (RVoG) model
can also be used to estimate the CHM from InSAR data, but it reduces the accuracy of
the CHM.

(2) PolInSAR inversion: Polarimetric SAR interferometry (PolInSAR) is developed
from InSAR by combining it with multi-polarization information. With this technique,
different scatterers which are located in the vertical dimension of the same pixel can
be detected, and then the CHM estimates can be obtained without using other external
data [13–16]. Moreover, the multi-baseline technique developed in recent years further
provides a variety of spatial observation schemes for PolInSAR to improve the accuracy of
the CHM inversion [17–20]. As a result, these improved techniques can be used to avoid
the underdetermined problem of unknown parameters based on a vegetation scattering
model (e.g., RVoG), which makes it possible to obtain the high-precision CHM. However,
the CHM inversion based on the multi-polarization data comes at the cost of reducing
the observation efficiency of InSAR. This is because the PolInSAR technique usually has a
smaller swath and lower spatial resolution than the single-polarization case [21].

(3) Sublook InSAR inversion: The time-frequency (TF) analysis method provides a
new pathway for high-precision CHM inversion. In previous studies, the dual-polarization
TF optimization method has been used to estimate the accurate interference phase of pure
volume coherence and the ground phase [22], which helps to improve the accuracy of
the CHM inversion. Besides, the TF optimization method has also been extended to the
full-polarization case [23]. It can be seen that the TF analysis can be used as an improved
method to obtain the optimal coherence. However, compared with single-polarization
InSAR, the dual- and full-polarization cases will lower the observation efficiency.

In the single-polarization case, the Time-frequency and Line-fitting (TF + LF) method
with a priori extinction coefficient has been proposed for the CHM inversion from the
single-baseline InSAR data. It can not only solve the underdetermined problem of unknown
parameters but also avoid the low observation efficiency of the PolInSAR technique [6,24].
However, the performance of this method is usually affected by three factors. The first one
comes from the coherent scattering model. In the TF + LF method, the sublook coherence
plays a similar role to that of the RVoG-based polarization coherence. However, an essential
difference between the sublook and polarimetric observations has not been revealed in
the TF + LF method, which leads to an ambiguous interpretation of the impact of the
sublook observations. As for the difference, it is known that the polarization coherences
are determined by the different polarization states, whereas the sublook coherences are
distinguished by the path differences of the sublook SAR signals, which are caused by the
varying azimuth observation angles. The second problem is referred to as the defective
parameter inversion. Namely, a small amount of CHM is necessary to extract the extinction
coefficient which will be used as a priori knowledge. The third problem is the impact of
the pure volume coherence error. The estimated CHM is sensitive to the 2-D ambiguous
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error of pure volume coherence, which is induced by the joint impacts of the residual
ground scattering and the temporal decorrelation and is difficult to removed in the single-
baseline inversion.

Therefore, the CHM inversion method based on TF analysis has great potential to
extract a high-precision CHM benefitting from the more available observations provided by
the sublook decomposition and the higher observation efficiency of the single-polarization
InSAR. However, the inaccurate coherent scattering modeling and parameter inversion are
major problems that limit the accuracy of the CHM estimation.

According to the above methods, the information from each scatterer is collected at
various incidence angles, and the sublook coherences along the azimuth carry different
backscattering properties. Note that the essential reason for this is the path difference of the
sublook SAR signals through the forest volume, which is important for the model-based
CHM inversion from the sublook coherences, and should be further studied. As a result,
the scattering matrix was reconstructed in consideration of the path differences of sublook
observations in this paper. With a derivation of coherent scattering modeling based on
the reconstructed scattering matrix, a more accurate sublook coherent scattering model,
namely, the TF-RVoG model, is proposed for the CHM inversion from sublook InSAR
data. Regarding the height of the phase center for different sublook coherences, the pure
volume coherence can be obtained from the alternative sublook coherences. Hence, a
single-baseline three-stage method for the TF-RVoG model was also proposed in this work.
In order to obtain a higher accuracy for the CHM, the empirical relationship between D.I
(which is the distance ratio index used to describe the position of pure volume coherence in
the coherence line [25]) and the extinction coefficient is used to alleviate the residual ground
scattering error of the pure volume coherence. In addition, the strong correlation between
the temporal decorrelation and the CHM is verified, and a random volume over ground
with mutative temporal decorrelation (RVoG + MTD) model that takes into account the
spatial heterogeneity of the forest CHM is proposed to remove the temporal decorrelation
error. The advantages of the proposed approach are as follows:

(1) It considered the path difference of sublook SAR signals and can help to provide de-
tailed interpretation for the impact of the different sublook coherences in the sublook
coherent scattering modeling;

(2) It can invert the forest CHM from the single-baseline and single-polarization InSAR
data without an a priori CHM, underdetermined parameter inversion, and observa-
tion efficiency reduction;

(3) It can alleviate the influence of the 2-D ambiguous error of pure volume coherence
by combining the empirical relationship of the D.I and the extinction coefficient [25]
with the RVoG + MTD model.

The rest of this paper is structured as follows. Section 2 introduces the principle
and modeling process of the proposed TF-RVoG model, the correction of interferometric
phase error of sublook coherences induced by the residual motion error (RME) [26], the
three-stage CHM inversion process based on the TF-RVoG model, and the correction of
2-D ambiguous error of pure volume coherence. In Section 3, the performance of the
proposed approach is tested using single-baseline L-band InSAR data acquired by the
German Aerospace Center (DLR)’s airborne E-SAR system. Discussion of and conclusions
about the proposed approach are presented in Sections 4 and 5, respectively.

2. Theory and Method
2.1. Sublook Coherent Scattering Modeling

In the TF analysis, fast Fourier transform (FFT) filtering is used to split the full-
resolution SAR image into several sublook images [27–29], and then the target can be
detected using various azimuth observation angles from the different sublook SAR images.
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The azimuth observation angle can be expressed as a function of the Doppler frequency fD,
the radar wavelength λ, and the platform velocity vp [30]

αAz = arcsin
(

fDλ

2vp

)
(1)

It is the angle between the sight line associated with a zero Doppler centroid and the
random sight line, which determines the relative position of a sublook along the azimuth.
Moreover, αAz can range from αAz − 0.5 × ∆αAz to αAz + 0.5 × ∆αAz, and ∆αAz is the
variation interval of the azimuth observation angle related to the azimuth resolution of
the sublook image. As shown in Figure 1 (top), FFT filtering of the full-resolution SAR-
image frequency spectra is performed in the azimuth direction to form three sublooks
of equivalent resolution with a 50% overlap, which are represented as green, red, and
blue dashed rectangles. Note that only the Doppler spectra of the red and blue sublooks
are independent. Here, the green, red, and blue arrows in Figure 1 (bottom) denoted the
azimuth observation angles which are related to the three sublooks. Since the filtered
bandwidths are constant, the intervals of the observation angle are equivalent for the
three sublooks.
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Figure 1. Schematic representation of the SAR-image frequency spectra filtering effect on the azimuth
observation angle [30]. Three sublooks with 50% overlap are represented by the green, red, and
blue dashed lines (two are independents). A black dashed line illustrates (1), which describes the
relationship between the Doppler frequency fD and the azimuth observation angle αAz. PRF is the
pulse repetition frequency, and BAz is the azimuth bandwidth at full resolution.

Two sublook images s1 and s2 with the same αAz and ∆αAz can be acquired by perform-
ing the sublook decomposition of the full-resolution master and slave images, respectively.
After interferometric processing, the corresponding sublook coherence γ̃Obs can be ex-
pressed as [24]

γ̃Obs(αAz, ∆αAz)

=
〈s1(αAz ,∆αAz) × s∗2(αAz ,∆αAz)〉√

〈s1(αAz ,∆αAz) × s∗1(αAz ,∆αAz)〉〈s2(αAz ,∆αAz) × s∗2(αAz ,∆αAz)〉
(2)

where 〈 〉 represents the expected value. γ̃Obs is impacted by several decorrelation fac-
tors, such as the signal-to-noise decorrelation, the geometric decorrelation, and the temporal
decorrelation, which can be reduced or absorbed by the associated correction
methods [31–33]. On this basis, the sublook coherence γ̃Obs is approximately equiva-
lent to the volume decorrelation related to the backscattering properties of scatterers in
forest scenes.

