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Abstract: The urban spatial structure is a key feature of the distribution of social and economic
resources. The spatial structure of an urban agglomeration is an abstract relationship expression
of urbanization. Urban agglomerations develop for multiple reasons, including urban planning
and natural evolution. To date, most research related to urban agglomeration has been based
on single data source, which is a limitation. This research aims to propose a spatial structure
identification method for urban agglomerations via a complex network based on nighttime light data
and railway data. Firstly, we extracted the urban built-up area using defense meteorological satellite
program/operational line scanner (DMSP/OLS) data, and divided it into urban objects to obtain the
nighttime light urban network (NLUN) by borough. Secondly, we aggregated railway stations at
municipal level using railway operation data to obtain the railway urban network (RUN). Following
this, we established a composite urban network (CUN) consisting of the NLUN and the RUN based
on the composite adjacency matrix. Finally, the Louvain algorithm and the comprehensive strength
index (CSI) were used to detect the communities and central nodes of the CUN and obtain the urban
agglomerations and core cities. The results show that urban agglomeration identification based on
the CUN has the best accuracy, which is 5.72% and 15.94% higher than that of the NLUN and RUN,
respectively. Core cities in the urban agglomeration identified by the CSI in the CUN are at least
3.04% higher than those in the single-source urban network. In addition, the distribution pattern of
Chinese urban agglomerations in the study area is expressed as “three vertical”, and the development
level of urban agglomeration shows an unbalanced trend.

Keywords: nighttime light data; railway operation data; composite urban network; urban agglomeration;
core city

1. Introduction

Urban agglomeration is defined as a huge, multicore and multilevel urban group
developed around core mega-cities. It is generally composed of several large cities, with
a number of smaller cities or towns providing supporting resources for the core city [1].
Urban agglomeration is an important concept in economic growth and plays a significant
role in global economic circulation and human-nature interaction [2]. Since the 18th century,
with the shift in economic centers, the world has experienced massive global urban agglom-
erations, such as those around London, Paris and other cities in northwest Europe, North
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America and the Asia-Pacific, including Japan [3]. Unlike developed countries (e.g., U.S.,
U.K.,, France), China has experienced rapid urban construction, and urban agglomera-
tion in China continues to increase and develop. In recent years, rapid urbanization in
China has created several large urban agglomerations, such as the Yangtze River Delta,
the Pearl River Delta and Jing-Jin-Ji. The spatial structure of urban agglomeration can
reflect the social and economic relationship between cities [4]. Therefore, due to the key
role of urban agglomeration in Chinese regional economies, the effective identification of
spatial structure features in urban agglomerations has become a hot topic. Relevant data of
urban agglomeration spatial structure features can support decision making to optimize
urban planning and development. To date, research on urban spatial structures has mainly
focused on the analysis of distance between cities, the importance of core cities [5], such as
urban agglomerations [6—10], and multicenter structure identification [11-13]. Compared
with traditional spatial analysis methods, the complex network method has advantages, in
that it can reveal the development of urban agglomeration spatial structure via the urban
agglomeration resource distribution.

Spatial network data and remote sensing image data are popular sources for iden-
tifying the spatial structure of urban agglomeration. Because of their natural network
properties, spatial network data (e.g., railway, road, logistics and social trajectory networks)
are regarded as key data sources for research [14-16]. Additionally, considering the large-
scale regional characteristics of the spatial structure of urban agglomeration, traffic network
data such as railway and road network data are key sources for relevant research. Finally,
nighttime light data have become a crucial data source in the spatial structure identification
of urban agglomeration in recent years, e.g.,, DMSP/OLS and NPP/VIIRS data [17,18].
However, the development of urban agglomerations is also affected by other conditions
(e.g., urban planning), which cannot be fully explained by a single data source. Composite
complex networks can integrate information from multiple source networks, but this re-
quires that the multiple source networks have the same nodes. The spatial network and the
nighttime lighting network are different types of data that do not share the same nodes
and therefore do not satisfy this requirement [19,20].

The complex network structure identification method for urban agglomeration can
consider topology within spatial network data [21]. Urban agglomerations are identified by
the community [22,23], and the core cities are mapped using a central node structure [24].
The community detection method can reveal the characteristics of relatively aggregated
“groups” in a network, including Girvan-Newman [25], Louvain [26], fast-greedy [27],
Walktrap [28], Infomap [29], label propagation [30] and fast unfolding [31]. The central
node structure reflects the important node in a network, and its importance is measured by
degree centrality, intermediate centrality, closeness centrality, fusion centrality, eigenvector
centrality, Page Rank centrality, Topsis centrality, etc. [32]. Most current studies directly
introduce topological structure-detection methods, without considering the geographical
attributes of the urban agglomeration spatial structure. For example, the proximity rela-
tionship of nodes will be affected by spatial distance and present spatial non-stationarity,
which will reduce the accuracy of central node structure detection.

