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Abstract: The identification and monitoring of cyanobacterial blooms (CBs) is critical for ensuring
water security. However, traditional methods are time-consuming and labor-intensive and are not
ideal for large-scale monitoring. In operational monitoring, the existing remote sensing methods
are also not ideal due to complex surface features, unstable models, and poor robustness thresholds.
Here, a novel algorithm, the pseudo-Forel-Ule index (P-FUI), is developed and validated to identify
cyanobacterial blooms based on Terra MODIS, Landsat-8 OLI, Sentinel-2 MSI, and Sentinel-3 OLCI
sensors. First, three parameters of P-FUI, that is, brightness Y, saturation s, and hue angle α, were
calculated based on remote sensing reflectance. Then, the robustness thresholds of the parameters
were determined by statistical analysis for a frequency distribution histogram. We validated the accu-
racy of our approach using high-spatial-resolution satellite data with the aid of field investigations.
Considerable results were obtained by using water color differences directly. The overall classification
accuracy is more than 93.76%, and the user’s accuracy and producer’s accuracy are more than 94.60%
and 94.00%, respectively, with a kappa coefficient of 0.91. The identified cyanobacterial blooms’
spatial distribution with high, medium, and low intensity produced consistent results compared to
those based on satellite data. Impact factors were also discussed, and the algorithm was shown to
be tolerant of perturbations by clouds and high turbidity. This new approach enables operational
monitoring of cyanobacterial blooms in eutrophic lakes.

Keywords: cyanobacterial blooms; P-FUI; Lake Taihu; satellite data; monitoring

1. Introduction

Cyanobacterial blooms (CBs) usually refer to blooms where cyanobacteria form float-
ing scum with a blue-green color on the water surface. These blooms have experienced a
period of dramatic global growth in recent decades due to nutrient loading and climate
factors (e.g., temperature, rainfall, and solar radiation) [1–4]. The global exacerbation of
CB conditions seriously threatens human health [5–8] and restricts socioeconomic develop-
ment [9]. With significant public health concerns and socioeconomic development issues
concerning water quality, it has been deemed necessary to implement early detection and
effective monitoring of the reduction in CB intensity [10].

Traditional CB0s monitoring requires regular sampling in representative areas and subse-
quent microscopy for identification and analysis (e.g., chlorophyll at concentration >20 µg/L
or phytoplankton biovolume >5.0 × 107 cells/L), the feasibility of which has been well
documented [11–13]. However, these methods have limitations, such as the labor and time
involved in sample acquisition over large spatial scales, the high costs of laboratory-based
preparation and analysis, escalating expenses for personnel and equipment, and poor
timeliness [14]. It is also challenging to obtain the spatial distribution characteristics and
time-series variation of CBs [15]. After decades of rapid development, remote sensing
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technology, with its broader monitoring range, faster imaging speed, shorter return period,
and real-time dynamics, is believed to act as a countermeasure against these weaknesses of
traditional monitoring methods and has become an important method for monitoring CBs,
especially in large water bodies [16–22].

In general, the identification of CBs by remote sensing is based on significant water
color variations, such as the greening of water mainly caused by CBs [2]. These changes
are caused by the different spectral characteristics of pigments in cyanobacteria; for ex-
ample, as indicators of cyanobacteria, phycocyanin has an absorption peak at 630 nm,
while chlorophyll has a peak in reflectance at 550 nm and a trough at 665 nm [23,24].
Therefore, in operational monitoring, CBs are usually rendered a characteristic green color
different to surrounding features by synthesizing false-color remote sensing images and
then subjected to visual interpretation [25,26]. Similar spectral characteristics between
CBs and aquatic/terrestrial plants often make it difficult to distinguish the two by visual
inspection [27]. In order to improve the objectivity and stability of interpretation, remote
sensing indices, especially the vegetation index, were used to identify CBs automatically,
with increasing popularity [20,28].

CBs identification based on remote sensing technology has been studied extensively, includ-
ing simple band algorithm, decision trees, mixed pixel decomposition, supervised/unsupervised
classification, and algae-associated indices (see Table 1). Ratios of band reflectance and
simple band transformations (e.g., simple band algorithm, algae-associated indices) are
based on spectral characteristics for features detection but with the problems of similar
spectral characteristics [27], while ensemble models (e.g., decision trees) often improved
the error rate but with more complex structures [29,30]. These methods were designed
to improve the accuracy of identifying CBs and to enable operational monitoring [31,32].
However, the results of the identification of CBs tend to be unsatisfactory in practice due
to the varying quality of satellite data and the poor robustness of thresholds. At the same
time, they are also severely susceptible to interference from factors such as clouds, aquatic
vegetation, and highly turbid water bodies [26]. Therefore, identifying CBs based on re-
mote sensing technology still requires further research; for example, the development of
universal algorithms [15].

Specific band combinations based on satellite images could make CBs present dif-
ferent colors from the surrounding water surface. For example, CBs usually present
yellow-green on true color images, and they present bright green on false color images
(RGB: SWIR/NIR/Red) (Figure 1). Since the colors of CBs can be easily distinguished on
false color maps, the pseudo-Forel-Ule index (comprising brightness Y, saturation s, and
hue angle α) was proposed based on Terra MODIS (B7-B2-B1), Landsat-8 OLI (B7-B5-B2),
Sentinel-2 MSI (B11-B8-B1), and Sentinel-3 OLCI (B8-B20-B6). Then, the P-FUI decision
tree with robust thresholds was constructed to identify CBs. This method improved the
accuracy and consistency of CBs monitoring, and considerable results were acquired mainly
due to using water color differences directly. The main aim of this study was to provide
important theoretical and technical support for the identification of CBs in eutrophic lakes,
along with making progress in terms of its actual operational monitoring.
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Table 1. Examples of CBs identification algorithms and their application area.

