Imaging the Fault Zone Structure of the Pearl River Estuary Fault in Guangzhou, China, from Waveform Inversion with an Active Source and Dense Linear Array
Abstract
:1. Introduction
2. Data
2.1. Geological Setting
2.2. Data Acquisition and Pre-Processing
3. Method
3.1. Waveform Inversion Theory
3.2. Synthetic Example: The Overthrust Model
4. Application of the Waveform Inversion
4.1. First Arrival Travel Time Tomography
4.2. Waveform Inversion Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ampuero, J.P.; Vilotte, J.P.; Sanchez-Sesma, F. Nucleation of rupture under slip dependent friction law: Simple models of fault zone. J. Geophys. Res. 2002, 107, 2324. [Google Scholar] [CrossRef] [Green Version]
- Ben-Zion, Y.; Sammis, C.G. Characterization of fault zones. Pure Appl. Geophys. 2003, 160, 67–715. [Google Scholar] [CrossRef] [Green Version]
- Yang, H. Recent advances in imaging crustal fault zones: A review. Earthq. Sci. 2015, 28, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Gkogkas, K.; Lin, F.-C.; Allam, A.A.; Wang, Y. Shallow Damage Zone Structure of the Wasatch Fault in Salt Lake City from Ambient-Noise Double Beamforming with a Temporary Linear Array, Seismol. Res. Lett. 2021, 92, 2453–2463. [Google Scholar] [CrossRef]
- Meng, F.S.; Zhang, G.; Qi, Y.P.; Zhou, Y.D.; Zhao, X.Q.; Ge, K.B. Application of combined electrical resistivity tomography and seismic reflection method to explore hidden active faults in Pingwu, Sichuan, China. Open Geosci. 2020, 12, 174–189. [Google Scholar] [CrossRef]
- Li, H.; Zhu, L.; Yang, H. High-resolution structures of the landers fault zone inferred from aftershock waveform data. Geophys. J. Int. 2007, 171, 1295–1307. [Google Scholar] [CrossRef]
- Yang, H.; Li, Z.; Peng, Z.; Ben-Zion, Y.; Vernon, F. Low velocity zones along the San Jacinto Fault, Southern California, from body waves recorded in dense linear arrays. J. Geophys. Res. Solid Earth 2014, 119, 8976–8990. [Google Scholar] [CrossRef] [Green Version]
- Share, P.-E.; Ben-Zion, Y.; Ross, Z.E.; Qiu, H.; Vernon, F. Internal structure of the San Jacinto fault zone at Blackburn Saddle from seismic data of a linear array. Geophys. J. Int. 2017, 210, 819–832. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Peng, Z.G.; Wang, B.S.; Li, Z.; Yuan, S. Velocity contrast along the rupture zone of the 2010 Mw6. 9 Yushu, China, earthquake from fault zone head waves. Earth Planet. Sci. Lett. 2015, 416, 91–97. [Google Scholar] [CrossRef]
- Qiu, H.; Ben-Zion, Y.; Catchings, R.; Goldman, M.R.; Allam, A.A.; Steidl, J. Seismic imaging of the Mw 7.1 Ridgecrest earthquake rupture zone from data recorded by dense linear arrays. J. Geophys. Res. Solid Earth 2021, 126, e2021JB022043. [Google Scholar] [CrossRef]
- Allam, A.A.; Ben-Zion, Y.; Kurzon, I.; Vernon, F. Seismic velocity structure in the Hot Springs and trifurcation areas of the SanJacinto Fault zone, California, from double-difference tomography. Geophys. J. Int. 2014, 198, 978–999. [Google Scholar] [CrossRef] [Green Version]
- Lin, F.; Li, D.; Clayton, R.W.; Hollis, D. High-resolution 3D shallow crustal structure in Long Beach, California: Application of ambient noise tomography on a dense seismic array. Geophysics 2013, 78, Q45–Q56. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.H.; Wang, W.T.; Xu, W.W.; Wang, L.W.; Ma, X.N.; Wang, X.; Meng, C.M.; Yang, W. Performance study of methane gas explosion source and its application in exploring of Hualong fault in Guangdong-Hong Kong-Macao Greater Bay Area. Chin. J. Geophys. 2021, 64, 4269–4279. [Google Scholar] [CrossRef]