In summary, a single data source cannot fully address the influence of natural and
governmental factors in urban agglomeration identification. In addition, current methods
based on complex network topology analysis do not pay sufficient attention to spatial
attributes in urban agglomeration identification. Hence, this study proposes a method for
the spatial structure identification of urban agglomeration based on multisource data and a
complex network that can realize the division of urban agglomeration and the identification
of core cities. The contributions of this study are summarized as follows: First, this study
uses railway network data and nighttime light data to describe governmental factors and
natural factors, respectively, and proposes a spatial structure analysis model for urban
agglomeration, which considers multiple factors and provides a new approach for more
accurate analysis of the urbanization process. Second, we design a composite network
fusion method for multisource data, which provides a reliable method for multi-data
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fusion with different structures. Third, because the data source has spatial attributes, we
propose a replication network-center-node structure-identification method considering
spatial attributes, which improves recognition accuracy and makes a positive contribution
to the application of complex network theory to spatial data analysis.

2. Data and Study Area
2.1. Study Area

The study area covered all cities in the eastern part of the Hu Line in mainland China,
except for Hainan province, Taiwan province and Shennongjia Forestry District [33]. About
96 percent of the population and most urban agglomerations are located in this region.
According to the 14th Five-Year Plan for National Economic and Social Development of the
People’s Republic of China (The 14th Five-Year Plan), the region contains 15 national urban
agglomerations, including Jing-Jin-Ji, Harbin-Changchun, Mid-southern Liaoning, Shan-
dong Peninsula, Central Plain, Central Shanxi, Guanzhong Plain, the Yangtze River Delta,
the middle reaches of the Yangtze River, the west coast of the Strait, Guangdong-Hong
Kong-Macau Greater Bay Area, Beibu Gulf, Central Yunnan, Guizhou Plain and Cheng-Yu.
These urban agglomerations contribute 85.53% of China’s GDP and are important drivers
of China’s economic growth. The study area is shown in Figure 1.
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Figure 1. The study area.

2.2. Data

The nighttime light data selected were the Defense Meteorological Satellite Pro-
gram/Operational Line Scanner (DMSP/OLS) data from 2013. Unstable light sources,
such as auroras and wildfires, as well as moonlight and clouds, were removed from the
data. The Digital Number (DN) ranged from 0 to 63, and the spatial resolution was 30 arc-
sec. Passenger train data from 2014 were taken as the railway data. The railway data
included train number, station, start and end time and running distance. This data totaled
2636 stations and 5036 train times, including local, fast, through and express trains.
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2.3. Reference Data
2.3.1. Urban Agglomerations

This study takes the spatial scope of urban agglomerations in the 14th Five-Year Plan
as its main basis, and the regional development level and existing research results as the
auxiliary basis. We drew the reference urban agglomeration boundary as shown in Figure 2.
The details included: (1) Inland areas with slow economic development, such as the North-
east and Southwest. According to relevant policy documents issued by the CPC Central
Committee and the State Council, Liao-Ji-Hei and Yun-Gui were identified. (2) Areas with
convenient water conservancy and transportation and rapid economic development in
the middle reaches of the Yangtze River and the Yangtze River Delta. As indicated in the
14th Five-Year Plan, the urban agglomerations in the middle reaches of the Yangtze River
and the Yangtze River Delta urban agglomeration are shown in Figure 3. These urban
agglomerations develop along two axes and gradually divide into multiple single or multi-
core small urban agglomerations around the axes, such as Changsha-Nanchang, Wuhan
Metropolitan, Hu-Su-Wan and Hangzhou-Ningbo. (3) In the highly developed areas of
cities, the developed urban agglomerations merge the surrounding small ones. According
to “The spatial development strategy planning of Taixin Integrated Economic Zone in
central Shanxi urban agglomeration”, Jing-Jin-Ji should be built according to the Jing-Jin-
Ji-Jin coordinated development guidance. (4) The urban agglomerations in regions with
relatively stable economic development include Cheng-Yu, Guanzhong Plain, Shandong
Peninsula, Central Plain, the west coast of the Strait, Beibu Gulf and the Guangdong-Hong
Kong-Macau Greater Bay Area.

2.3.2. Core Cities

We defined the reference core cities according to the spatial scope and development
plan of the reference urban agglomeration. There were 33 cities, and the relationship
between reference urban agglomerations and core cities is shown in Table 1.
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Figure 2. The boundaries of reference urban agglomerations.
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Figure 3. Urban agglomeration planning map of the middle and lower reaches of the Yangtze River.

(a) The middle reaches of the Yangtze River urban agglomeration; (b) The Yangtze River Delta

urban agglomeration.

Table 1. Reference urban agglomerations and core cities.