Algorithm Form Reference Application Area Data Source

Simple band algorithm
Rrs(840)
Rrs(858.5) and Rrs(858.5) / Rrs(555)
Red tide = f(Rrs(912.5) / Rrs(615))
Rrs(555) or Rrs(680)

[33]
[34]
[35]
[36]

Clear Lake, USA
Lake Taihu, China
West Coast, Canada
East Sea, Korea peninsula

Airborne image
MODIS
AVHRR
GOCI

Decision trees
TWI ≥ CMI ≥ FAI
SD ≥ TP ≥ pH ≥ DIN
CSI ≥ PBL
CI ≥ ABM ≥Median, Sen’s slope,
and Kendall’s τ

[27]
[37]
[38]
[39]

Lake Taihu, China
48 ponds, Belgium
156 lakes, USA

MODIS
In situ
MERIS

Mixed pixel decomposition
Algae pixel-growing algorithm
Linear mixing model
Improved N-FINDR

[40]
[41]
[42]
[43]

Lake Taihu, China
Lake Dianchi, China
Part of Yellow Sea

MODIS
GOCI
HJ-1B

Supervised/Unsupervised Classification
ISODATA clustering
Minimum distance classification
Maximum likelihood classification

[44]
[45]
[31]

Moreton Bay, Australia
Lake Chaohu, China
North Sea, Netherlands

ETM+
MODIS
SeaWiFS

Algae-associated indices
Floating algae index
Forel-Ule index
Chlorophyll-a
Visual cyanobacteria index
NDVI, EVI

[26]
[46]
[47]
[48]
[49]

Western Yellow Sea
Global Inland Waters
5 Lakes/Reservoirs, China
Ganga River, India
3 Lakes, Japan

MODIS
OLI
MSI
OLCI
ETM+

Machine learning
Neural networks
Random forest
Support vector machine
Long short-term memory

[50]
[51]
[52]

Bohai Bay, China
Han river, South Korea
Sea Coast near Florida, USA;
Arabian Gulf

AVHRR
In situ
MODIS
GEBCO

Rrs: remote sensing reflectance; NDVI: normalized difference vegetation index; EVI: enhanced vegetation index;
FAI: floating algae index; CMI: cyanobacteria and macrophytes index; TWI: turbid water index; DIN: dissolved
inorganic nitrogen; SD: Secchi depth; TP: total phosphorus; PBL: baseline of phycocyanin [38,53]; CSI: chlorophyll
spectral index [54]; ABM: annual bloom magnitude; CI: cyanobacteria Index [55].
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Figure 1. Satellite photograph of CBs in Lake Taihu (CHINA). True color images left and false color
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2. Data and Study Area
2.1. Study Area

Lake Taihu (30◦5′N–32◦8′N, 119◦8′E–121◦55′E) is the third-largest freshwater lake in
China, located in a large, heavily urbanized (>40 million inhabitants), and agricultural
catchment (~36,500 km2) in the Yangtze River Delta region [56]. This typical inland, sizeable
shallow lake with an average depth of 1.9 m and a surface area of 2425 km2 is characterized
by eight major segments from west to east: the west littoral area, the south littoral area, the
central lake area, Zhushan Bay, Meiliang Bay, Gonghu Bay, the east littoral area, and the east
Taihu Lake (Figure 2). In recent decades, the lake has become increasingly eutrophic [56,57],
possibly due to the pollution from agricultural and industrial production, with a long-
term increase [58]. At present, the water quality of Lake Taihu is mostly Case IV, and
cyanobacteria blooms frequently occur in spring and summer, which seriously threatens
the quality of drinking water for millions of people living nearby [59].
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Figure 2. Location of Lake Taihu, China. The inset shows that the lake is divided into several lake
segments conventionally. Traditionally, cyanobacteria-dominated water in most of the western part
and eastern part is dominated by macrophytes.

Traditionally, CBs erupt in most of the western part of Lake Taihu, and the eastern part
is dominated by macrophytes with three types of aquatic vegetation [60]. Due to changes in
the physical environment (climate warming, decreasing wind speed, increasing water level,
and decreasing Secchi disc depth) and human activities, the expansion of CBs in the lake
experienced a gradual expansion from Meiliang Bay, Zhushan Bay, and the central lake area,
and gradually spread to the eastern lake area [61,62]. Correspondingly, the littoral area
of East Taihu Lake was covered with dense aquatic vegetation that extended toward the
center of the bay [63]. The infiltration and coexistence of macrophytes and phytoplankton
leads to confusion in operational monitoring of CBs because of the similar coloration; for
example, both are green or cyan. Complex optical properties with significant spatial and
temporal differences [64–66] also make it difficult to identify CBs in the lake.