It is clear that the sublook coherences help to increase InSAR observations, which
makes it possible to invert the CHM in the case of single-polarization InSAR. Therefore, a
sublook coherent scattering model, which can be used to accurately describe the relationship
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between the sublook coherence and the forest biophysical parameters, must be built for
the CHM inversion. However, the varying azimuth observation angles of the sublook
coherences result in the path difference of the sublook signals in the forest volume, which
can cause backscattering variations because of the anisotropic geometrical structures of the
real forest volume. Therefore, the path impacts of the different sublook signals need to be
considered and accounted for in the coherent scattering model.

Based on the above analysis, the scattering matrix can be expressed as [32]

SObs = WSWT =

[
e−iβhz 0

0 e−iβvz

]
·
[

Shh Shv
Svh Svv

]
·
[

e−iβhz 0
0 e−iβvz

]
(3)

where the superscript T denotes the transpose of a given matrix, and the impacts of the
different propagation paths of sublook signals can be expressed with a 2 × 2 propagation
matrix W which is defined as

W =

[
e−iβhz 0

0 e−iβvz

]
(4)

where βh and βv are in general complex, relating to both phase shift and attenuation in the
forest volume. Specifically, βh = β0nh, βv = β0nv, and β0 is the free space wavenumber,
which is equal to 2π/λ. nh and nv represent the propagation value of the horizontal
polarization and vertical polarization, respectively. The expression SObs = WSWT describes
the process of the sublook signals’ propagation into and then out of the medium.

After vectorization processing based on the Pauli basis, the scattering matrix SObs can
be transformed into a four-dimensional (4-D) vector expressed as

KP4(z) = PP4 ·kP4 PP4 = e−i(βh+βv)z


cos h(sz) sin h(sz) 0 0
sin h(sz) cos h(sz) 0 0

0 0 1 0
0 0 0 1



where


s = −i(βh − βv);

sinh(sz) = esz − e−sz

2 ;
cosh(sz) = esz + e−sz

2 ;

kp4 = 1
2
[
Shh + Svv Shh − Svv Shv + Svh i(Shv − Svh)

]T

(5)

where s is the differential propagation constant; PP4 , as a 4 × 4 matrix, represents the
propagation matrix associated with propagation path within the medium; and sinh and
cosh are hyperbolic sine and hyperbolic cosine functions, respectively. In the case of a
random medium, the parameter s is equal to zero, and PP4 reduces to a multiple of the
identity matrix. Furthermore, kP4 is a 4-D scattering vector that does not the propagation
influence on the vegetation backscattering. Based on the reciprocity theorem for antennae,
namely Shv = Svh, the scattering vector kP4 can be simplified as a three-dimensional (3-D)
vector expressed as

KP3(z) = PP3 ·kP3

PP3 = e−i(βh+βv)z

cosh(sz) sinh(sz) 0
sinh(sz) cosh(sz) 0

0 0 1


kP3 = 1

2
[
Shh + Svv Shh − Svv 2Shv

]T

(6)

where PP3 is the corresponding 3 × 3 propagation matrix, and kP3 is the scattering vector
which is free from the propagation influence.
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According to the three-component decomposition based on the different scattering
mechanisms, the scattering vector PP3 can be expressed as

KP1 = PP3 ·kP3−master = kv1 + Psks1 + Psvksv1

KP2 = PP3 ·kP3−slave = kv2 + Psks2 + Psvksv2
(7)

where the greater complexity of scattering (higher than second order) is not considered,
and the propagation matrix related to the volume scattering mechanism is approximately
equivalent to an identity matrix. The subscripts 1 and 2 represent the corresponding
master image and slave image, and the subscripts v, s, and sv represent the volume,
surface, and dihedral scattering mechanisms, respectively. Ps and Psv are the corresponding
3 × 3 propagation matrices of the surface and dihedral scattering. In the same way,
kv, ks, and ksv are the scattering vectors of the volume, surface, and dihedral scattering
mechanisms, respectively [32]. Moreover, the coherency matrix T6 is formed by the 3-D
coherent scattering vectors KP1 and KP2 for each end of the baseline, and is expressed as

T6 =

〈[
KP1

KP2

]
·
[
KH

P1
KH

P2

]〉
=

[
T11 Ω12
Ω21 T22

]
T11 = 〈KP1 KH

P1
〉; T22 = 〈KP2 KH

P2
〉; Ω12 = 〈KP1 KH

P2
〉

(8)

With the combination of (7) and (8), the coherency matrices T11 and Ω12 can be
decomposed into three components on the basis of the different scattering mechanisms,
respectively, and are shown as

T11 =
〈
Kv1 KH

v1

〉
+ Ps

〈
Ks1 KH

s1

〉
PH

s + Psv
〈
Ksv1 KH

sv1

〉
PH

sv

Ω12 =
〈
Kv1 KH

v2

〉
+ Ps

〈
Ks1 KH

s2

〉
PH

s + Psv
〈
Ksv1 KH

sv2

〉
PH

sv

(9)

T11 = Tv + PsTsPH
s + PsvTsvPH

sv Ω12 = Ωv + PsΩsPH
s + PsvΩsvPH

sv (10)

As a result, we can express the interferometric coherence of the single-polarization as

γ̃ =
ωHΩ12ω√

ωHT11ω·
√

ωHT22ω
≈ ωHΩ12ω

ωHT11ω
=

ωH(Ωv + PsΩsPH
s + PsvΩsvPH

sv
)
ω

ωH(Tv + PsTsPH
s + PsvTsvPH

sv)ω
(11)

where ω is the projection vector related to the polarization, γ̃ can be expressed as a function
of the coherency matrices Ti and Ωi and the propagation matrix Pi based on the approximate
condition

√
ωHT11ω·

√
ωHT22ω ≈ ωHT11ω. The subscript i represents a kind of scattering

mechanism. In this case, we can rewrite (11) based on the equivalent transformation, which
is shown as [32]

ωH(PiΩiPH
i
)
ω = pim0iγ̃i

ωH(PiTiPH
i
)
ω = pim0i

(12)

where m0 is the normalized radar cross section and γ̃ represents the coherence contribution.
The propagation factor p related to the propagation path can be described as a function of
the azimuth observation angle αAz and used to attenuate the corresponding contribution
of each scattering mechanism i. Note that the sublook coherences are obtained from a
pair of given full-resolution SAR images with a fixed polarimetric state. Therefore, the
projection vector ω is constant for the different sublook coherences. As a result, the
sublook interferometric coherences with different azimuth observation angles αAz can be
expressed as

γ̃(αAz) =
m0vγ̃v + ps(αAz)m0sγ̃s + psv(αAz)m0svγ̃sv

m0v + ps(αAz)m0s + psv(αAz)m0sv
(13)
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In general, it is assumed that the surface and dihedral scattering mechanisms include
equal coherence contributions, which is shown as

γ̃s = γ̃sv = eiϕ0 (14)

Therefore, the interferometric coherence related to a given polarimetric state can be
rewritten, and is shown as

γ̃(αAz) = eiϕ0
m0vγ̃ve−iϕ0 + ps(αAz)m0s + psv(αAz)m0sv

m0v + ps(αAz)m0s + psv(αAz)m0sv
= eiϕ0

γ̃v0 + µ(αAz)

1 + µ(αAz)
(15)

where ϕ0 is the ground phase associated with the underlying topography, µ(αAz) denotes
the ground-to-volume scattering ratio, which is formulated as a function of the ground-
(surface and dihedral) and volume- backscattering contribution, and is shown as

µ(αAz) =
ps(αAz)m0s + psv(αAz)m0sv

m0v
(16)

In addition, γ̃v0 represents the pure volume scattering coherence, which is modeled
as a function of the forest’s biophysical parameters and the vertical wavenumber with an
exponential backscattering profile, as shown in (17).