Reference Urban Agglomerations

Core Cities

Hu-Su-Wan
Hangzhou-Ningbo
Guangdong-Hong Kong-Macau Greater Bay Area
Jing-Jin-Ji4in
Central Plain
Cheng-Yu
Guanzhong Plain
West coast of the Strait
Shandong Peninsula
Changsha-Nanchang
Wuhan Metropolitan
Liao-Ji-Hei
Beibu Gulf
Yun-Gui
Urban agglomeration

Shanghai, Nanjing, Hefei, Suzhou
Hangzhou, Ningbo
Guangzhou, Shenzhen, Hong Kong
Beijing, Tianjin, Shijiazhuang, Taiyuan
Zhengzhou, Luoyang
Chengdu, Chongqing
Xi’an
Fuzhou, Xiamen
Jinan, Qingdao
Changsha, Zhuzhou, Nanchang
Wuhan
Shenyang, Dalian, Harbin
Nanning
Kunming, Guiyang
Core cities

3. Method

This study proposes a method to identify the spatial structure of urban agglomerations
based on multisource data and a complex network (Figure 4). Firstly, we used the threshold
method to extract the built-up areas from the DMSP/OLS data. The built-up areas were
divided into urban objects using administrative region boundaries, and the urban objects
were regarded as nodes. The Gauss attenuation function was used to calculate the weight
of the edge. The nighttime light urban network (NLUN) consisted of the nodes and edges
obtained in the previous step. Secondly, all the train stations belonging to the same city
were merged into one node, and the weight of the edge was calculated using distance
and train frequency. The above nodes and edges formed the rail urban network (RUN).
Thirdly, we constructed the nodes of the composite urban network (CUN) using spatial
homogeneity, and fused the multi-type relationships using the composite adjacency matrix.
Finally, the communities of the CUN detected using the Louvain algorithm were taken as
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the urban agglomeration, and the node with the highest comprehensive strength index
(CSI) in each community was taken as the core city.
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Figure 4. Flowchart of the proposed spatial structure method for identification of urban agglomerations.

3.1. Preprocessing

The binary regression model was used to correct relative radiation for the DMSP/OLS
data [34]. The study data were obtained by dividing the administrative region. The
preprocessed DMSP/OLS data are shown in Figure 5.
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Figure 5. Preprocessed DMSP/OLS Data.
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The railway data included 2636 stations and 46,894 operational lines. We adjusted the
data to obtain a city-node network. Railway stations in the same city were merged, the
operational lines within the same city were removed, and the number of lines repeated
between different cities were converted into frequency. The adjusted railway data had
269 nodes and 648 lines.

3.2. Composite Urban Network Construction
3.2.1. Nighttime Light Urban Network

Binary segmentation is a general method that was used to extract the built-up area
from the DMSP/OLS data, and a region with DN = 12 or more was regarded as a built-
up area [35]. Morphological expansion and corrosion algorithms optimized holes and
profiles. If the ratio of the segmented edge built-up area to the built-up area of the admin-
istrative region was greater than 50%, the edge built-up area should be merged with the
built-up area in the corresponding administrative region. G = (V, EP, WP) is NLUN;
V = {vg,v1,...,vN} stands for the set of city nodes, where N is the total number of cities,
EP is the set of edges, and WP is the adjacency matrix. The edges are the shortest lines
between the polygon contours of the urban objects.

According to the first law of geography, closer objects are more connected [36]. The
Gauss function is an attenuation function commonly used in gravity models, and is able to
calculate the weight Wi’]? of the edges. The Gauss attenuation function is shown as:

d(i,)>

WP =are ™ (1)

where d(i, j) is the Euclidean distance between the nodes v; and vj, a1 is a constant, and ¢;
is the scale parameter.

3.2.2. Railway Urban Network

RUN is defined as GR = (V,ER, WR), where ER is the set of edges and WX is the
adjacency matrix. The node set V is consistent with the NLUN. Combined with the Gauss
attenuation function, we designed the edge-weight Wilj.{ calculation method considering
train frequency, which is shown as:

WK =ay-e 22-f )

where f is the frequency of trips, a5 is a constant and c; is a scale parameter.

The scale parameter c¢; and ¢, control the distance attenuation amplitude. In order
to ensure the consistency of the network, the density function of the normal distribution
shows that 99.73% of the area is within the range of three standard deviations around the
mean. The 13th Five-Year Plan for the development of modern integrated transport system
points out that core cities and neighboring cities should be accessible within 2 h, which is
referred to as the “two-hour access circle” (TAC) [37]. Based on the TAC and Equation (3),
we can calculate the value of the scale parameters ¢; and cy:

,(x=3) 3)
where d is the maximum access distance of TAC and x is a constant.