Alongside Lake Taihu, we used several other eutrophication lakes around the world
were to further evaluate the ability of the P-FUI algorithm, such as Lake Chaohu, Dianchi,
and Hulun in China, Lesser Slave Lake in Canada, Lake Okeechobee in the United States,
Lake Atitlan in Guatemala, Lake Kasumigaura in Japan, Lake Beloye in Russia, and Lake
Buir in Mongolia. The eastern Gulf of China, with noticeable red tides, was also used for
extended evaluation.
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2.2. In Situ Spectral Data

For this study, the diversity of water samples was considered as much as possible. Due
to the effect of human activities, the ecological function of Lake Taihu, Chaohu, Dianchi,
and Hulun declined, and a large number of nutrients entered the lakes, resulting in severe
eutrophication and frequent outbreaks of CBs [67–70]. The above four lakes are all algae-
dominated with different species and amounts. Due to the water exchange with Yangtze
and Huaihe River, the water body of Lake Dongting, Poyang, and Hongze have high
fluidity and relatively little accumulation of algae [71]. Compared with the previously
mentioned lakes, Lake Fuxian seldom experiences an outbreak of algae blooms, which may
be due to its deep water and large capacity [72–74].

In order to eliminate the systematic deviation of the hue angle α of P-FUI in its calcula-
tion process, in situ data for the eight lakes were collected from August to November 2020
by field measuring and water sample collection. Cruise measurements were taken as shown
in Figure 3, water was sampled in different types of inland waters, and a total of 151 field
sampling sites were selected to ensure the representativeness of water bodies. During
each cruise, the water-leaving reflectance data were obtained based on the commonly
used method [75–77] of using an ASD FieldSpec HandHeld 2 spectroradiometer (ASD,
Alpharetta, GA, USA). Subsequently, water samples collected simultaneously with radio-
metric measurements were immediately transferred to the laboratory for filtration with
GF/C filters (Whatman, Maidstone, UK). Then, chlorophyll-a (Chl-a) was extracted and its
concentration was quantified to evaluate the effect of Chl-a content on P-FUI, through a
procedure given by [78,79], using a UV-2600 Spectrophotometer (Shimadzu, Kyoto, Japan).
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Figure 3. Location and date of in situ data in eight lakes, comprising Yangtze River-linked lakes
(Lake Poyang, Dongting, and Hongze) and Yangtze River-nonlinked lakes (Lake Taihu and Chaohu)
in Yangtze Plain and the Huaihe River Basin, Lake Hulun in Inner Mongolia, and Lake Dianchi and
Fuxian in the Yunnan–Guizhou Plateau.
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2.3. Synthetic Spectral Data

A synthetic remote sensing dataset published by [80] was used to develop the algo-
rithms, which is provided by the International Ocean-Colour Coordinating Group and
is generally used as a good benchmark for algorithm development [81]. Details of this
dataset can be found in [80] and on the IOCCG website (IOCCG, https://www.ioccg.
org/groups/OCAG_data.html, accessed on 12 December 2020). This simulated dataset
contains 500 synthetic spectra with intrinsic and apparent optical properties of different
water components. The data provided every 10 nm between 400 and 800 nm cover a wide
range in natural-water composition without errors from measurement procedures, and they
have been widely used in the development and verification of water color remote sensing
algorithms [46,47,82]. In this study, each spectrum of the dataset was converted to the
multiband spectra for the instruments MODIS, OLI, MSI, and OLCI by linear interpolation
of the synthetic water-leaving reflectance values at the 10 nm grid. Then, based on the
simulated data and in situ measured data, a true color synthesis was performed to correct
the hue angle deviation [82], the process of which will be shown later.

2.4. Image Pre-Processing

For inter-comparison of the multispectral satellite images, Terra MODIS, Landsat-
8 OLI, Sentinel-2 MSI, and Sentinel-3 OLCI images were used to derive P-FUI. Details of
the satellite images are given in Table 2. The MODIS_L1B products were downloaded from
the National Aeronautics and Space Administration (NASA, https://ladsweb.modaps.
eosdis.nasa.gov/search/, accessed on 1 March 2021). Then, bands 3 to 7 of MODIS were
resampled to 250 m. Landsat-8 OLI has a 16-day repeat cycle, and its resolution is 30 m
for bands 1 to 7. Data are available from https://earthexplorer.usgs.gov/, accessed on
20 March 2021. Sentinel-2 MSI and Sentinel-3 OLCI images were obtained from https:
//scihub.copernicus.eu/dhus/#/home, accessed on 5 April 2021. The maximum resolution
of MSI images is 10 m, while OLCI images with a resolution of approximately 300 m. For
MSI, images of different resolutions were downscaled to 10 m.

The FLAASH and 6S algorithms were used for atmospheric correction of satellite
images in order to perform an inter-comparison. The FLAASH algorithm was processed in
ENVI 5.3 software, which is a rigorous method widely used by researchers [83–86]. The
6S algorithm enables accurate simulations of satellite signals from 250 nm to 4000 nm, which
accounts for elevated targets, modeling of a realistic molecular/aerosol/mixed atmosphere,
use of Lambertian/anisotropic ground surfaces, and calculation of gaseous absorption [87–89].
In this study, 6S corrections were performed using the Py6S python package. This package
can be acquired from https://pypi.org/project/Py6S/, accessed on 25 May 2021. After
pre-processing, which includes radiometric calibration, geometric correction, resampling,
and atmospheric correction, the water bodies were extracted using the modified normalized
difference water index (MNDWI) [90] based on the MSI images. Equation (1) was applied
for water identification:

MNDWI = (RGREEN − RMIR)/(RGREEN + RMIR) (1)

where RGREEN and RMIR represent the reflectance of the green band and the mid-infrared
band, respectively, which correspond to the 3rd and 11th bands for MSI. Then, based on the
Otsu algorithm [91,92], the MNDWI threshold of 0.2 was calculated to separate the water
and land pixels. Subsequently, topological errors were manually corrected by experts to
obtain a more accurate lake boundary, as shown in Figure 4. Concurrent satellite images
with cloud cover of less than 10% and CBs were adopted to calculate and evaluate the
P-FUI. The nearest satellite image pixels within a ±3 h window were used to pair with the
in situ data [46].

https://www.ioccg.org/groups/OCAG_data.html
https://www.ioccg.org/groups/OCAG_data.html
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://earthexplorer.usgs.gov/
https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://pypi.org/project/Py6S/
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Table 2. Dates and numbers (N) of available satellite images of each lake.