- Yang, H.; Duan, Y.; Song, J.; Jiang, X.; Tian, X.; Yang, W.; Wang, W.; Yang, J. Fine structure of the Chenghai fault zone, Yunnan, China, constrained from teleseismic travel time and ambient noise tomography. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019565. [Google Scholar] [CrossRef]
- Sheley, D.; Crosby, T.; Zhou, M.; Giacoma, J.; Yu, J.; He, R.; Schuster, G.T. 2-D seismic trenching of colluvial wadges and faults. Tectonophysics 2003, 368, 51–69. [Google Scholar] [CrossRef]
- Dehghannejad, M.; Malehmir, A.; Svensson, M.; Lindén, M.; Möller, H. High-resolution reflection seismic imaging for the planning of a double-train-track tunnel in the city of Varberg, southwest Sweden. Near Surf. Geophys. 2017, 15, 226–240. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Zhang, J. Joint traveltime, waveform, and waveform envelope inversion for near-surface imaging. Geophysics 2017, 82, R235–R244. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Wang, F.Y.; Cao, Y.X.; Wang, H.Z.; Tian, L.; Xu, Y.; Guo, X.J.; Feng, S.Q.; Hu, X.P. Feasibility study of developing one new type of seismic source via carbon dioxide phase transition. Chin. J. Geophys. 2020, 63, 2605–2616. (In Chinese) [Google Scholar] [CrossRef]
- Wang, W.T.; Wang, X.; Meng, C.M.; Dong, S.; Wang, Z.G.; Xie, J.J.; Wang, B.S.; Yang, W.; Xu, S.H.; Wang, T. Characteristics of the Seismic Waves from a New Active Source Based on Methane Gaseous Detonation. Earthq. Res. China 2019, 33, 354–366. [Google Scholar] [CrossRef]
- Zhu, X.; McMechan, G.A. Estimation of a two-dimensional seismic compressional-wave velocity distribution by iterative tomographic imaging. Int. J. Imaging Syst. Technol. 1989, 1, 13–17. [Google Scholar] [CrossRef]
- Sheng, J.; Leeds, A.; Buddensiek, M.; Schuster, G.T. Early arrival waveform tomography on near-surface refraction data. Geophysics 2006, 71, U47–U57. [Google Scholar] [CrossRef] [Green Version]
- Boonyasiriwat, C.; PValasek, P.; Routh, P.; Cao, W.; Schuster, G.T.; Macy, B. An efficient multiscale method for time-domain waveform tomography. Geophysics 2009, 74, WCC59–WCC68. [Google Scholar] [CrossRef] [Green Version]
- Operto, S.; Virieux, J.; Dessa, J.X.; Pascal, G. Crustal seismic imaging from multifold ocean bottom seismometer data by frequency domain full waveform tomography: Application to the eastern Nankai trough. J. Geophys. Res. Solid Earth 2006, 111, B09306. [Google Scholar] [CrossRef] [Green Version]
- Fichtner, A.; Kennett, B.L.; Igel, H.; Bunge, H.P. Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. Geophys. J. Int. 2008, 175, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Pratt, R.G.; Shin, C.; Hicks, G.J. Gauss-Newton and full Newton methods in frequency space seismic waveform inversion. Geophys. J. Int. 1998, 133, 341–362. [Google Scholar] [CrossRef]
- Virieux, J.; Operto, S. An overview of full-waveform inversion in exploration geophysics. Geophysics 2009, 74, WCC1–WCC26. [Google Scholar] [CrossRef]
- Li, H.; Gao, R.; Li, W.; Carbonell, R.; Yelisetti, S.; Huang, X.; Shi, Z.; Lu, Z. The Mabja dome structure in southern Tibet revealed by deep seismic reflection data and its tectonic implications. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020265. [Google Scholar] [CrossRef]
- Borisov, D.; Gao, F.; Williamson, P.; Tromp, J. Application of 2D full-waveform inversion on exploration land data. Geophysics 2020, 85, R75–R86. [Google Scholar] [CrossRef]