γ̃v0(hv, σ) = γ̃ve−iϕ0 =
∫ hv

0 f (z)eikzzdz∫ hv
0 f (z)dz

=
2σ(e(2σhv/cosθ+ikzhv)−1)

(2σ+ikzcosθ)(e2σhv/cosθ−1)

f (z) = e
2σhv
cosθ

(17)

where hv is the CHM and θ is the look angle of the master track. σ denotes the extinction
coefficient, which is used to describe the power attenuation of the SAR signals in the
forest volume. kz is the vertical wavenumber impacted by the baseline parameters and
topographic slope.

Finally, for the single-polarization InSAR data, the sublook interferometric coher-
ence, which is related to the azimuth observation angle αAz, can be derived from the
Equations (15)–(17) and is shown as

γ̃(αAz) = eiϕ0
γ̃v0(hv, σ(αAz)) + µ(αAz)

1 + µ(αAz)
(18)

where σ is expressed as a function of the azimuth observation angle αAz. The reason is
that αAz results in the path difference of the sublook signals in the forest volume, and
σ can be influenced by the azimuth observation angle αAz in a forest volume with het-
erogeneous characteristics. Moreover, for the sublook coherences caused by the different
azimuth observation angles, both the polarimetric state ω and the variation interval of
the azimuth observation angle ∆αAz are fixed. In this case, the corresponding ground-to-
volume scattering ratio µ and extinction coefficient σ can be influenced by the azimuth
observation angle αAz. As a result, Equation (18), which has a similar expression to that
of the OVoG model [34], is not invertible because of the underdetermined problem of
unknown parameters.

To address this problem, the change in the extinction coefficient caused by the different
azimuth observation angles within the volume scattering coherence γ̃v0 can be ignored,
since the difference in azimuth observation angles leads to a significant offset of the sublook
coherences along the coherence line but a relatively small change in the pure volume
coherence (eiϕ0 γ̃v0) in the complex plane, as has been verified in several studies [6,24].
Therefore, we can rewrite the sublook coherence as

γ̃(αAz) = eiϕ0
γ̃v0(hv, σ) + µ(αAz)

1 + µ(αAz)
= eiϕ0

(
γ̃v0 +

µ(αAz)

1 + µ(αAz)
(1− γ̃v0)

)
(19)
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It is clear that Equation (19) shows the relationship between the sublook coherences
and the forest’s biophysical parameters. According to the previous discussion, a full-
resolution SAR image can be split into multiple sublook images by performing sublook
decomposition, and then the corresponding sublook coherences can be acquired using
interferometric processing (see Equation (2)). In this case, the number of observations made
using the classical InSAR system is increased by changing the azimuth observation angle
αAz, which makes it possible to quantitatively evaluate the unknown parameters based on
the Equation (19). In the complex plane, the coherence points corresponding to different
sublooks can be enveloped by a polygon called the coherence region [24]. The coherence
region can be fitted as a line using the Line-fitting (LF) method, as in the case of the RVoG
model. In such a case, it is possible to estimate the ground phase and the forest biophysical
parameters in the complex circle.

Equation (19) describes the vegetation scattering model as a two-layer structure made
up of a volume layer and a ground layer. It can be called the TF-RVoG model because
of the use of the TF analysis. Note that the impacts of the different azimuth observation
angles on the ground-to-volume scattering ratios are described by a pair of propagation
factors ps(αAz) and psv(αAz), as shown in Equation (16). The reason for this is that, with
the difference in propagation paths caused by the varying azimuth observation angles, the
sublook SAR signals undergo different attenuation in the heterogeneous forest volume,
which results in a pair of varying propagation factors ps and psv. However, for the RVoG-
based polarimetric observations, the ground-to-volume scattering ratio is determined by
the different m0s(ω), m0sv(ω), and m0v(ω). This indicates a significant difference in the
impacts of the sublook and polarimetric coherences.

Moreover, an ideal case is provided to study in further detail the differences in the
sublook and polarimetric InSAR observations, where the forest is a homogeneous volume
with the same CHM and the underlying topography is a horizontal plane, as shown in
Figure 2a. In this case, the pure volume coherence is a constant because of the fixed extinc-
tion coefficient of the homogeneous forest, and we can compare the coherence loci of the
sublook and polarimetric observations in the complex unit circle. For the RVoG-based po-
larimetric coherences, the ground-to-volume scattering ratio is changed by the normalized
radar cross section for the different polarimetric states. As a result, the coherence loci of
the polarimetric observations strictly follow a straight line, as shown in Figure 2b. For the
sublook coherences based on the TF-RVoG model, however, the propagation factors ps and
psv are invariable since the different sublook SAR signals undergo the same attenuation
process in the ideal forest scene. Therefore, the corresponding coherence loci of the sublook
observations present as isolated points with a constant ground-to-volume scattering ratio
(Figure 2c).
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Figure 2. (a) Schematic representation of TF analysis over the homogeneous forest with a horizontal
underlying topography. (b,c) Corresponding coherence loci of the polarimetric observations and
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2.2. RME-Induced Phase Error Correction

Due to the changes in the backscattering properties caused by the different propagation
paths of the sublook SAR signals, the sublook coherences contain different interferometric
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phases. To accurately estimate the CHM from the sublook coherences, we must ensure that
the change in the backscattering properties is the only factor leading to the interferometric
phase difference of the sublook coherences. Therefore, the phase components that are
induced by other factors varying with the different azimuth observation angles must be
removed. For the airborne InSAR data used in this paper, the interferometric phase error
caused by the residual motion error (RME) is the major influence factor [26].

With the impact of airflow turbulence, the airborne SAR sensor usually deviates from
its predetermined track along the azimuth, which leads to a time-varying motion error.
After interference processing, the motion error will be transformed into the error of the
interferometric phase. In general, the motion error impacts of the different polarization
coherences can be ignored when estimating the CHM by using the PolInSAR data. However,
for the sublook InSAR coherences, a varying phase component will be induced by the
different motion errors along the azimuth, which will have a negative impact on the CHM
inversion. In other words, these motion errors are unabsorbable and must be removed for
robust parameter estimation in the case of sublook InSAR. According to the existing studies,
the motion parameters of aircraft can be record by the navigation system of the airborne
SAR sensor, and most of the motion error can be removed through motion compensation
processing [35–37]. However, there a fraction of RME will remain because of the limited
precision of the current airborne navigation system.

To remove the RME-induced phase error of each sublook coherence, a parameterized
model for the single-baseline case that can accurately describe the relationship between the
errors of the time-varying baseline parameters and the RME-induced interferometric phase
is used, and it can be expressed by Equation (20) [26]

ϕdi f f = ϕRME + ϕres−DEM + ϕnoi =

(
∂ϕres− f lat

∂B
+

∂ϕres−topo

∂B

)
·∆B +

(
∂ϕres− f lat

∂α
+

∂ϕres−topo

∂α

)
·∆α + ϕ0 + ∆ϕ (20)

where ϕdi f f is the differential interferometric phase, including three phase components: the
RME-induced phase ϕRME, the topographic error phase ϕres−DEM caused by discrepancies
between the external digital elevation model (DEM) and the real DEM, and the noise
phase ϕnoi. Furthermore, ∆B and ∆α are the time-varying baseline parameter errors, which
are related to the baseline length B and the baseline tilt angle α. Note that ϕRME can
be divided into two parts, i.e., the residual flat-earth phase ϕres− f lat and the residual
topographic phase ϕres−topo. ϕ0 represents the unwrapped phase of the reference point,
and ∆ϕ denotes the sum of the topographic error phase and the noise phase. Based on this
model, three unknown parameters ∆B, ∆α, and ϕ0 can be jointly estimated using a weighted
least-squares (WLS) regression approach. As a result, we can acquire the corresponding
RME-induced phase error and then deduct it from each sublook interferometric phase with
the same processing.