Lakes
Image Time Period

N
OLI MODIS MSI OLCI

Lake Taihu 23 October 2013–
22 July 2020

29 November 2013–
28 August 2020

21 April 2019–
25 August 2020

13 September 2016–
20 August 2020 84

Lake Chaohu 19 September 2013 19 October 2019
26 June 2019

19 October 2019
26 June 2019

19 October 2019
14 July 2019 7

Lake Dianchi
28 July 2020
11 August 2019
28 September 2019

8 December 2019
29 October 2019
7 April 2019

8 December 2019
29 October 2019
7 April 2019

8 December 2019
29 October 2019
7 April 2019

12

Lake Hulun
24 July 2017
5 August 2018
21 August 2018

7 September 2020
2 August 2019
19 September 2019

7 September 2020
4 August 2019

7 September 2020
2 August 2020
19 September 2019

11

Beibu Gulf 14 February 2021 1

Lesser Slave Lake 23 September 2013
15 September 2016

28 October 2020
20 October 2020

1 October 2020
16 September 2020

28 October 2020
20 October 2020 8

Lake Okeechobee
2 July 2016
8 August 2018
13 July 2020

15 October 2020
27 September 2020
14 July 2020

15 October 2020
14 July 2020

15 October 2020
27 September 2020
14 July 2020

11

Lake Atitlan 20 August 2015 1

Lake Kasumigaura 1 September 2013 1

Lake Beloye 12 September 2014
19 September 2014

8 August 2019
22 July 2019

8 August 2019
22 July 2019 6

Lake Buir 12 July 2015 9 July 2016
6 October 2016 3

Dear Editor-in-Chief, 

June 1, 2023 
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1) Please replace Figure 4 with the following ‘figure 4’, thanks. 

 

Figure 4. Flowchart of lake boundary extraction and calibration from satellite images. Database 2 

is the final result of image pre-processing. The MNDWI suggested by [90] was used for water body 

boundary extraction. 
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‘In this study, 6S corrections were performed using the SeaDAS tool. This software can be acquired 

from https://seadas.gsfc.nasa.gov/, accessed on 25 May 2021.’ 
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‘In this study, 6S corrections were performed using the Py6S python package. This package can be 
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Thanks for your help to improve this paper substantially. We are looking forward to hearing from 

you. Thank you very much for your work. 

 

With Our Best Regards. 

 

Zhen Cao 

NO. 73, East Beijing Road, Nanjing, Jiangsu, China 

Figure 4. Flowchart of lake boundary extraction and calibration from satellite images. Database 2 is
the final result of image pre-processing. The MNDWI suggested by [90] was used for water body
boundary extraction.
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3. Methods
3.1. Analysis of Spectral Features

In order to evaluate the distinguishability of different surface features of Lake Taihu,
typical water spectral features were chosen for analysis. Figure 5 presents the in situ
measured spectra of typical water types in Lake Taihu. The spectral curve of clear water
shows a peak at the blue-green band, with a gradual decrease to near zero in the near-
infrared band [16]. With the intensification of CBs, a significant increase in the near-infrared
band appeared due to the increased chlorophyll-a content, which is called a “steep slope
effect” [40,93]. Moreover, there are obvious correlations between the concentration of
chlorophyll-a and the absorption coefficient near 440 nm and 676 nm, the height of the
reflection peak at 700 nm, and the redshift of the peaks from 690 to 740 nm [94–97].
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Figure 5. In situ measured water surface spectra with typical characteristics of Lake Taihu, featuring
Nymphoides peltatum (Np), Cyanobacteria blooms (Cb), Turbid water (Tw), Clear water (Cw),
Zizania caduciflora (Zc), Potamogeton crispus (Pc), and Potamogeton malainus (Pm).

In order to further analyze the spectral characteristics of CBs, typical land covers of
Lake Taihu were visually interpreted based on satellite images. Each spectral curve of the
specific surface features is presented in Figure S1. Similar to the in situ measured spectra,
the spectral curve of submerged vegetation is similar to clean water in a visible range. For
floating-leaf vegetation, noticeable seasonal changes occurred. It grows luxuriantly and
densely in summer, covering almost the entire water surface, with a spectral curve close
to the typical vegetation, while it is sparser in winter, and the shape of spectra is like that
of water bodies and submerged vegetation. The spectral curve of emergent vegetation
in spring and autumn is lower than that in summer, especially from near-infrared to
short-wave infrared. Compared with other surface features, the spectral curves of CBs are
slightly different in the visible range, but more obvious in the near-infrared and short-wave
infrared range.

3.2. Pseudo-Forel-Ule Index

In this study, P-FUI was proposed based on satellite data, comprising three parameters:
brightness Y, saturation s, and hue angle α. The method of color space conversion was used
for P-FUI calculation. Through the different characteristics of spectral curves analyzed
above, the bands corresponding to the satellite sensors were divided into three parts: visible
light (VIS), near-infrared (NIR), and short-wave infrared (SWIR) range, as shown in Table 3.
The water color difference was obtained directly by the method of color space conversion
and was used to identify CBs.
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Table 3. Band division by wavelength range of satellite sensors used in the study.

