Influence of Scattered Sunlight for Wind Measurements with the O2(a1Δg) Dayglow
Abstract
:1. Introduction
2. Spectrum Spectral Concept
2.1. The O2(a1Δg) Photochemistry
2.2. Limb Radiation Spectrum of O2(a1Δg)
2.3. Scattering Absorption Spectrum
2.4. Limb Spectral Radiance
3. Interferogram Image Inverting
3.1. Viewing Geometry
3.2. Instrument Concept and Forward Model
3.3. Interferogram Image Inverting
4. Measurement Error Evaluation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.L.; Sun, D.S.; Han, F.; Liu, H.A.; Zhao, R.C.; Zhen, J.; Zhang, N.N.; Chen, C.; Li, Z.M. Demonstration of daytime wind measurement by using mobile Rayleigh Doppler Lidar incorporating cascaded Fabry-Perot etalons. Opt. Express 2019, 27, 34231–34247. [Google Scholar] [CrossRef] [PubMed]
- Dabas, A. Observing the atmospheric wind from space. Cr. Geosci. 2010, 342, 370–379. [Google Scholar] [CrossRef]
- Baumgarten, G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km. Atmos. Meas. Tech. 2010, 3, 1509–1518. [Google Scholar] [CrossRef] [Green Version]
- Ruf, C.S.; Atlas, R.; Chang, P.S.; Clarizia, M.P.; Garrison, J.L.; Gleason, S.; Katzberg, S.J.; Jelenak, Z.; Johnson, J.T.; Majumdar, S.J.; et al. New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bull. Amer. Meteor. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Mitra, A.K.; Kundu, P.K.; Giri, R.K. A quantitative analysis of KALPANA-1 derived water vapor winds and its impact on NWP model. Meteorol Atmos. Phys. 2013, 120, 29–44. [Google Scholar] [CrossRef]
- Savli, M.; de Kloe, J.; Marseille, G.J.; Rennie, M.; Zagar, N.; Wedi, N. The prospects for increasing the horizontal resolution of the Aeolus horizontal line-of-sight wind profiles. Q. J. Roy. Meteor. Soc. 2019, 145, 3499–3515. [Google Scholar] [CrossRef]
- Englert, C.R.; Harlander, J.M.; Brown, C.M.; Marr, K.D.; Miller, I.J.; Stump, J.E.; Hancock, J.; Peterson, J.Q.; Kumler, J.; Morrow, W.H.; et al. Michelson Interferometer for Global High-Resolution Thermospheric Imaging (MIGHTI): Instrument Design and Calibration. Space. Sci. Rev. 2017, 212, 553–584. [Google Scholar] [CrossRef]
- Marr, K.D.; Morrow, W.H.; Brown, C.M.; Englert, C.R.; Harandert, J.M.; Cerrato, A.; Lamport, K.; Harris, S.E. Cal-ibration lamp design, characterization, and implementation for the Michelson Interferometer for Global High-Reso-lution Thermospheric Imaging instrument on the Ionospheric Connection satellite. Opt. Eng. 2019, 58, 054104. [Google Scholar] [CrossRef]
- Rahnama, P.; Gault, W.; McDade, I.; Shepherd, G. Design requirements for the SWIFT instrument. Meas. Sci. Technol. 2013, 24, 015801. [Google Scholar] [CrossRef]
- Gordley, L.L.; Marshall, B.T. Doppler wind and temperature sounder: New approach using gas filter radiometry. J. Appl. Remote Sens. 2011, 5, 053570. [Google Scholar] [CrossRef]
- Ward, W.E.; Gault, W.A.; Shepherd, G.G.; Rowlands, N. The Waves Michelson Interferometer: A visible/near-IR interferometer for observing middle atmosphere dynamics and constituents. Sens. Syst. Next-Gener. Satell. V 2001, 4540, 100–111. [Google Scholar] [CrossRef]