2.3. Three-Stage Inversion Method Based on the TF-RVoG Model

The proposed TF-RVoG model has a similar expression to that of the RVoG model.
However, for the sublook coherences based on the TF-RVoG model, it is difficult to estimate
the CHM using the classical three-stage inversion method [15] for the following two reasons.
Firstly, for the RVoG-based polarimetric observations, we can acquire the ground phase from
the two intersection points between the coherence line and the unit circle in the complex
unit circle using the a priori order of the polarimetric coherences along the coherence line.
However, there is no a priori order of the sublook coherences to use in selecting the ground
phase. Secondly, a measured coherence with a zero ground scattering component, i.e., the
pure volume coherence, is needed to invert the CHM from a 2-D lookup table (LUT) with
the CHM and the extinction coefficient. In the polarimetric cases, the coherence of HV or
PDH polarization, which includes a lower ground scattering contribution in comparison
with the other polarizations, is usually selected as the pure volume coherence. However,
the pure volume coherence for the sublook observations is unknown.
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To address these problems, a modified three-stage method that is suitable for the
TF-RVoG model is proposed for the CHM inversion, and the detailed steps are as follows.

(1) Coherence Line Fitting: Based on Equation (19), the sublook coherences are im-
pacted by the varying ground-to-volume scattering ratios caused by the different propaga-
tion factors. Hence, the coherence loci of the sublook InSAR observations form a finite line
between the coherence of the ground phase and the pure volume coherence in the complex
plane. Therefore, sublook coherences with different azimuth incidence angles can be fitted
to a coherence line using the total least-squares (TLS) method.

(2) Ground Phase Selection: Two intersection points between the fitted coherence
line and the complex unit circle are considered as candidate ground phase points, and we
need to select the correct ground phase point from these two candidates without a priori
knowledge. Due to the monotonic lowering of the sublook phases with the increase in the
ground-to-volume scattering ratios, a robust criterion was derived in [38] that can be used
to obtain the correct ground phase point in the sublook case. The corresponding decision
rule is shown as

For kz < 0 :
if arg

(
exp(iϕ1) exp(iϕ2)

∗) > 0 then ϕ0 = ϕ1

if arg
(
exp(iϕ1) exp(iϕ2)

∗) < 0 then ϕ0 = ϕ2
For kz > 0 :

if arg
(
exp(iϕ1) exp(iϕ2)

∗) < 0 then ϕ0 = ϕ1

if arg
(
exp(iϕ1) exp(iϕ2)

∗) > 0 then ϕ0 = ϕ2

(21)

where ϕ0 is the ground phase, and ϕ1 and ϕ2 are the two candidate ground phases. This
criterion with a limited condition of hv ≤ π/kz is effective for selecting the true ground
phase and is free of the a priori order of the sublook coherences.

(3) Forest CHM Retrieval: To avoid the underdetermined problem in the CHM in-
version, a coherence without the ground scattering contribution (i.e., µ(αAz) = 0) needs
to be selected from all the observed sublook coherences. Based on the opposite relation-
ship between the interferometric phases of the sublook coherences and the corresponding
ground-to-volume scattering ratios, the phase center height of each sublook coherence can
be expressed as

di =
∥∥∥ arg

(
γ
(
αAzi

)
− ϕ0

)
kz

∥∥∥ (22)

When the condition of di = dmax is satisfied, the sublook coherence with the lowest
ground scattering contribution can be acquired from the candidate sublook coherences. In
this case, we can rewrite the (19) as

γ̃(αAz)di=dmax
= eiϕ0 γ̃v0(hv, σ) (23)

As a result, a pair of the corresponding solutions (hv, σ) can be retrieved in the form of
the 2-D LUT.

2.4. 2-D Ambiguous Error Correction of the Pure Volume Coherence

For the sublook InSAR data, the CHM can be retrieved by the modified three-stage
method without a priori knowledge. However, the accuracy of the CHM inversion is
impacted by two major problems, i.e., the residual ground scattering error of the pure
volume coherence and the temporal decorrelation error.

(1) Residual Ground Scattering Effect: Equation (22) shows that the sublook coher-
ence with the lowest ground scattering contribution can be selected from all the sublook
coherences, and it is regarded as the pure volume coherence. In the complex unit circle, the
obtained pure volume coherence γv0 is located at the end of the coherence region farther
from the ground phase point eϕ0 , as shown in Figure 3a. However, due to the influence of
the residual ground scattering error, the true pure volume coherence γv1 without consider-
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ing the temporal decorrelation error should be located on a finite line between the γv0 and
eϕ1 , as shown in Figure 3b, which causes a one-dimensional (1-D) ambiguous error of the
pure volume coherence along the coherence line.
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fitted with the sublook coherences and intersects the unit circle at two points eiϕ0 and eiϕ1 . (b) Pure
volume coherence γv1 is located in the dotted line between eiϕ1 and γv0, which is caused by the impact
of the residual ground scattering error. (c) Temporal decorrelation error results in the ambiguous area
of pure volume coherence γv2 being spread over the striped 2-D region.

(2) Temporal Decorrelation Effect: In an airborne repeat-pass interferogram, the tempo-
ral decorrelation error caused by repeated SAR acquisitions can result in an overestimated
CHM [33,38,39]. During a short time interval (about 50 min in this paper), the wind-induced
motion of the scatterers in the forest volume is the major factor causing the temporal decor-
relation error of the airborne InSAR system. According to the existing studies, we can
assume that the temporal decorrelation error only changes the amplitudes of the sublook
coherences and has no effect on their phases [40]. In this case, the true pure volume co-
herence γv2 will be located on the extended segment of the finite line between γv1 and the
center of the circle, forming the second 1-D ambiguous error (Figure 3c).

Therefore, in the complex unit circle, a 2-D ambiguous error in the pure volume
coherence is caused by the joint influence of the residual ground scattering contribution
and the temporal decorrelation, which needs to be removed to obtain a high-precision CHM.

To address these problems, firstly, a geometrical index D.I, which can interpret the
relative location of the pure volume coherence on the coherence line, is expressed as in [25]

D.I = A.L/V.L (24)

where A.L denotes the ambiguous line length between eϕ1 and γv0, and V.L represents the
visible line length between γv0 and eϕ0 , as shown in Figure 3a. Because of the monotonic
lowering of the mean extinction with the increase in penetration depth, the pure volume
coherence can be defined as a function of the extinction coefficient. In response, a rela-
tionship between the geometrical index D.I and the extinction coefficient was proposed
by performing a simulation experiment with an ideal pure volume coherence, as listed in
Table 1 [25], which has been proven to be effective for alleviating the impact of the residual
ground scattering error.

Table 1. The Limited Extinction Coefficient BASED ON the Geometrical Index.