3.2.3. Composite Urban Network Construction

Construction of the composite adjacency matrix is the key to obtaining a reasonable
CUN, and the schematic diagram of CUN construction is shown in Figure 6. The CUN
construction includes two cases. In the first case, there is only one connection type, and the
original connection is retained. In the second case, there are multiple connection types, and
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a composite adjacency matrix is designed to integrate natural and governmental factors.
The composite adjacency matrix is shown as:

Wczay(me+wl—nowR) @)
where W€ is the composite adjacency matrix, a3 is a constant and m is the single-layer

network contribution degree. We calculate the modularity Q of the CUN at different m,
and determine m according to the statistical law of modularity Q.
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Figure 6. Schematic diagram of composite urban network construction.

The binary valuation method is a commonly used method for approximating rea-
sonable values to determine a1, a; and a3. Taking a; as an example, the initial range of
aq is set at [0, 100]. When a; is set at 50, if the number of communities does not satisfy
the requirement, we continue to set a1 at 25 or 75 until the target number of communities
is reached.

3.3. Spatial Structure Method to Identify Urban Agglomeration Using Composite Urban Network

We used the Louvain algorithm to detect communities. The algorithm is based on
modularity [31], and its optimization goal is to maximize the modularity of the entire
complex network. Degree centrality (DC) is the most direct measure of node centrality. The
greater the DC of a node, the more important the node is. The DC is calculated as:

ki

DCi=5"73 ®)

where k; denotes the number of edges connected to node i and N — 1 is the number of
edges of node i connected to all other nodes.

The DC focuses on the topological properties of the network, ignoring the weights
of the edges and the nature of the nodes themselves. To solve this problem, we combine
the natural conditions and governmental information relating to the nodes to construct a
comprehensive strength index (CSI). The CSI provides the basis for central node detection.
The larger the CSI, the more important the node, calculated as:

Wi;

Y wjj

CSI; = (WDC;+s;+z;)/3 (7)

WDC; =

(6)
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where WDC; denotes the centrality of weighted degree of the node i, wy, is the sum of the
weights of the edges connected to the node i, w;; is the sum of the weights of all connected
edges in the network, CSI; is the CSI of the node i, s; is the built-up area of the node i, z;
is the number of stations of the node i and s; and z; are normalized. The CSI of the nodes
in each community structure are calculated separately. The node with the largest index is
selected as the core city.

4. Results and Analysis
4.1. Composite Urban Network

The built-up area obtained by threshold segmentation was 388,514.75 km?. The
municipal administrative region segmented the built-up area into 270 urban objects. The
urban built-up area extraction results cover the major cities in the study area, and the urban
objects are shown in Figure 7.
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Figure 7. The urban objects.

In the natural state, the TAC limits the connection distance of urban objects, which
have a suitable relationship with the natural environment. The influences of highway
construction and the natural environment are interactive [38] and the edge between urban
objects can be approximated as a modern highway. According to the “Design Specification
for Highway Alignment”, the modern highway running speed is generally 110 km per
hour [39] and urban objects that are more than 220 km away are regarded as inaccessible.
The scale parameter ¢ value of the NLUN was 73.33. The obtained NLUN included
270 nodes and 2520 edges. The NLUN is shown in Figure 8a.

Similarly, high-speed rail was used to calculate the TAC of the RUN. According to the
“Code for Design of High-Speed Railway”, high-speed rail is defined as having a speed
of 250 to 350 km per hour. The average speed we chose for high-speed rail was 300 km
per hour. If two cities were more than 600 km from each other, they were considered
unreachable. The scale parameter c; value was 200. The final RUN consisted of 270 nodes
and 628 edges, as shown in Figure 8b.
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Figure 8. Single-source urban network. (a) The nighttime light urban network; (b) The railway
urban network.

Equation (4) was used to construct the composite adjacency matrix, and m was equally
divided in a step of 0.1. The modularity Q of the CUN at different m was calculated, and
the corresponding relationship between modularity and single-layer network contribution
is shown in Figure 9. When m is 0.4, the modularity is the largest and the community
detection result is the most effective. The CUN is shown in Figure 10. The number of edges
was 2550, and the number of edges increased by 30 compared with the NLUN.

0.00

Modularity
o
&

-0.10

-0.15

-0.20

-0.25

Single-layer network contribution

Figure 9. Relationship between modularity and single-layer network contribution.

4.2. Spatial Structure of Urban Agglomeration
4.2.1. Urban Agglomeration

The CUN, NLUN and RUN were all weighted networks, and their weight scales were
inconsistent. First, the weights of the three urban networks were normalized. Following
this, a1, a; and a3 were obtained using the binary valuation method. When the number of
communities was not less than 14 and not more than 15, a1, a, and a3 were the best values.
Finally, we used the Louvain algorithm to detect communities and map them to urban
agglomerations. The urban agglomeration identification results are shown in Figure 11. The
urban agglomeration of the NLUN was very similar to the CUN. All three urban networks
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had a central Anhui urban agglomeration and 14 urban agglomerations. The central Anhui
urban agglomeration is about to develop, but it is small in scale and does not belong to the
reference urban agglomeration.
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Figure 10. The composite urban network.
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Figure 11. The urban agglomeration identification results. (a) Nighttime light urban network;
(b) Railway urban network; (c) Composite urban network.