- Liu, Y.S.; Teng, J.W.; Xu, T.; Badal, J.; Liu, Q.Y.; Zhou, B. Effects of conjugate gradient methods and step-length formulas on the multiscale full waveform inversion in time domain: Numerical experiments. Pure Appl. Geophys. 2017, 174, 1983–2206. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Yang, J.; Liu, X.; Li, B.; Dong, L.; Cheng, J. Multiparameter model building for the Qiuyue structure using 4C ocean-bottom seismometer data. Geophysics 2021, 86, B291–B301. [Google Scholar] [CrossRef]
- Brenders, A.J.; Pratt, R.G. Full waveform tomography for lithospheric imaging: Results from a blind test in a realistic crustal model. Geophys. J. Int. 2007, 168, 133–151. [Google Scholar] [CrossRef] [Green Version]
- Warner, M.; Guasch, L. Adaptive waveform inversion—FWI without cycle skipping—Theory. In Proceedings of the 76th Annual International Conference and Exhibition, EAGE, Amsterdam, The Netherlands, 16 June 2014. Extended Abstracts. [Google Scholar] [CrossRef]
- Shipp, R.M.; Singh, S.C. Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data. Geophys. J. Int. 2002, 151, 325–344. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.S.; Luo, J.; Wu, B. Seismic envelope inversion and modulation signal model. Geophysics 2014, 79, WA13–WA24. [Google Scholar] [CrossRef]
- Huang, Y.K.; Xia, F.; Chen, G.N. Controlling effect of fault structure on the formation and development of the Pearl River Delta. Acta Oceanol. Sin. 1983, 5, 316–327. (In Chinese) [Google Scholar]
- Zhou, Q.; Ran, H.L.; Wu, Y.B.; Chen, L.W.; Li, H. Seismic Hazard Assessment of Major Faults in Guangzhou City. Technol. Earthq. Disaster Prev. 2009, 4, 58–68. (In Chinese) [Google Scholar]
- Zhong, J.Q.; Zhan, W.H.; Gu, S.C.; Hailing, L.; Ciliu, H. Study on neotectonic movement and crustal stability in Pearl River Delta. South China J. Seismol. 1996, 16, 57–63. (In Chinese) [Google Scholar]
- Wu, X.Y.; Tan, J.Q.; Guo, Z.; Ren, P.; Wang, L.; Ye, X.; Chen, Y. High resolution structure of Hualong fault revealed by ambient noise double beamforming imaging with dense seismic array. Chin. J. Geophys. 2022, 65, 1701–1711. (In Chinese) [Google Scholar] [CrossRef]
- Deng, Z.W. Main fracture characteristics of Guangzhou city and impact on urban construction. Urban Geotech. Investig. Surv. 2016, 6, 1672–8262. [Google Scholar]
- Ravaut, C.; Operto, S.; Improta, L.; Virieux, J.; Herrero, A.; Dell’ Aversana, P. Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-waveform tomography: Application to a thrust belt. Geophys. J. Int. 2004, 159, 1032–1056. [Google Scholar] [CrossRef] [Green Version]
- Górszczyk, A.; Adamczyk, A.; Malinowski, M. Application of curvelet denoising to 2D and 3D seismic data—Practical considerations. J. Appl. Geophys. 2014, 105, 78–94. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, T.; Hayes, J. Critical zone structure by elastic full waveform inversion of seismic refractions in a sandstone catchment, central Pennsylvania, USA. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023321. [Google Scholar] [CrossRef]
- Brossier, R.; Operto, S.; Virieux, J. Which data residual norm for robust elastic frequency-domain full waveform inversion? Geophysics 2010, 75, R37–R46. [Google Scholar] [CrossRef]
- Berenger, J. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 1994, 114, 185–200. [Google Scholar] [CrossRef]
- Groos, L.; Schäfer, M.; Forbriger, T.; Bohlen, T. The role of attenuation in 2D full-waveform inversion of shallow-seismic body and Rayleigh waves. Geophysics 2014, 79, R247–R261. [Google Scholar] [CrossRef]
- Pratt, R.G. Seismic waveform inversion in the frequency domain, Part I: Theory and verification in a physical scale model. Geophysics 1999, 64, 888–901. [Google Scholar] [CrossRef] [Green Version]