- Wu, K.; Fu, D.; Feng, Y.; Li, J.; Hao, B.; Li, F. Simulation and application of the emission line O19P18 of O2(a1Δg) day-glow near 1.27 μm for wind observations from limb-viewing satellites. Opt. Express 2018, 26, 16984–16999. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, G.G.; Thuillier, G.; Cho, Y.M.; Duboin, M.L.; Evans, W.F.J.; Gault, W.A.; Hersom, C.; Kendall, D.J.W.; Lathuillere, C.; Lowe, R.P.; et al. The Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite: A 20 Year Perspective. Rev. Geophys. 2012, 50, 2. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Forbes, J.M. Lunar tidal winds between 80 and 110 km from UARS/HRDI wind measurements. J. Geophys. Res. Space Phys. 2013, 118, 5296–5304. [Google Scholar] [CrossRef]
- Killeen, T.L.; Wu, Q.; Solomon, S.C.; Ortland, D.A.; Skinner, W.R.; Niciejewski, R.J.; Gell, D.A. TIMED Doppler interferometer: Overview and recent results. J. Geophys. Res. Space Phys. 2006, 111, A10. [Google Scholar] [CrossRef]
- He, W.; Wu, K.; Feng, Y.; Fu, D.; Chen, Z.; Li, F. The Radiative Transfer Characteristics of the O2 Infrared Atmospheric Band in Limb-Viewing Geometry. Remote Sens. 2019, 11, 2702. [Google Scholar] [CrossRef] [Green Version]
- Yankovsky, V.; Manuilova, R.; Babaev, A.; Feofilov, A.; Kutepov, A. Model of electronic-vibrational kin-etics of the O3 and O2 photolysis products in the middle atmosphere: Applications to water vapour retrievals from S-ABER/TIMED 6.3 μm radiance measurements. Int. J. Remote Sens. 2011, 32, 3065–3078. [Google Scholar] [CrossRef]
- Yankovsky, V.A.; Martyshenko, K.V.; Manuilova, R.O.; Feofilov, A.G. Oxygen dayglow emissions as proxies for a-tomic oxygen and ozone in the mesosphere and lower thermosphere. J. Mol. Spectrosc. 2016, 327, 209–231. [Google Scholar] [CrossRef]
- Martyshenko, K.V.; Yankovsky, V.A. IR Band of O2 at 1.27 μm as the Tracer of O3 in the Mesosphere and L-ower Thermosphere: Correction of the Method. Geomagn. Aeron. 2017, 57, 229–241. [Google Scholar] [CrossRef]
- Emmert, J.T.; Drob, D.P.; Picone, J.M.; Siskind, D.E.; Jones, M.; Mlynczak, M.G.; Bernath, P.F.; Chu, X.; Doornbos, E.; Funke, B.; et al. NRLMSIS 2.0: A Whole-Atmosphere Empirical Model of Temperature and Neutral Species Densities. Earth Space Sci. 2021, 8, e2020EA001321. [Google Scholar] [CrossRef]
- Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; van den Bosch, J. MODTRAN (R) 6: A major upgrade of the MODTRAN (R) radiative transfer code. Algorithms Technol. Multispectral Hyperspectral Ultraspectral Imag. Xx 2014, 9088, 1–4. [Google Scholar] [CrossRef]
- Yee, J.H.; DeMajistre, R.; Morgan, F. The O2(b1Σ) dayglow emissions: Application to middle and upper atmosphere remote sensing. Can. J. Phys. 2012, 90, 769–784. [Google Scholar] [CrossRef]
- Yankovsky, V.A.; Babaev, A.S. Photolysis of O3 at Hartley, Chappuis, Huggins, and Wulf bands in the middle atmo-sphere: Vibrational kinetics of oxygen molecules O2(X3Σg−, ν ≤ 35). Atmos. Ocean. Opt. 2011, 24, 6–16. [Google Scholar] [CrossRef]