Sensors VIS NIR SWIR

OLCI B1-B12 B13-B21
OLI B1-B4 B5 B6, B7, B9
MODIS B1, B3, B4 B2 B5, B6, B7
MSI B1-B6 B7-B8A, B9 B10, B11, B12

The CIE 1931 XYZ color space is defined mathematically and was created in 1931 by
the International Commission on Illumination (CIE) [98]. Tristimulus values X, Y, and Z
indicate the comprehensive perception of colors seen by the human eye, with the Y value
representing brightness [82,99]. The tristimulus values X, Y, and Z of satellite data were
calculated by transforming the color space from RGB to XYZ, which was standardized by
CIE special commission as follows [100]:

X = 2.7689R + 1.7517G + 1.1302B
Y = 1.0000R + 4.5907G + 0.0601B
Z = 0.0000R + 0.0565G + 5.5934B

. (2)

According to Table 3, band values of the three divided parts were each assigned to
R, G, and B channels. For different sensor types, the combination of bands assigned to
R, G, and B channels is different. For sensors with SWIR bands, the band values of VIS,
NIR, and SWIR were assigned to B, G, and R channels, respectively. For sensors without
SWIR bands, the band values of VIS, NIR, and VIS were assigned to B, G, and R channels,
respectively. Then, CIE chromaticity coordinates (x, y) were calculated from the X, Y, and
Z by normalizing them to between 0 and 1 (Equation (2)) [101]. Since x + y + z = 1, the
specified color can be determined by the two values of x and y, so the CIE-xy chromaticity
diagram (Figure S2) can be used to represent all colors in the visible-light range. Any color
corresponds to a unique coordinate (x, y). The intersection of the x- and y-axes is called
the white point with the chromaticity coordinate (0.333, 0.333). Its specified spectrum is
entirely flat, which means equal power in any wavelength increment of a given size [102].

x = X
X+Y+Z

y = Y
X+Y+Z

z = Z
X+Y+Z

(3)

The method of calculating hue angle α has been well proved by [103]. The α is the
angle between the vector to the white point and the negative x-axis in a clockwise direction.
The calculation formula is:

α = ARCTAN2(x− 0.333, y− 0.333)·180
π

(4)

where ARCTAN2 is a four-quadrant inverse tangent function that allows α to range from
−180◦ to 180◦. Since α would be less than−180◦ when (x—0.333) < 0 and (y—0.333) < 0 [82],
α was transformed into (α—180◦) according to [46,103].

In order to simplify the calculation, the saturation s is defined as the distance from
any point to the white point in the CIE-xy chromaticity diagram. The calculation formula is
as follows:

s =

√
(x− 0.333)2 + (y− 0.333)2 (5)

3.3. Hue Angle Correction

The color perceived by the naked eye is a continuous integration in the visible-light
range. Due to the discreteness of the band setting in satellite images, there is a systematic
deviation delta (∆) between the hue angle obtained by the conversion of RGB tristimulus
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values and the integration result [82]. Here, ∆ is defined as the hyperspectral hue angle
minus the multispectral hue angle (Equation (5)):

∆ = αhyper − αmulti (6)

where αhyper and αmulti are the results of hyperspectral integration and transformation by
tristimulus values based on multispectral, respectively. In order to retrieve the systematic
deviation delta (∆), four steps are required: (1) Through the spectral response function, the
IOCCG and in situ measured hyperspectral data are simulated in the corresponding sensor
multispectral data, respectively. (2) Based on multispectral data, the hue angle is calculated
by methods of color space conversion (Equations (1)–(3)). (3) Tristimulus values X, Y, and Z
are calculated according to the spectrophotometry method, and hue angles are obtained. In
practice, due to the discreteness of hyperspectral data, summation is often used instead of
the integral to simplify the calculation [101]. (4) The deviation delta ∆ is calculated by using
Equation (5), and the delta ∆ of different sensors is calculated using a specific one-element
fifth-order equation according to the equations as shown in Figure 6. Then, add the delta ∆ to
angle α for correction. A flowchart of obtaining P-FUI is shown in Figure 7.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 24 
 

 

deviation delta (Δ) between the hue angle obtained by the conversion of RGB tristimulus 
values and the integration result [82]. Here, Δ is defined as the hyperspectral hue angle 
minus the multispectral hue angle (Equation (5)): 

Δ = αhyper − αmulti (6) 

where αhyperand αmulti are the results of hyperspectral integration and transformation 
by tristimulus values based on multispectral, respectively. In order to retrieve the 
systematic deviation delta (Δ), four steps are required: (1) Through the spectral response 
function, the IOCCG and in situ measured hyperspectral data are simulated in the 
corresponding sensor multispectral data, respectively. (2) Based on multispectral data, the 
hue angle is calculated by methods of color space conversion (Equations (1)–(3)). (3) 
Tristimulus values X, Y, and Z are calculated according to the spectrophotometry method, 
and hue angles are obtained. In practice, due to the discreteness of hyperspectral data, 
summation is often used instead of the integral to simplify the calculation [101]. (4) The 
deviation delta Δ is calculated by using Equation 5, and the delta Δ of different sensors is 
calculated using a specific one-element fifth-order equation according to the equations as 
shown in Figure 6. Then, add the delta Δ to angle α for correction. A flowchart of obtaining 
P-FUI is shown in Figure 7. 

 
Figure 6. Deviation delta Δ (°) from the hyperspectral hue angle as a function of satellite image hue 
angle derived from the linear satellite band combination. 