The relationships between communities and urban agglomerations are shown in
Table 2. Repeated communities in the table indicate that the community contains multiple
reference urban agglomerations. Cities in the RUN region are more clearly constrained
by regional planning. The division of urban agglomerations in more developed regions
is more detailed, and the division of urban agglomerations in less developed regions is
balanced and unified. Identification of urban agglomerations using the NLUN and CUN
was more successful.
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Table 2. The relationships between communities and urban agglomerations.

Urban Agglomeration

NLUN

RUN

CUN

Hangzhou-Ningbo

Jing-Jin-Ji-Jin

Changsha-Nanchang
Shandong Peninsula

Central Anhui

West coast of the Strait

Central Plain
Cheng-Yu

Guanzhong Plain
Guangdong-Hong Kong-Macau Greater Bay Area

Community 10
Community 7, 9
Community 4
Community 1
Community 12
Community 8
Community 14
Community 15
Community 2
Community 5

Community 6
Community 5
Community 3, 9
Community 4
Community 4
Community 14
Community 8
Community 13
Community 8
Community 2

Community 1
Community 2
Community 3
Community 4
Community 5
Community 6
Community 7, 11
Community 8
Community 8
Community 9

Beibu Gulf Community 5 Community 11 Community 10
Wuhan Metropolitan Community 3 Community 7 Community 12
Yun-Gui Community 6 Community 13 Community 13
Hu-Su-Wan Community 11 Community 1,10 15 Community 14
Liao-Ji-Hei Community 13 Community 12 Community 15

We have used some experimental details to show the differences in the identification
results for the three urban agglomerations. The urban agglomeration in the middle and
lower reaches of the Yangtze River is shown in Figure 12a. The identification results from
the RUN are broken, but their boundaries are basically the same as those of the reference
data. The NLUN identification results are inconsistent with the reference data. The
CUN achieved the best results, with the urban agglomeration boundaries combining the
advantages of the abovementioned networks. The natural and economic conditions of the
Pearl River Delta region are very close to those of the Beibu Gulf region in southern China.
The CUN addresses the limitations of the NLUN, making it possible to effectively divide
the Guangdong-Hong Kong-Macao Bay Area and the North Bay. The urban agglomeration
in the southern region is shown in Figure 12b. Because of the strong agglomeration of
railway lines in the southwest region, the RUNSs here are integrated into a unified urban
agglomeration. This result clearly does not correspond to the actual situation. The CUN
weakens this effect. It is able to distinguish between Yunnan-Guizhou and Chengdu-
Chongging. The urban agglomeration in the Southwest is shown in Figure 12c. In general,
the CUN improved on the single-source urban networks and achieved good results in
identification of urban agglomerations and boundary extraction.

Based on the reference data, the identification results from the CUN, NLUN and RUN
are analyzed here. The cities that fall within the boundaries of the reference data were
classified correctly. Because the development levels of the various cities were different, the
size of the built-up area could be used as a factor to measure the size of a city. We used the
ratio of the built-up area of the correctly classified urban agglomeration to the built-up area
of the reference urban agglomeration to determine the accuracy. The urban agglomeration
identification accuracy is shown in Table 3. The CUN was 5.72% and 15.94% more accurate
than the NLUN and the RUN, respectively. These results show that the CUN is more
accurate than a single-source network. In addition, Figure 13 shows the comparison results
between urban agglomeration extraction boundaries and reference urban agglomeration
boundaries. In the figure, the built-up area is represented as a circle, and the larger the
built-up area, the larger the size of the circle. Where the identification result overlaps with
the reference result, this indicates a correct result for the region. An omission result for the
region is indicated by the reference result without an identification result. However, the
experimental data include most cities in China, some of which are not in the reference urban
agglomeration. These cities belong to other identification results. As can be seen from
Figure 13, the identification results from the CUN had the best agreement with the reference
results, representing a significant improvement over the other two single-source networks.
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Figure 12. Details of the urban agglomeration identification results. (a) The urban agglomeration

in the middle and lower reaches of the Yangtze River; (b) The urban agglomeration in the southern

region; (c) The urban agglomeration in the southwest region.



Remote Sens. 2023, 15,216 14 of 21

Table 3. Accuracy of urban agglomeration identification.