Index Range Extinction Coefficient Range (dB/m)

0–0.4 0.6–1
0.4–0.65 0.3–0.6

>0.65 0–0.3
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Moreover, many methods have been proposed for removing the temporal decorre-
lation error [38–40]. A representative method that is based on the random volume over
ground with volume temporal decorrelation (RVoG + VTD) model is to model the temporal
decorrelation as a real-valued factor [40]. For the sublook case, the corresponding model
can be expressed as

γ̃(αAz) = eiϕ0
αvtγ̃v0(hv, σ) + µ(αAz)

1 + µ(αAz)
(25)

where αvt represents the temporal decorrelation factor applied to the volume scattering
coherence. In this case, the additional αvt, as an unknown parameter, leads to the under-
determined problem of the CHM inversion in the single-baseline InSAR case. This can be
solved by fixing the extinction coefficient σ or the temporal decorrelation factor αvt [41].
However, both parameters are sensitive to the heterogeneity of the forest’s vertical structure
(e.g., forest CHM, forest density, and forest species). As a result, a non-negligible error
could be caused by the fixed extinction coefficient or temporal decorrelation for the CHM
inversion. In this paper, the relationship between the CHM and temporal decorrelation
is studied in light of the spatial heterogeneity of forest scenes. Due to the short space
of time in which the repeated SAR acquisitions were made in the airborne case, most of
the temporal decorrelation is attributed to the wind-induced motion of scatterers. Note,
however, that the influence of wind can lead to a greater temporal decorrelation error for
the high forest, compared with the low forest. The reason for this is that the high forest
with its larger leaves and longer twigs is more susceptible to the wind in comparison with
the low forest. Therefore, a linear relationship can be fitted to describe the interaction of
temporal decorrelation factor with the CHM (i.e., αvt = ahv + b). As a result, Equation (25)
can be rewritten and called the random volume over ground with mutative temporal
decorrelation (RVoG + MTD) model, and shown as

γ̃(αAz) = eiϕ0
(ahv + b)γ̃v0(hv, σ) + µ(αAz)

1 + µ(αAz)
(26)

For the RVoG + VTD model, we calculated the unknown extinction coefficient (or
temporal decorrelation) by using a small part of the a priori CHM, and then fixed it with an
average. However, for the RVoG + MTD model in Equation (26), there are three unknown
parameters (a, b, and σ) that need to be retrieved. In order to avoid the underdetermined
problem, the inversion process is divided into three stages. Firstly, the temporal decorrela-
tion factor is derived using the a priori CHM. Moreover, the unknown parameters a and
b can be estimated by fitting the linear relationship between the temporal decorrelation
factor and the a priori CHM. Finally, we inverted the corresponding solution pairs (hv, σ)
using the 2-D LUT.

In conclusion, with the limitation of the empirical relationship between the D.I and the
extinction coefficient (see Table 1), the proposed RVoG + MTD model is used to alleviate the
impact of the 2-D ambiguous error of pure volume coherence and to improve the accuracy
of the CHM retrieval.

3. Experiments and Results

In this study, the performance of the proposed approach to CHM inversion (Figure 4)
was tested with the L-band full-polarization SAR data acquired by the airborne E-SAR
system of the German Aerospace Center (DLR) during the BioSAR 2008 campaign.
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Figure 4. Flowchart of the proposed approach for the CHM inversion from the sublook InSAR data.

3.1. Experimental Data

The test site is a forested area in the Vindeln municipality, located in the Krycklan
catchment of Northern Sweden (64◦10′N and 20◦01′E). In this study area, the main forest
types are coniferous tree species (Norway spruce and Scots pine), which cover about 70%
of the total area. The rest is broad-leaved forest. The forest height varies from 0 to 35 m
with a mean forest height of 18 m and a mean biomass level of 90 t/ha, and the underlying
ground height ranges from 150 to 380 m above mean sea level with a moderate slope
ranging from −15◦ to 15◦, as shown in Figure 5a. For the L-band fully polarimetric SAR
data, one interferometric pair with a spatial baseline of 12 m was used to retrieve the CHM,
and the time interval of the repeated SAR acquisitions was about 50 min. The SAR images
have the pixel spacing of 0.74 m in azimuth and 1.5 m in slant range; Figure 5b shows
the corresponding Pauli-basis image. In addition, the airborne LiDAR CHM, collected by
the Swedish Defense Research Agency (FOI) in late summer 2008, is used to evaluate the
accuracy of the InSAR-derived CHM and is shown in Figure 5c.
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Figure 5. Image of the study area: (a) LiDAR-derived DEM. (b) Pauli-basis polarization composite
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3.2. Processing of the Sublook InSAR Data

In order to perform the single-polarization sublook InSAR experiment, the HH polar-
ization was selected from the observed full-polarization SAR data for the following reasons.
Firstly, the co-polarization HH or VV is usually used in the single-polarization InSAR
system, due to the higher coherence in comparison with the cross-polarization (HV and
VH). In addition, the coherence of the HH polarization, which includes the lower volume
scattering contribution, is higher than the coherence of the VV polarization.

According to the Doppler bandwidth criterion, the sublook images with a wide
bandwidth have a high resolution but with a small coherence dispersion. In contrast, the
sublook images with a narrow bandwidth result in a low resolution, but the coherence
dispersion is larger. In this case, a suitable bandwidth needs to be selected for a robust
parameter inversion. According to the analysis of the Doppler Bandwidth described in [24],
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in this paper, the master and slave images of the HH polarization were decomposed into
five sublook images with 50% of the total Doppler bandwidth, respectively. Meanwhile, for
a fair comparison between the polarization images and the sublook images, an equivalent
number of looks is necessary. For this purpose, the polarization coherences were calculated
over an 11 × 11 sliding window, while the sublook coherences were estimated with a
15 × 15 sliding window [30].

After interferometric processing, the phase error of each sublook coherence caused
by the RME can be removed using the time-varying baseline parameter errors model, as
shown in Equation (20). The interferometric phases of the five sublook coherences need to
be unwrapped before removing the RME-induced errors. Figure 6 shows the results of the
phase unwrapping of the first sublook coherence. The coherence and phase maps of the
first sublook observation were shown in Figures 6a and 6b, respectively. The minimum cost
flow (MCF) method was used to unwrap the interferometric phase [42], and the unwrapped
phase of the first sublook coherence is shown in Figure 6c. For the study area shown in
the red polygons, a low coherence (γ < 0.45) resulted in unsmooth phases during the
unwrapping process. This problem can be alleviated by using the difference phases from
the different pairs of sublook coherences, and the optimized result of Figure 6c is shown in
Figure 6d.
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In addition, the parameterized error model for the time-varying baseline parameters
can be used to estimate the RME-induced phase error of each sublook coherence. As a result,
the phase errors of the first and the fifth sublook coherences caused by the RME are shown
in Figures 7a and 7b, respectively. To present the impacts of the RME-induced phase errors
clearly, we have studied the difference maps between the first and fifth sublook phases
(i.e., ϕ5 − ϕ1) before and after the RME-induced phase errors were removed, as shown
in Figure 7c,d. For the difference map shown in Figure 7c, it is clear that there are some
phase fluctuations along the azimuth. The major reason for this is that the phase errors of
the sublook coherences induced by the RME are different. Therefore, the corresponding
RME-induced phase error of each sublook coherence should be removed, and the improved
result of the difference phase is shown in Figure 7d.
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Figure 7. Correction of the RME-induced phase errors. (a,b) are the RME-induced phase maps of
the first and fifth sublook coherences, respectively. (c,d) show the difference maps between the
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errors, respectively.

3.3. Results and Analyses

The obtained CHM maps based on the different methods from the PolInSAR interfero-
metric pair (with a spatial baseline of 12 m and a temporal baseline of about 50 min) are
shown in Figure 8a–f scaled from 0 to 35 m. Moreover, in order to obtain reliable forest
CHM results from the single baseline acquisitions, a general compromise is to mask the
areas which have too large or small a value for the vertical wavenumber [38], i.e., the areas
with kz < 0.06 rad/m and kz > 0.2 rad/m in the present study. In the available area, 181
out of the 256 cross-validation stands are superimposed on the CHM map acquired by
PolInSAR (Figure 8a). To more clearly present the contribution of the proposed models
and methods, the CHM inversion is described as three stages, and more details are given
as follows.