- Englert, C.R.; Babcock, D.D.; Harlander, J.M. Doppler asymmetric spatial heterodyne spectroscopy (DASH): Concept and experimental demonstration. Appl. Opt. 2007, 46, 7297–7307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Englert, C.R.; Harlander, J.M.; Emmert, J.T.; Babcock, D.D.; Roesler, F.L. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH). Opt. Express 2010, 18, 27416–27430. [Google Scholar] [CrossRef]
- Harding, B.J.; Makela, J.J.; Englert, C.R.; Marr, K.D.; Harlander, J.M.; England, S.L.; Immel, T.J. The MIGHTI Wind Retrieval Algorithm: Description and Verification. Space Sci. Rev. 2017, 212, 585–600. [Google Scholar] [CrossRef]
- Drob, D.P.; Emmert, J.T.; Meriwether, J.W.; Makela, J.J.; Doornbos, E.; Conde, M.; Klenzing, J.H. An update to the Horizontal Wind Model (HWM): The quiet time thermosphere. Earth Space Sci. 2015, 2, 301–319. [Google Scholar] [CrossRef]
- Wu, Y.J.J.; Harding, B.J.; Triplett, C.C.; Makela, J.J.; Marr, K.D.; Englert, C.R.; Harlander, J.M.; Immel, T.J. Errors From Asymmetric Emission Rate in Spaceborne, Limb Sounding Doppler Interferometry: A Correction Algorithm With Application to ICON/MIGHTI. Earth Space Sci. 2020, 7, e2020EA001164. [Google Scholar] [CrossRef]
- Liu, J.; Wei, D.; Zhu, Y.; Kaufmann, M.; Olschewski, F.; Mantel, K.; Xu, J.; Riese, M. Effective wind and temperature retrieval from Doppler asymmetric spatial heterodyne spectrometer interferograms. Appl. Opt. 2018, 57, 8829–8835. [Google Scholar] [CrossRef]
- Harlander, J.M.; Englert, C.R.; Marr, K.D.; Harding, B.J.; Chu, K. On the uncertainties in determining fringe phase in Doppler asymmetric spatial heterodyne spectroscopy. Appl. Opt. 2019, 58, 3613–3619. [Google Scholar] [CrossRef] [PubMed]
Feature | Description | |
---|---|---|
Boundary layer | Albedo | 0.5 |
Aerosol type | rural | |
Visibility | 23 km | |
Humidity | 70% | |
Troposphere | visibility | 50 km |
humidity | 70% | |
Cloud | Sub-layers’ number | 10 |
Thermodynamic state | water | |
Liquid water path | 500 g/m2 | |
Viewing geometry | Solar zenith angle Azimuthal angle | 60° 0 |
Tangent height | 35 km |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Hu, X.; Wang, H.; Wang, D.; Li, J.; Li, F.; Wu, K. Influence of Scattered Sunlight for Wind Measurements with the O2(a1Δg) Dayglow. Remote Sens. 2023, 15, 232. https://doi.org/10.3390/rs15010232
He W, Hu X, Wang H, Wang D, Li J, Li F, Wu K. Influence of Scattered Sunlight for Wind Measurements with the O2(a1Δg) Dayglow. Remote Sensing. 2023; 15(1):232. https://doi.org/10.3390/rs15010232
Chicago/Turabian StyleHe, Weiwei, Xiangrui Hu, Houmao Wang, Daoqi Wang, Juan Li, Faquan Li, and Kuijun Wu. 2023. "Influence of Scattered Sunlight for Wind Measurements with the O2(a1Δg) Dayglow" Remote Sensing 15, no. 1: 232. https://doi.org/10.3390/rs15010232
APA StyleHe, W., Hu, X., Wang, H., Wang, D., Li, J., Li, F., & Wu, K. (2023). Influence of Scattered Sunlight for Wind Measurements with the O2(a1Δg) Dayglow. Remote Sensing, 15(1), 232. https://doi.org/10.3390/rs15010232