Urban Agglomeration NLUN RUN CUN

Hangzhou-Ningbo 24,369.24 20,226.29 21,447 46
Jing-Jin-Ji-Jin 44,170.37 38,797.20 60,470.81
Changsha-Nanchang 8132.13 779743 15,377.77
Shandong Peninsula 29,670.04 29,670.04 29,670.04
Liao-Ji-Hei 40,561.12 40,561.12 40,561.12
West Coast of Strait 22,433.45 20,271.52 22,433.45
Central Plain 25,110.99 29,697.18 26,974.41
Yun-Gui 11,252.91 0 11,252.91
Guangdong-Hong Kong-Macau Greater Bay Area 22,153.03 22,153.03 22,153.03

Beibu Gulf 0 9344.255 8258.77
Wuhan Metropolitan 10,872.99 12,157.48 12,157.48
Cheng-Yu 19,719.72 19,719.72 19,719.72

Guanzhong Plain 9823.28 0 0

Hu-Su-Wan 52,347.72 30,502.25 52,347.73
Total: (km?) 320,617.00 280,897.52 342,824.70

Accuracy 82.52% 72.30% 88.24%

50000'N

10°00°N

000N

2000°N

1000E 12000E 130°00E 1000 10000E 1000E 12000E 130°00E
" . 1 . . 1 N 1

T
5000'N

10°00°N

30°00'N

2000°N

Other identification results

@) (b) (©)
Figure 13. Comparison results of urban agglomeration extraction boundaries and reference ur-
ban agglomeration boundaries. (a) Nighttime light urban network; (b) Railway urban network;
(c) Composite urban network.

4.2.2. Core City Identification

The DC, weighted DC and CSI of the nodes in the NLUN, RUN and CUN were
calculated. We used reference data to determine the number of core cities. If an urban
agglomeration corresponded to multiple reference urban agglomerations, the sum of the
core cities in the reference data was taken as the number of core cities. The core city
identification results are shown in Figure 13. If the identified core city is the same as the
core city from the reference data, the identification is correct. The core city identification
results are shown in Table 4, and the accuracy is shown in Table 5.
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Table 4. Statistics of core city identification results.

(1) Identification of Core Cities Using the Nighttime Light Urban Network.

Urban Agglomeration

Degree Centrality Core City

Weighted Degree Centrality

Core City

Comprehensive Strength
Index Core City

Hu-Su-Wan

Nanjing, Chuzhou,
Wuhu, Xuancheng

Nanjing, Chuzhou,
Wuhu, Changzhou

Nanjing, Suzhou,
Taizhou, Nantong

Hangzhou-Ningbo

Hangzhou, Huzhou

Hangzhou, Huzhou

Ningbo, shanghai

Guangdong-Hong
Kong-Macau Greater Bay
Area, Beibu Gulf

Guangzhou, Huizhou,
Zhaoaoqing, Qingyuan

Guangzhou, Foshan,
Jiangmen, Zhaoaoqing

Guangzhou, Huizhou,
Foshan, Dongguan

Jing-Jin-Ji-Jin

Langfang, Baoding,
Cangzhou, Anyang

Tianjin, Baoding,
Cangzhou, Anyang

Beijing, Tianjin,
Shijiazhuang, Baoding

Central Plain

Nanyang, Xinyang

Zhengzhou, Xinxiang

Zhengzhou, Luoyang

Cheng-Yu

Chonggqing, Zigong

Chonggqing, Ziyang

Chonggqing, Chengdu

Guanzhong Plain

Yuncheng

Yuncheng

Xi’an

West Coast of the Strait

Zhangzhou, Heyuan

Zhangzhou, Heyuan

Fuzhou, Quanzhou

Shandong Peninsula

Jinan, Lianyungang

Jinan, Linyi

Erifang, Linyi

Changsha-Nanchang

Changsha, Yichun, Ji'an

Changsha, Zhuzhou, Yichun

Changsha, Yichun, Shaoguan

Wuhan Metropolitan

Huanggang

Jivjiang

Wuhan

Liao-Ji-Hei

Shenyang, Tieling,
Fushun, Tongliao

Shenyang, Harbin,
Liaoyang, Anshan

Shenyang, Harbin,
Changchun, Chifeng

Yun-Gui

Bijie, Liangshan Yi
autonomous prefecture

Quijing, Bijie

Kunming, Liangshan Yi
autonomous prefecture

(2) Identification of Core Cities Using the Railway Urban Network.