- Plessix, R.-E. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys. J. Int. 2006, 167, 495–503. [Google Scholar] [CrossRef]
- Ma, X.; Li, Z.; Ke, P.; Xu, S.; Liang, G. Research of step-length estimation methods for full waveform inversion in time domain. Explor. Geophys. 2019, 50, 583–599. [Google Scholar] [CrossRef]
- Wang, K.; Xuan, F.; Malcolm, A.; Williams, C.; Wang, X.; Zhang, K.; Zhang, B.; Yue, H. Multiscale Full-Waveform Inversion with Land Seismic Field Data: A Case Study from the Jizhong Depression, Middle Eastern China. Energies 2022, 15, 3223. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization; Springer: Berlin, Germany, 1999. [Google Scholar]
- Adamczyk, A.; Malinowski, M.; Malehmir, A. High-resolution near-surface velocity model building using full-waveform inversion—A case study from southwest Sweden. Geophys. J. Int. 2014, 197, 1693–1704. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Cao, J.H.; Zhao, F. Seismological features and geological implication of the NW faults in the Pearl River Estuary. South China J. Seismol. 2019, 39, 1–9. (In Chinese) [Google Scholar]
- Liang, G.; Wu, Y.B. Active Fault Detection and Seismic Risk Assessment in Guangzhou; Science Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Peng, Z.; Ben-Zion, Y.; Michael, A.J.; Zhu, L. Quantitative analysis of seismic fault zone waves in the rupture zone of the landers,1992, California earthquake: Evidence for a shallow trapping structure. Geophys. J. Int. 2003, 155, 1021–1041. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Xu, Z.; Si, J.; Pei, J.; Li, T.; Hunag, Y.; Song, S.-R.; Kuo, L.-W.; Sun, Z.; et al. Characteristics of the fault-related rocks, fault zones and the principal slip zone in the Wenchuan earthquake fault scientific drilling project Hole-1 (WFSD-1). Tectonophysics 2013, 584, 23–42. [Google Scholar] [CrossRef]
- Chen, W.G.; Zhao, H.N.; Yu, C. Features of active faults in Guangzhou region and relation to earthquake resistant engineering. South China J. Seismol. 2000, 20, 47–56. (In Chinese) [Google Scholar] [CrossRef]
- Li, H.; Chen, L.W.; Li, Y.J. Numerical simulation of active faults in Guangzhou area. J. Geod. Geodyn. 2008, 28, 39–44. (In Chinese) [Google Scholar] [CrossRef]
- Song, J.; Yang, H. Seismic site response inferred from records at a dense linear array across the Chenghai fault zone, Binchuan, Yunnan. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022710. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Wang, W.; Xu, S.; Yang, W.; Zhang, Y.; Dong, C. Imaging the Fault Zone Structure of the Pearl River Estuary Fault in Guangzhou, China, from Waveform Inversion with an Active Source and Dense Linear Array. Remote Sens. 2023, 15, 254. https://doi.org/10.3390/rs15010254
Ma X, Wang W, Xu S, Yang W, Zhang Y, Dong C. Imaging the Fault Zone Structure of the Pearl River Estuary Fault in Guangzhou, China, from Waveform Inversion with an Active Source and Dense Linear Array. Remote Sensing. 2023; 15(1):254. https://doi.org/10.3390/rs15010254
Chicago/Turabian StyleMa, Xiaona, Weitao Wang, Shanhui Xu, Wei Yang, Yunpeng Zhang, and Chuanjie Dong. 2023. "Imaging the Fault Zone Structure of the Pearl River Estuary Fault in Guangzhou, China, from Waveform Inversion with an Active Source and Dense Linear Array" Remote Sensing 15, no. 1: 254. https://doi.org/10.3390/rs15010254
APA StyleMa, X., Wang, W., Xu, S., Yang, W., Zhang, Y., & Dong, C. (2023). Imaging the Fault Zone Structure of the Pearl River Estuary Fault in Guangzhou, China, from Waveform Inversion with an Active Source and Dense Linear Array. Remote Sensing, 15(1), 254. https://doi.org/10.3390/rs15010254