Figure 6. Deviation delta ∆ (◦) from the hyperspectral hue angle as a function of satellite image hue
angle derived from the linear satellite band combination.

3.4. P-FUI Decision Tree

Based on images from MODIS, OLI, MSI, and OLCI satellite sensors, ten typical
land covers were visually interpreted, and corresponding chromaticity coordinates were
calculated with the distribution shown in Figure 8. The differentiation of the results in the
CIE-xy chromaticity diagram of MODIS, OLI, and MSI sensors with SWIR band is better
than that of the OLCI sensor without SWIR band.
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In general, cloud concentrates around the white point and its hue angle is widely
distributed, but the saturation is the lowest. The CBs are displayed bright green and blue-
green at high intensity and low intensity, respectively, and the color of medium-intensity
CBs is between the former two. Terrestrial vegetation and emergent vegetation overlapped
to an extent, showing as yellowish-green. Floating leaf vegetation also shows the same
color but with lower saturation. Submerged vegetation in the cyan–blue–purple color range
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overlaps partially with water bodies. Construction land is concentrated in the range from
yellow to orange-red, clearly distinguished from CBs.

Since there are still deficiencies in the identification of CBs when only relying on
the P-FUI parameters directly, a decision tree was employed based on the P-FUI’s three
parameters. Thresholds of the parameters were determined by using a statistical analysis
method. Here, the hue angle alpha (α) of the P-FUI in Lake Taihu (based on MSI sensor,
17 August 2019) was taken as an example (Figure 9). We calculated the value of α pixel by
pixel and remove outliers; then, the trough of the frequency distribution histogram was
selected as the threshold for segmentation of a single image to identify different land covers.
Corresponding thresholds of brightness and saturation could also be obtained through the
above procedures.
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By repeating the threshold retrieved method provided above, the proper intervals of
the P-FUI parameters of different land covers could also be determined. Taking the MSI
sensor as an example, details of the process using decision trees to identify land covers in
Lake Taihu are shown in Figure S3.

3.5. Assessment Method

In this study, the three retrieved P-FUI parameters based on satellite data were used
through the decision tree. The methods of CBs identification using decision tree were
evaluated with the “ground truth” obtained by expert visual interpretation. A total of
296 stratified random sample points were identified using photo-interpretation of the
satellite images with the aid of field investigation. Then, the identification results acquired
from P-FUI algorithm and expert visual interpretation were comprehensive compared. For
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the quantitative assessment, the overall accuracy (OA), producer’s accuracy (PA), user’s
accuracy (UA), and kappa coefficient (KC), defined as follows [104–106], were calculated:

OA =
1
N ∑n

i=1 xi,i (7)

PAj = xi,i/ ∑n
j=1 xi,j (8)

UAj = xi,j/ ∑n
i=1 xi,j (9)

KC =
N ∑n

i=1 Xii −∑n
i=1
(
Xi+ × Xj+

)
N2 −∑n

i=1
(
Xi+ × Xj+

) (10)

where N is the total number of samples, n represents the number of categories, Xi,j represents
the element at the intersection of row i and column j of the error matrix, and Xi+ and Xj+
represent the column and row summation of categories, respectively.

4. Results
4.1. Accuracy Assessment

The identification of CBs and other typical surface features based on P-FUI decision
tree, NDVI, EVI, and FAI indices are shown in Figure 10. Compared with NDVI, EVI,
and FAI indices, the P-FUI decision tree was better able to distinguish different features,
especially CBs from aquatic/terrestrial vegetation. For the MSI sensor, NDVI could identify
some terrestrial vegetation on islands with far less accuracy than P-FUI. In addition, it is
not sensitive to low-intensity CBs, resulting in a smaller area for low-intensity CBs. Both
EVI and FAI have similar misjudgments to NDVI. Neither of them has a proper ability to
identify terrestrial and aquatic vegetation, resulting in a more extensive distribution of CBs.
Similar to the MSI sensor, the proximate classification results exist for MODIS, OLI, and
OLCI sensors.

The results for the quantitative accuracy assessment of CBs identification are shown
in Table 4. For MODIS, OLI, MSI, and OLCI sensors, the considerable overall classifica-
tion accuracy based on the P-FUI decision tree was 98.64%, 97.11%, 93.79%, and 98.33%,
respectively, with a kappa coefficient of 0.98, 0.96, 0.91, and 0.98. CBs had producer’s
accuracy and user’s accuracy of more than 94.00% and 94.60%, respectively. Compared
with the other three methods, using P-FUI decision tree shows a better performance in
identifying CBs. In total, the identification accuracy of CBs using P-FUI decision tree based
on multi-source satellite data was satisfactory and has great advantages.

4.2. Comparison Validation
4.2.1. Supervised (Unsupervised) Classification Subsubsection

To further evaluate the performance of the P-FUI decision tree, ISODATA clustering
and maximum likelihood classification (MLC) were also used to identify CBs for cross-
validation based on MSI images. ISODATA clustering is an unsupervised classification
method that does not require prior knowledge [45]. In contrast, MLC needs prior category
criteria for the process of supervised classification [31]. The results were compared as
shown in Figure 11. The ISODATA clustering method misjudges some high-intensity CBs
and water bodies as emergent vegetation and low-intensity CBs, respectively, and the
consistency with the identification results of P-FUI is 64.55%. For the MCL method, points
of interest (POI) of typical features were selected as the input of prior knowledge. Then,
various surface features were distinguished better than the ISODATA clustering method,
with a consistency of 71.30% compared to the P-FUI decision tree.
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Figure 10. Comparison between (a) MSI, (b) OLI, (c) MODIS, and (d) OLCI images of Lake Taihu
in identifying surface features under various indexes. The images of MSI, OLI, and MODIS sensors
were sensed on 17 August 2019, while the images of the OLCI sensor were sensed on 11 May 2017.