Urban Agglomeration

Degree Centrality Core City

Weighted Degree Centrality
Core City

Comprehensive Strength
Index Core City

Hu-Su-Wan

Nanjing, Hefei,
Shanghai, Chuzhou

Nanjing, Suzhou,
Wuxi, Changzhou

Nanjing, Suzhou,
Shanghai, Nantong

Hangzhou-Ningbo

Hangzhou, Jinhua

Hangzhou, Shaoxing

Hangzhou, Ningbo

Guangdong-Hong
Kong-Macau Greater
Bay Area

Guangzhou, Huizhou,
Zhaoaoqing

Guangzhou, Shenzhen,
Dongguan

Guangzhou, Huizhou,
Dongguan

Jing-Jin-Ji-Jin

Beijing, Tianjin,
Shijiazhuang, Jinzhou

Beijing, Tianjin,
Shijiazhuang, Cangzhou

Beijing, Tianjin,
Baoding, Tangshan

Central Plain,
Guanzhong Plain

Zhengzhou, Shangqiu, Xi’an

Zhengzhou, Luoyang, Xi'an

Zhengzhou, Nanyang, Xi'an

Cheng-Yu

Chonggqing, Chengdu

Chonggqing, Chengdu

Chonggqing, Chengdu

West Coast of the Strait

Nanping, Shanming

Quanzhou, Putian

Fuzhou, Quanzhou

Shandong Peninsula

Jinan, Xuzhou

Jinan, Xuzhou

Weifang, Linyi

Changsha, Zhuzhou,

Changsha, Nanchang,

Changsha-Nanchang Changsha, Nanchang, Yingtan Hengyang Ganzhou
Wuhan Metropolitan Wuhan Wuhan Wuhan
Liao-Ji-Hei Shenyang, Harbin, Tongliao, Shen.yang, Cha.ngchun, Shenyang, Harb.in,
Anshan Liaoyang, Siping Changchun, Dalian
Beibu Gulf Nanning Liuzhou Zhanjiang
Kunming, Qujing

Yun-Gui

Huaihua, Dazhou

Huaihua, Dazhou
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Table 4. Cont.

(3) Identification of Core Cities Using the Composite Urban Network.

Urban Agglomeration

Degree Centrality Core City

Weighted Degree Centrality

Core City

Comprehensive Strength

Index Core City

Hu-Su-Wan

Hefei, Chuzhou, Wuhu, Liuan

Nanjing, Suzhou,
Wuxi, Changzhou

Nanjing, Suzhou,
Shanghai, Nantong

Hangzhou-Ningbo

Hangzhou, Jiaxing

Hangzhou, Jiaxing

Hangzhou, Ningbo

Guangdong-Hong
Kong-Macau Greater
Bay Area

Guangzhou, Qingyuan,
Zhaoaoqing

Guangzhou, Foshan,
Dongguan

Guangzhou, Huizhou,
Dongguan

Jing-Jin-Ji-Jin

Shijiazhuang, Cangzhou,
Baoding, Yangqquan

Tianjin, Shijiazhuang,
Cangzhou, Baoding

Beijing, Tianjin,
Baoding, Tangshan

Central Plain

Zhengzhou, Xinxiang

Zhengzhou, Xinxiang

Zhengzhou, Handan

Cheng-Yu, Guanzhong Plain

Chonggqing, Chengdu, Weinan

Chonggqing, Chengdu, Weinan

Chonggqing, Chengdu, Xi'an

West Coast of the Strait

Ganzhou, Heyuan

Ganzhou, Heyuan

Fuzhou, Quanzhou

Shandong Peninsula

Jinan, Lianyungang

Jinan, Linyi

Weifang, Linyi

Changsha-Nanchang

Yueyang, Jiujiang, Shangrao

Changsha, Yueyang, Jiujiang

Changsha, Nanchang, Jiujiang

Wuhan Metropolitan Huanggang Wuhan Wuhan
Liao-Ji-Hei Shenyang, Tongliao, Shenyang, Anshan, Shenyang, Harbin,
Anshan, Tieling Liaoyang, Jinzhou Changchun, Dalian
Beibu Gulf Wuzhou Nanning Nanning
. Huaihua, Liangshan Yi . . .
Yun-Gui autonomous prefecture Quijing, Bijie Kunming, Qujing
Table 5. Accuracy of Core Cities.
Urban Network . Weighted Degree Comprehensive
Model Degree Centrality Accuracy Centrality Accuracy Strength Index Accuracy
NLUN 21.21% 11 33.33% 19 57.58%
RUN 19 57.58% 19 57.58% 21 63.63%
CUN 27.27% 14 42.42% 22 66.67%

Based on the analysis in Figure 14 and Tables 4 and 5, it can be seen that the accuracy of
the core cities using CSl is significantly improved compared with that obtained by adopting
degree or weighted degree centrality. Using CSI as the evaluation index, the core city
identification of the CUN was 6.05% and 3.04% more accurate than the NLUN and RUN,
respectively. The CUN and RUN were better than the NLUN at identifying core cities, such
Nanchang, Hangzhou and Dalian. Some cities were incorrectly classified as core cities,
mainly because they have larger built-up areas. For example, Weifang has a larger built-up
area than Jinan.
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Figure 14. The core city identification results. (a) Nighttime light urban network; (b) Railway urban
network; (c) Composite urban network.