(1) CHM Inversion based on the TF-RVoG model: For a fair comparison of the different
methods, the classical three-stage inversion method was used to retrieve the CHM from the
PolInSAR data [15], which can be regarded as a reference to verify the performance of the
proposed approach. In this case, however, we must be aware that the polarization selection
has a great impact on coherence line fitting and parameter retrieval for the RVoG model.
For the linear polarization coherences, their high similarity in the complex plane may lead
to fitting errors of the coherence line. In contrast, the optimized coherences can improve
the linearity of the coherence sets because of the greater differences in the coherences along
the coherence line. Therefore, five optimized coherences, namely the phase diversity (PD)
coherences PDH and PDL [43], and the optimum coherences Opt1, Opt2, and Opt3 [44], are
used to fit the coherence line. As a result, the RVoG-derived CHM is shown as Figure 8a.
In addition, according to the modified three-stage inversion method in this study, the
corresponding CHM can be derived using the proposed TF-RVoG model from five sublook
InSAR coherences with the same bandwidths (50% of the total Doppler bandwidth) in HH
polarization and is shown as Figure 8b.
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Figure 8. Interferometric coherence of HH polarization scaled from 0 (black) to 1 (white) with the
Forest CHM maps superimposed. (a) PolInSAR-derived CHM map with 181 cross-validation stands
(red polygons). (b–f) show the InSAR-derived CHM maps: (b) CHM map acquired by the modified
three-stage method based on the TF-RVoG model. (c) CHM map with a limited extinction coefficient
for the residual ground scattering correction. (d,e) show the CHM maps based on the RVoG + VTD
model: (d) CHM map with a fixed extinction coefficient, (e) CHM map with a fixed temporal
decorrelation factor. (f) show the CHM map based the RVoG + MTD model. (g) LiDAR-derived
CHM map.

Compared with the CHM mapped by the LiDAR, as shown in Figure 8g, it is clear
that the CHMs of both Figure 8a and Figure 8b show obvious overestimation. The major
reason for this is that the joint influence of the residual ground scattering contribution of
the pure volume coherence (i.e., the coherence of PDH polarization in the PolInSAR case
or the coherence of di = dmax in the sublook InSAR case) and the temporal decorrelation.
The 181 cross-validation plots of the estimated CHM against the LiDAR-derived CHM
are displayed in Figure 9, and the corresponding root-mean-square error (RMSE) and
determination coefficient (R2) can be calculated. Firstly, the CHM inversion results derived
by the PolInSAR RVoG method and the InSAR TF-RVoG method reach a determination
coefficient of 0.62/0.64 with an RMSE of 6.55/5.61 m, as shown in Figures 9a and 9b,
respectively. This indicates that we can retrieve the CHM from the single-baseline InSAR
data without a priori knowledge, and the CHM result obtained using the InSAR TF-
RVoG method shows an obvious improvement of 14.3% in comparison with the RVoG-
derived result from the PolInSAR data. Secondly, the high forest (15 to 35 m) has a greater
overestimation than the low forest (0 to 15 m). The reason for this is likely that the higher
forest has a weaker resistance to the errors in the pure volume coherence. Finally, the
consistency of the inversion results obtained by the above-mentioned two methods is
underlined by a direct comparison of the CHM estimates with an R2 of 0.87 and an RMSE
of 2.52 m, as shown in Figure 9c.
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derived CHM; (b) InSAR TF-RVoG-derived CHM vs. LiDAR-derived CHM; (c) PolInSAR RVoG-
derived CHM vs. InSAR TF-RVoG-derived CHM.

In order to further verify the effectiveness of the proposed method, we studies the
coherence differences between the PolInSAR data and the sublook InSAR data in two major
aspects, i.e., the coherence line fitting of the measured coherences and the residual ground
scattering contribution of the selected pure volume coherence. As a result, the relevant
indexes, including CLI, prod, and PCHV (i.e., phase center height of the volume-only
coherence), are used for the coherence analysis in the complex plane. Firstly, the CLI can be
used to describe the linear consistency of the five measured coherences, and is expressed as
Equation (27) [6]

CLI =
∑n

k=1 dk

L
(27)

where d denotes the vertical distance from a certain coherence point to the fitted coherence
line, and L represents the distance between the two vertical projection points on the
coherence line, which is induced by the two ends of the coherent region. n is the number of
coherence points, and n = 5 in this study. Moreover, the prod is an index used to describe
the maximum coherence difference and the mean magnitude of the coherence region, and
it can be formulated as Equation (28) [17]

prod =
∣∣∣γhigh − γlow

∣∣∣·∣∣∣γhigh + γlow

∣∣∣ (28)

where
∣∣∣γhigh − γlow

∣∣∣ and
∣∣∣γhigh + γlow

∣∣∣ represent the length of the major axis line of the
coherence region and two times the magnitude of the center of the coherence region,
respectively. In general, a fitted coherence line with both a low value for the CLI and a
high value for the prod helps acquire a high-accuracy ground phase. Finally, the PCHV is
used to express the influence of the residual ground scattering error of the pure volume
coherence, and can be expressed as Equation (22). For the pure volume coherence, a higher
PCHV corresponds to a lower error induced by the residual ground scattering contribution.

In this study, these indexes, such as CLI, prod, and PCHV, can be estimated from the
measured coherences of the PolInSAR and the sublook InSAR, respectively. Figure 10a
shows the CLI histograms obtained by the two methods mentioned. Clearly, the CLI result
derived using the InSAR TF-RVoG method has a smaller mean than the PolInSAR RVoG-
derived result. In other words, the measured sublook coherences present a higher linear
correlation than the optimized polarization coherences. Figure 10b shows a big difference
in the distribution frequency of the prod results between the two methods, but the close
means of 0.358/0.303 are calculated separately from the coherences of the PolInSAR and the
sublook InSAR. Furthermore, the comparison of the PCHV results, as shown in Figure 10c,
indicates that it is reasonable that the coherence with di = dmax (i.e., SVC) is used as the
pure volume coherence in the sublook InSAR case, where it plays a similar role to that of
the PDH coherence in the PolInSAR case. In conclusion, the proposed sublook TF-RVoG
method can be used to retrieve the CHM with an obvious improvement in comparison
with the existing PolInSAR RVoG method, and it is free from the multi-polarization and the
observation efficiency reduction.
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Figure 10. Histograms of the indexes (a) CLI, (b) prod, and (c) PCHV derived by the PolInSAR RVoG
method (blue curves) and InSAR TF-RvoG method (red curves) in the single-baseline case.

(2) Correction of the residual ground scattering error: The 1-D ambiguous error of the
pure volume coherence caused by the residual ground scattering contribution (Figure 3b)
can be alleviated using a limited extinction coefficient derived from the empirical relation-
ship between the geometrical index D.I and the extinction coefficient (Table 1). Figure 8b,c
show the CHMs derived using the proposed InSAR TF-RVoG approach before and after
the empirical relationship is used, respectively. On this basis, Figure 11 shows the cross-
validation results for the InSAR-derived CHM vs. the LiDAR-derived CHM. It is clear that,
with the limitation of the empirical relationship, the determination coefficient improves
slightly with an R2 of 0.71, whereas the RMSE reduces to 4.01 m.

Remote Sens. 2023, 14, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 11. CHM estimated by InSAR versus LiDAR-derived CHM based on: (a) the TF-RVoG model; 
and (b) the TF-RVoG model with a limited extinction coefficient. 

To investigate the detailed differences in the CHM inversion results before and after 
the empirical relationship is used, the coherence effect caused by the limited extinction 
coefficient is expressed in the complex unit circle (Figure 12). Firstly, Figure 12a shows 
how to search for the pure volume coherence based on the 1-D ambiguous loci between 𝛾௩ and 𝑒௜ఝభ along the coherence line, where 𝛾௩ denotes the pure volume coherence re-
gardless of the residual ground scattering error. The red curve represents the correspond-
ing loci of the coherence 𝛾௜ with a fixed extinction coefficient σ and the varying CHM ℎ௩. 
We can obtain a unique solution for ℎ௩ for the condition 𝛾௜ = 𝛾௩. In this case, however, 
the ℎ௩ is usually overestimated because of the residual ground scattering effect, and the 
true pure volume coherence should be located to the left of 𝛾௩ in the coherence line. In 
response, the 𝐷. 𝐼 is calculated, and the 𝜎 can be updated using the empirical relation-
ship of 𝐷. 𝐼 and 𝜎. As a result, the blue curve shows the coherence loci with a fixed 𝜎 
after updating, and 𝛾௩ᇱ represents the improved pure volume coherence, which is the in-
tersection point between the blue curve and the coherence line. Moreover, Figure 12b 
shows the coherence regions divided by the empirical relationship of 𝐷. 𝐼 and 𝜎, where 
the green dots represent the coherence loci obtained from the varying 𝐷. 𝐼 from 0 to 0.4. 
In this case, the corresponding σ ranges from 1 dB/m to 0.6 dB/m. In a similar way, the 
blue dots represent the coherence loci obtained from the varying 𝐷. 𝐼 from 0.4 to 0.65, 
and the red dots the coherence loci obtained from the varying 𝐷. 𝐼 greater than 0.65. The 
corresponding 𝜎 range from 0.6 dB/m to 0.3 dB/m, and from 0.3 dB/m to 0, respectively. 