Table 4. Quantitative evaluation of the CBs identification accuracy based on MODIS, OLI, MSI, and
OLCI sensors.

Sensors Overall Accuracy Producer’s Accuracy User’s Accuracy Kappa Coefficient

MODIS
P-FUI 98.64% 98.65% 98.62% 0.98

NDVI 77.97% 78.04% 80.02% 0.67
FAI 81.14% 81.33% 83.11% 0.72

OLI
P-FUI 97.11% 96.95% 97.53% 0.96

NDVI 71.17% 72.92% 74.68% 0.57
EVI 81.51% 81.69% 82.35% 0.72
FAI 77.99% 80.00% 79.83% 0.67

MSI
P-FUI 93.79% 94.00% 94.60% 0.91

NDVI 59.68% 65.89% 61.04% 0.42
EVI 71.71% 74.90% 71.34% 0.58
FAI 64.80% 69.76% 66.18% 0.48

OLCI
P-FUI 98.33% 98.33% 98.41% 0.98

NDVI 72.99% 73.89% 74.36% 0.59
EVI 68.27% 69.50% 71.86% 0.52
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Figure 11. Comparison of CBs identification based on (a) false color composition, (b) ISODATA
clustering, (c) P-FUI decision tree, and (d) maximum likelihood classification methods.

Statistical analysis was performed to evaluate the classification results of the three
methods mentioned above. Compared with ISODATA clustering and MCL methods, the
area of identifying low-intensity CBs based on P-FUI decision tree is obviously smaller,
while the area of identifying water bodies is larger, which means the former two methods
misidentified some water bodies as CBs to an extent. In general, using the P-FUI decision
tree to identify CBs has higher accuracy without the need for prior knowledge, which is
more convenient and faster.

4.2.2. Multi-Index Decision Tree

Based on the emergent vegetation sensitive index (EVSI), FAI, NDVI, and submerged
vegetation sensitive index (SVSI), [107] constructed a decision tree (hereinafter called the
multi-exponential decision tree) for the classification of aquatic vegetation groups and
CBs to identify the aquatic plants and CBs in East Taihu Lake. In this study, the P-FUI
and multi-exponential decision trees were used to identify CBs based on MSI images.
The performances of the two methods were compared (Figure 12). The proportion of the
consistent pixels is 83.85%. The inconsistent pixels were mainly distributed in the sparse
zone of the floating leaf vegetation area and the submerged vegetation area along the
southern coast of East Taihu Lake. In general, the result of the P-FUI decision tree is finer
than that of the multi-exponential decision tree.
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5. Discussion
5.1. Impact Factors
5.1.1. Cloud Cover

The existence of cloud coverage seriously limits the use of remote sensing data, so
cloud removal of satellite imageries is a prerequisite for many remote sensing applica-
tions [108,109]. For example, the bloom monitoring based on FAI and NDVI was often
disturbed by cloud cover, leading to inaccurate results [110,111]. Although many cloud
detection algorithms have been proposed, the preprocessing of cloud coverage is still
troublesome in remote sensing applications [112–114].

In this study, the identified results of CBs and clouds based on the OLI images
(21 August 2019, Lake Taihu) were compared (Figure S4). The values of NDVI and FAI were
extracted by the pixels of CBs and clouds. The histograms showed that the values of NDVI
and FAI where CBs and clouds are located have an overlapping area (Figure S4a,b), which
indicates that an error in distinguishing occurred when using NDVI and FAI. The surface
features identified by the P-FUI algorithm are shown in Figure S4c; the results showed
that the cloud coverage and CBs could be well distinguished without cross misjudgment.
This means that the preprocessing of cloud coverage in advance is unnecessary in CBs
identification based on the P-FUI algorithm, which greatly improved the monitoring
efficiency of CBs.

5.1.2. Water Body with High Turbidity

Turbidity can interfere with light emitted by sensors and can thus be an interference in
CBs monitoring [115–117]. In order to evaluate the performance of the P-FUI algorithm in
identifying CBs in highly turbid water bodies, the spatial distribution of the turbid water
index (TWI) in Lake Taihu was obtained based on the MODIS data (18 February 2020) [27].
At the same time, the NDVI and FAI indices were also calculated for inter-comparison
(Figure S5). With highly turbid water bodies in the western and southern coastal areas
of the lake, the NDVI and FAI indices misidentified water bodies as CBs (Figure S5a,b).
Furthermore, the values of NDVI and FAI were extracted by the pixels of CBs and turbid
water. The histograms showed an overlapping area between the values of NDVI and
FAI, which means that turbid water can easily be misjudged as CBs. In contrast, the
spatial distribution of CBs identified by the P-FUI algorithm was consistent with the
visual interpretation (Figure S5d), which means that identifying CBs based on P-FUI could
effectively avoid the disturbance of turbid water bodies.
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5.1.3. Chlorophyll-a Concentrations

Chlorophyll-a is a measure of the amount of CB growing in a body of water [36,118].
In order to evaluate the effect of chlorophyll-a content on P-FUI, the concentration of in situ
measured chlorophyll-a and the P-FUI parameters calculated from the concurrent MODIS
images were used for correlation analysis (Figure S6). The results showed that the hue
angle and brightness increased with the concentration of chlorophyll-a, which is consis-
tent with previous studies [119,120]. Both hue angle and brightness have a significantly
positive correlation with the concentration of chlorophyll-a at a confidence level of 0.01,
and the correlation coefficients are 0.535 and 0.564, respectively. The plots showed that the
features overlapped with each other slightly. The reason may be that CBs are susceptible to
environmental influences (such as wind) [41], while the spatiotemporal differences of in
situ sampling and satellite sensing time did not match exactly. This is also the reason why
CBs cannot be identified using a single parameter.