5. Discussion

This study proposes a spatial structure method for the identification of urban agglom-
erations based on multisource data, which can effectively identify urban agglomerations
and core cities. Our method can visualize the spatial layout of urban agglomerations. It can
be applied in the fields of urban agglomeration planning, urbanization analysis, regional
economic organization and management, etc. We integrated the effects of natural and
governmental factors by constructing a composite adjacency matrix. The comprehensive
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strength index integrates node connection strength, built-up area size and the number of
railway stations to improve the accuracy of identification of core cities.

Although the approach described in this research has made some contributions, there
are still some shortcomings to be addressed. First, we constructed the NLUN with urban
objects as nodes and the distance between cities as the connection strength. The distance
here is the minimum Euclidean distance between contour points of non-connected built-up
areas. The accuracy of the contours determines the distance of the edge. Nighttime light
data have a drawback. Large cities generally have a large number of uniformly distributed
high-brightness pixels, whereas small cities have fewer and unevenly distributed high-
brightness pixels. The result is that the threshold method cannot effectively identify the
contours of the built-up area of small cities. This affects the reliability of the distances and
has some impact on the structure of the NLUN.

Second, we analyzed the centrality of nodes based on their connectivity. Core cities
were selected as those with the most centrality nodes. Coastal cities such as Hong Kong
and Xiamen are limited by geography and cannot connect with more cities on land. These
cities cannot be identified as core cities. This is clearly problematic. Finally, we used the
Louvain algorithm to detect communities and took spatial autocorrelation into account in
the adjacency matrix. However, whether spatial heterogeneity affects community detection
is a key research topic for the future.

Third, there are a large number of methods for identifying the boundaries of urban
agglomerations or built-up areas using remote sensing data and social sensing data [40,41].
These methods have the advantage of extracting urban features from different perspectives.
However, researchers need to require massive social data, which is hard to acquire. Night-
time light data, which is an open access data, also can provide socio-economic information
periodically [42]. We try to explore the structural features in this data, and apply it in the
field of urban structure research. In addition, this research uses a weighted composite
network to fuse nighttime lighting data and railway data. Although our method uses
data fusion methods to improve the dimensionality of the information, it still needs to be
upgraded in multisource data application.

Fourth, remote sensing technology has overstepped from natural resource information
acquisition to socioeconomic information analysis [43], including applications such as GDP,
population, electricity, carbon emissions, urbanization and poverty [44-49]. According to
the law of spatial autocorrelation [50], the study used only distance to establish the intensity
of urban connectivity. Although distance can effectively describe urban relationships
from a spatial science perspective [18,51-54], it still does not achieve the information
comprehensiveness of data such as artificial statistics and social perception data [55,56].

Finally, China’s urban agglomerations are mainly located east of the Hu Line, except for
Lan-Xi, Hu-Bao-Er-Yu and the northern slope of the Tianshan Mountains. These three urban
agglomerations can be abstracted to three separate network communities, respectively,
and have less connection with eastern network communities. Thus, it is hard for us to
establish a strong connection between cities on either side of the Hu Line using nighttime
light data and railway data. There is uncertainty in the analysis of the proposed method
for all Chinese cities, and we will keep our attention on this issue.

6. Conclusions

With the help of the theory related to complex networks, this study used 2013
DMSP/OLS data and 2014 railway operation data to construct the NLUN, RUN and
CUN networks. Following this, we used the composite adjacency matrix to fuse the mul-
tisource data in order to identify urban agglomerations more accurately. The proposed
CSI effectively describes the importance of city network nodes and provides a basis for
identifying core cities. The urban agglomeration identification method using the CUN had
the highest accuracy, with 5.72% and 15.94% improvements over methods using the NLUN
and RUN, respectively. The CUN also had the highest accuracy in identifying core cities
using CSI, which was at least 3.04% more accurate than the single-source urban networks.
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In addition, we identified some urban agglomeration distribution characteristics. The
regions with slower economic development are mainly limited by transportation and
geographical conditions. This results in cities in these regions preferring to interact with
cities within the same region rather than cities outside the region. The urban agglomerations
in these areas have a high degree of convergence. In economically developed areas, cities
have higher dynamics and urban agglomerations in these regions tend to fragment.

The urban agglomerations and core cities identified by the CUN show that the overall
layout of urban agglomerations in China is “three vertical”. The urban agglomerations in
the first vertical line include Guanzhong Plain, Chengyu and Yungui. The urban agglomer-
ations in the second vertical line cover Jing-Jin-Ji-Jin, Central Plain, Wuhan Metropolitan,
Changsha-Nanchang, Guangdong-Hong Kong-Macao Greater Bay Area and Beibu Gulf.
Liao-Ji-Hei, Shandong Peninsula, Hu-Su-Wan, Hangzhou-Ningbo and the west coast of
the Strait are urban agglomerations belonging to the third vertical line. The development
levels of the urban agglomerations show an unbalanced trend.
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