 
Figure 12. Coherence loci representation in the unit circle. (a) Search method of the pure volume 
coherence; the black finite line between 𝑒௜ఝభ  and 𝑒௜ఝబ  is the coherence line. 𝛾௩ is the pure volume 
coherence without regard to the residual ground scattering error, and 𝛾௩ᇱ is the corresponding im-
proved result. V. L is the length between 𝛾௩ and 𝑒௜ఝబ , and A. L is the length between 𝑒௜ఝభ and 𝛾௩. 
The red and blue curves are the selected coherence loci before and after using the limited 𝜎, respec-
tively. (b) Coherence loci limited by the empirical relationship of 𝐷. 𝐼 and 𝜎; (where the CHM 
ranges from 0 to 35 m, and the 𝜎 ranges from 0 to 1 dB/m). if 0 < 𝐷. 𝐼 ≤ 0.4, and then 𝜎 ∈ ሾ0.6,1), 
as shown in the green region; if 0.4 < 𝐷. 𝐼 ≤ 0.65, and then 𝜎 ∈ ሾ0.3,0.6), as shown in the blue re-
gion; if 𝐷. 𝐼 > 0.65, and then 𝜎 ∈ (0,0.3), as shown in the red region. 

Figure 11. CHM estimated by InSAR versus LiDAR-derived CHM based on: (a) the TF-RVoG model;
and (b) the TF-RVoG model with a limited extinction coefficient.

To investigate the detailed differences in the CHM inversion results before and after
the empirical relationship is used, the coherence effect caused by the limited extinction
coefficient is expressed in the complex unit circle (Figure 12). Firstly, Figure 12a shows
how to search for the pure volume coherence based on the 1-D ambiguous loci between γv
and eiϕ1 along the coherence line, where γv denotes the pure volume coherence regardless
of the residual ground scattering error. The red curve represents the corresponding loci
of the coherence γi with a fixed extinction coefficient σ and the varying CHM hv. We can
obtain a unique solution for hv for the condition γi = γv. In this case, however, the hv is
usually overestimated because of the residual ground scattering effect, and the true pure
volume coherence should be located to the left of γv in the coherence line. In response, the
D.I is calculated, and the σ can be updated using the empirical relationship of D.I and σ.
As a result, the blue curve shows the coherence loci with a fixed σ after updating, and γ

′
v

represents the improved pure volume coherence, which is the intersection point between
the blue curve and the coherence line. Moreover, Figure 12b shows the coherence regions
divided by the empirical relationship of D.I and σ, where the green dots represent the
coherence loci obtained from the varying D.I from 0 to 0.4. In this case, the corresponding
σ ranges from 1 dB/m to 0.6 dB/m. In a similar way, the blue dots represent the coherence
loci obtained from the varying D.I from 0.4 to 0.65, and the red dots the coherence loci
obtained from the varying D.I greater than 0.65. The corresponding σ range from 0.6 dB/m
to 0.3 dB/m, and from 0.3 dB/m to 0, respectively.
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Figure 12. Coherence loci representation in the unit circle. (a) Search method of the pure volume
coherence; the black finite line between eiϕ1 and eiϕ0 is the coherence line. γv is the pure volume
coherence without regard to the residual ground scattering error, and γ′v is the corresponding
improved result. V.L is the length between γv and eiϕ0 , and A.L is the length between eiϕ1 and
γv. The red and blue curves are the selected coherence loci before and after using the limited σ,
respectively. (b) Coherence loci limited by the empirical relationship of D.I and σ; (where the CHM
ranges from 0 to 35 m, and the σ ranges from 0 to 1 dB/m). if 0 < D.I ≤ 0.4, and then σ ∈ [0.6, 1), as
shown in the green region; if 0.4 < D.I ≤ 0.65, and then σ ∈ [0.3, 0.6), as shown in the blue region; if
D.I > 0.65, and then σ ∈ (0, 0.3), as shown in the red region.

The CHM result derived using the improved method with the limited σ, as shown
in Figure 11b, is still overestimated for the high CHM. The reasons are likely that, on the
one hand, the temporal decorrelation is a non-negligible factor in CHM overestimation
when the L-band InSAR data are used; on the other hand, the ground scattering error
is not completely removed, due to the rough ranges of the D.I (i.e., 0 < D.I ≤ 0.4,
0.4 < D.I ≤ 0.65, and D.I > 0.65). In response, some representative points from the
experimental data are presented for detailed description, as listed in Table 2. It is clear that,
for the case of D.I ≤ 0.65, the corresponding range of the limited σ leads to the selection
of the pure volume coherence γ

′
v = γv with the lower ground scattering contribution

(Figure 12a) and the lower hv. However, for the cases of D.I > 0.65, the coherences can
be shown as the red dots in the Figure 12b. In this case, γ

′
v = γv, and the hv remains

unchanged. In other words, the restricted relationship of D.I and σ is ineffective for
removing the residual ground scattering error of the pure volume coherence in the case of
D.I > 0.65.

Table 2. Comparison of the CHMs before and after using the limited extinction coefficient.

D.I InSAR CHM
(m)

InSAR CHM with a
Limited σ

Distance between γv and γ
′
v

0.4 14.5 9.5 0.126
0.32 21 14.5 0.267
0.43 20.5 14 0.198
0.71 35 35 0
0.22 17 12.5 0.055
0.23 22.5 15 0.054
2.02 6.5 6.5 0
0.82 32 32 0

(3) Correction of the temporal decorrelation error: The wind-induced temporal decorre-
lation error can be removed by using the RVoG + MTD model related to a linear relationship
of αvt = ahv + b, as shown in Equation (26). Firstly, 12 validation stands obtained using
LiDAR are used as the a priori CHM [see Figure 13a]; then, the corresponding temporal
decorrelation factor αvt can be calculated from the RVoG + VTD model [see Equation (25)]
with a 2-D LUT of αvt and σ, as shown in Figure 13b. Comparing the results between
Figure 13a and the Figure 13b, it is clear that increasing the CHM results in a lowering of
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the temporal decorrelation factor. This indicates that, for the high forest, greater amounts
of temporal decorrelation error are induced. In contrast, the areas with a smaller error
of the temporal decorrelation include the low forest. Secondly, for the 12 selected vali-
dation stands, the linear relationship of the CHM and the temporal decorrelation factor
(i.e., αvt = ahv + b) can be fitted in the limited ranges of the D.I (i.e., 0 < D.I ≤ 0.4,
0.4 < D.I ≤ 0.65, and D.I > 0.65), and the corresponding results are shown in Figure 14a–c,
respectively. As a result, the temporal decorrelation factor, as a function of CHM, can be
expressed as 

0 < D.I ≤ 0.4, αvt = −0.022hv + 1.006;

0.4 < D.I ≤ 0.65, αvt = −0.035hv + 1.257;

D.I > 0.65, αvt = −0.031hv + 1.205;
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Therefore, we can replace the temporal decorrelation factor αvt with the equivalent
expression hv (Equation (29)). In this case, for the study area, the unknown solution pairs
(hv, σ) can be retrieved by using the RVoG + MTD model.