In order to further explore the difference between surface features, the concentration
of chlorophyll-a was divided into four types, comprising water bodies and low-intensity,
medium-intensity, and high-intensity CBs, with concentrations of 44 µg/L, 352.28 µg/L,
1219.64 µg/L, and 85,763.69 µg/L, respectively. The corresponding mean values of hue
angles (α) are 69.30◦, 98.42◦, 141.45◦, and 174.44◦, and the mean values of brightness (Y)
are 0.36, 0.65, 1.02, and 1.59, respectively. This is consistent with the blue-green color of
CBs, which is an important basis for CBs monitoring, further indicating the reasonable and
robust threshold division of P-FUI parameters.

5.2. Applicability to New Regions

In order to evaluate the performance of the P-FUI algorithm as it applies to other
regions, several lakes mentioned in Section 2.1 were selected for the identification of CBs.
Based on satellite images, the visually interpreted features were used as a validation set.
Then, the P-FUI algorithm was used to discriminate CBs (Figures S7–S10). The results of
identifying CBs based on the OLI and MSI sensors showed a considerable result, with an
OA greater than 0.91, and a kappa coefficient of ~0.90. The OA and kappa coefficient based
on the MODIS and OLCI sensors were ~0.87 and ~0.86, respectively. Although there are
slight differences in the accuracy of identifying CBs based on different sensors, the results
are still acceptable and even perform well, which indicates that the P-FUI algorithm is
highly acceptable in different lakes.

The red tide is caused by the explosive reproduction of plankton, with the abnormal
water color being different to the surroundings [121]. Based on the MSI images, the red
tides were identified as being in the eastern Gulf of China through the P-FUI algorithm
(Figure S11). On the false-color images, red tides appeared as golden or brown bands that
were different to the color and shape of the surrounding water bodies. Compared with
the visually interpreted features, considerable accuracy was obtained, with OA, kappa
coefficient, and F1-score results of 0.87, 0.82, and 0.83, respectively.

5.3. Implications for Monitoring Blooms and Protecting Water

The use of remote sensing techniques to identify CBs has a long history. As early
as the 1970s, [33] found that some infrared images of Lake Clear in California showed
cyanobacterial patterns that could not be observed by traditional limnological techniques,
and pointed out that repeated observations could map the movement paths of algae on
the water surface. Based on AVHRR image, the ratio vegetation index was developed
by [122] to identify the distribution of CBs in Lake Pontchartrain, which was later studied
extensively. Subsequently, research on identifying CBs with comprehensive algorithms
gradually increased, such as FAI index, AFAI index, decision tree algorithm, and algae pixel-
growing algorithm (APA) [21,26,40,123,124]. The common goal of all these algorithms is to
realize the efficient identification of CBs with the help of the advantages of remote sensing
technology, and to be able to make great progress in daily operational monitoring. However,
in practice, none of these methods perform satisfactorily for operational applications. The
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possible reasons are inconsistent satellite data, poor robustness of thresholds, and severe
interference from factors such as clouds, aquatic vegetation, and highly turbid water bodies.

This paper perfectly fits the current research hotspot of eutrophic lakes. It constructs
the P-FUI algorithm which is expected to be applied to CBs business monitoring and to pro-
vide services for CBs early warning and the decision-making of management departments.
Overall, the success of this effort can be attributed to two factors: (1) this method directly
exploits water color differences, which allows it to capture more subtle details of feature
differences than traditional methods; (2) the multi-source satellite data make the threshold
more robust and the decision tree is used for surface features judgment, which makes
the model more reliable and stable. Once the algorithm parameters are further calibrated
using related local data, the timely distribution of CBs can be obtained with minimal effort
and cost.

From a broader perspective, this approach could be extended to many lakes that
are affected by CB problems in the world, providing efficient support for the prevention
and control of CBs and the protection of water quality. Under the influence of climate
change and high-intensity human activities, the immediate prevention and control of CBs
is particularly important to ensure water security. Therefore, it is necessary to make full
use of multi-source remote sensing data for effective daily monitoring of CBs in the future.

6. Conclusions

A novel algorithm was developed to identify cyanobacterial blooms in a eutrophic
lake (Lake Taihu) in China based on MODIS, OLI, MSI, and OLCI images. The decision
trees algorithm, namely the P-FUI algorithm, was developed for cyanobacterial blooms
identification with a considerable overall accuracy, producer’s accuracy, user’s accuracy,
and kappa coefficient of more than 93.79%, 94.00%, 94.60%, and 0.91, respectively, which
is better than traditional cyanobacterial bloom identification methods. The performance
was found to be acceptable under nearly all conditions, as the algorithm was shown to be
tolerant of perturbations by clouds and high turbidity. Moreover, the findings here were
also discussed in terms of the applicability of the P-FUI algorithm to other lakes, and the
results showed an acceptable accuracy. It is feasible to identify cyanobacterial blooms and
to obtain the classification information of surface features using the P-FUI algorithm. This
study provides a new way to map the spatial distribution of cyanobacterial blooms.
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