To verify the performance of the proposed approach, two existing approaches based
on the RVoG + VTD model, namely fixing σ or fixing αvt as a constant value, are used as
references. It must be emphasized that a small amount of a priori CHM is necessary for
both of the methods to obtain the fixed σ or αvt. Therefore, the 12 validation stands, as
shown in Figure 13a, are used as the a priori CHM for a fair comparison of the different
methods. Moreover, for each method, the pure volume coherence error induced by the
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residual ground scattering effect has been alleviated by using the empirical relationship
between D.I and σ. Subsequently, we compared the impacts of the temporal decorrelation
errors for different methods, including the RVoG + VTD model with a fixed σ, the m model
with a fixed αvt, and the RVoG + MTD model with a varying αvt.

Figure 15 shows the cross-validation results for the InSAR-derived CHM versus the
LIDAR-derived CHM. Firstly, the resulting scatter plot derived using the RVoG + VTD
model with a fixed σ is shown in Figure 15a. It is clear that the estimated CHM exhibits
underestimation, and that the RMSE is 4.54 m and the R2 is 0.51. The reason is that, with the
limitation of the relationship between D.I and σ, σ should be divided into three different
ranges (i.e., 0 < σ < 0.3, 0.3 ≤ σ < 0.6, and 0.6 ≤ σ < 1), and is fixed with an average,
which leads to the overestimation of temporal decorrelation error and the underestimation
of CHM. Secondly, a better CHM result is acquired by the RVoG + VTD with a fixed
αvt, as shown in Figure 8e, and it is assessed in Figure 15b. The corresponding RMSE is
3.78 m with an R2 of 0.71. In this case, for the high forest ranges from 20 m to 35 m, the
InSAR-derived CHM presents an overestimation, but the low forest (0 to 20 m) shows
obvious underestimation. This is because the taller trees yield greater amounts of temporal
decorrelation, and the fixed αvt is derived by an average of αvt, causing the underestimation
and the overestimation of the temporal decorrelation error in the high and low forest,
respectively. Finally, in the RVoG + MTD case, the spatial heterogeneity of the forest height
is considered in the proposed approach by using a varying αvt, as shown in Equation (28),
which helps to accurately remove the temporal decorrelation error. As a result, the CHM is
estimated with an R2 of 0.77 and an RMSE of 2.54 m [see Figure 15c], which represents an
average improvement of 32.8% in comparison to the CHM obtained by the RVoG + VTD
with a fixed αvt.
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with: (a) a fixed σ; (b) a fixed αvt; and the RVoG + MTD model with: (c) αvt = ahv + b, where a and b
can be estimated by the linear fitting between the CHM and αvt, as shown in (28).

4. Discussion

The cross-validation results for the CHMs derived using the different methods, as
shown in Figures 9, 11 and 15, have demonstrated the validity of the proposed model
and method. In other words, the proposed CHM inversion approach was capable of
estimating the CHM from the single-baseline InSAR data and improved both the accuracy
and the robustness of the forest height retrieval. However, some potential problems with
the proposed approach need to be further discussed and studied in order to improve the
performance of the proposed approach.

4.1. The Limitation of the External DEM in the RME Correction

In order to obtain a robust CHM from the sublook InSAR data, the RME-induced
phase error of each sublook coherence needs to be removed using the RME correction
method. The weighted phase curvature autofocus method is free from problems with
low coherence and can estimate the RME for an individual SAR image, but it requires
high signal-to-noise ratio (SNR) targets in the SAR image [45]. The interferometric phase
calibration approach can calibrate the phase errors by detecting stable point-like targets,
but multi-baseline InSAR data are required [46]. In contrast, the time-varying baseline
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parameter errors model used in this paper is not only applicable to an interferogram
characterized by low-coherence regions, but can also work on single-baseline InSAR data
without requiring high-SNR targets. In addition, the topographic phase, which is important
in detecting the RME-induced phase from the airborne repeat-pass interferometric phase,
is related to the external DEM. Therefore, the performance of the time-varying baseline
parameter errors model may be impacted by the error of the external DEM. Note that, in
this study, the LiDAR-derived DEM with high resolution and high accuracy is used as the
external DEM. However, for other study areas, it is difficult to find a DEM that matches the
airborne InSAR data. The openly released spaceborne DEM products, such as SRTM DEM,
ASTER DEM, and TanDEM-X DEM, can also play the role of the external DEM, but their
effectiveness is limited because of their low resolution and precision [47]. Fortunately, the
accuracy of the estimated CHM is not sensitive to the impact of the external DEM error in
the proposed approach.

4.2. The Impact of the Rough Ranges of the D.I in the Ground Scattering Error Removal

In this study, with the limitation of the relationship between the geometrical index
D.I and the extinction coefficient, the coherence regions can be divided into three parts,
as shown in Figure 12b. In this case, an extinction coefficient with a higher accuracy
can be acquired, which helps alleviate the residual ground scattering error of the pure
volume coherence. However, for the representative points from the study area listed in
Table 2, if D.I > 0.65, the pure volume coherence remains unchanged before and after the
empirical relationship is used, and the corresponding accuracy of the CHM has not been
improved. This means that the empirical relationship of D.I and the extinction coefficient
only narrows the search range for the extinction coefficient, but does not provide its exact
value. Therefore, the ground scattering errors are not completely removed, due to the rough
ranges of the D.I. In order to improve the accuracy of the CHM inversion, a more precise
relationship between the D.I and the extinction coefficient needs to be further explored in
future work.

5. Conclusions

In this study, the path difference of the sublook SAR signals, which is the major factor
causing the backscattering variations, was considered in the scattering matrix. On this
basis, a TF-RVoG model has been developed from the existing RVoG model and can be
used to describe the relationship between the sublook coherence and the forest biophysical
parameters. The corresponding three-stage method has been proposed to allow us to
estimate CHM from the single-baseline sublook InSAR data. The inversion scheme was
validated using L-band HH-polarization InSAR data. The RMSE of the validated plots
based on the proposed method was 5.61 m, representing a slight improvement of 14.3% in
comparison with the classical three-stage inversion result from the PolInSAR data. This
indicates the CHM can be retrieved from the single-baseline InSAR data without a small
amount of a priori CHM.

In addition, for a higher accuracy of the CHM, the impact of the residual ground
scattering error of pure volume coherence was alleviated by using a limited extinction
coefficient derived from the empirical relationship of the geometrical index D.I and the
extinction coefficient. As a result, the RMSE is reduced to 4.01 m, and the determination
coefficient improves, with an R2 of 0.71. To reduce the impact of the temporal decorrelation
error in the CHM inversion, the relationship of the CHM and the temporal decorrelation is
studied in view of the spatial heterogeneity of the CHM. Based on the negative correlation
between the CHM and the temporal decorrelation, we describe the temporal decorrelation
factor as a function of the CHM using linear fitting, and propose the RVoG + MTD model
with a varying temporal decorrelation factor. Finally, a CHM is retrieved with an RMSE of
2.54 m, which represents an average improvement of 32.8% in comparison to the case with
a fixed temporal decorrelation factor. The results indicate that, in combination with the
relationship of the D.I and the extinction coefficient, the proposed RVoG + MTD method is
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an effective way to alleviate the 2-D ambiguous error of the pure volume coherence induced
by the joint impact of the residual ground scattering and the temporal decorrelation.

The performance of the proposed approach is hindered by the errors of the external
DEM and the rough division of the D.I, which reduce the accuracy of the CHM. Moreover,
as in existing methods, a small amount of a priori CHM is needed for the RVoG + MTD
method to remove the error of the temporal decorrelation, which limits the scope of
application of the proposed method. To overcome these problems, we will focus on how to
use the proposed method with multi-baseline InSAR data, which has the potential to further
improve the accuracy of the CHM owing to its greater number of available observations.
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