An Assessment of the Influences of Clouds on the Solar Photovoltaic Potential over China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Models
2.3. Methodology and Experiment Design
3. Results
3.1. The Physical and Optical Properties of Ice and Liquid Water Clouds
3.1.1. Ice Clouds
3.1.2. Liquid Water Clouds
3.2. The Comparison between CERES Data and the Control Simulation
3.3. The Impacts of Different Cloud Types on the POAI
3.4. Sensitivities of the Cloud Impacts on POAI to Various Cloud Properties
3.5. The Sensitivities of Cloud Impacts to the Solar PV Panel Tilting Settings
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wild, M. Global dimming and brightening: A review. J. Geophys. Res. Atmos. 2009, 114, D00D16. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteorol. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, M.; Wang, L.; Qin, W. A comprehensive research on the global all-sky surface solar radiation and its driving factors during 1980–2019. Atmos. Res. 2022, 265, 105870. [Google Scholar] [CrossRef]
- Hatzianastassiou, N.; Matsoukas, C.; Fotiadi, A.; Pavlakis, K.G.; Drakakis, E.; Hatzidimitriou, D.; Vardavas, I. Global distribution of Earth’s surface shortwave radiation budget. Atmos. Chem. Phys. 2005, 5, 2847–2867. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lorenzo, A.; Calbó, J.; Brunetti, M.; Deser, C. Dimming/brightening over the Iberian Peninsula: Trends in sunshine duration and cloud cover and their relations with atmospheric circulation. J. Geophys. Res. Atmos. 2009, 114, D00D09. [Google Scholar] [CrossRef] [Green Version]
- Stjern, C.W.; Kristjánsson, J.E.; Hansen, A.W. Global dimming and global brightening—An analysis of surface radiation and cloud cover data in northern Europe. Int. J. Climatol. 2009, 29, 643–653. [Google Scholar] [CrossRef]
- Xia, X. Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J. Geophys. Res. Atmos. 2010, 115, D00K06. [Google Scholar] [CrossRef] [Green Version]
- Bonkaney, A.; Madougou, S.; Adamou, R. Impacts of cloud cover and dust on the performance of photovoltaic module in Niamey. J. Renew. Energy 2017, 2017, 9107502. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wagner, F.; Peng, W.; Yang, J.; Mauzerall, L.D. Reduction of solar photovoltaic resources due to air pollution in China. Proc. Natl. Acad. Sci. USA 2017, 114, 11867–11872. [Google Scholar] [CrossRef] [Green Version]
- Hill, P.G.; Allan, R.P.; Chiu, J.C.; Bodas-Salcedo, A.; Knippertz, P. Quantifying the Contribution of Different Cloud Types to the Radiation Budget in Southern West Africa. J. Clim. 2018, 31, 5273–5291. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, Z.J.; Yu, Y.; Wild, M. Cloud ‘shrinking’ and ‘optical thinning’ in the ‘dimming’ period and a subsequent recovery in the ‘brightening’ period over China. Environ. Res. Lett. 2021, 16, 034013. [Google Scholar] [CrossRef]
- Dumka, U.C.; Kosmopoulos, P.G.; Ningombam, S.S.; Masoom, A. Impact of aerosol and cloud on the solar energy potential over the central Gangetic Himalayan region. Remote Sens. 2021, 13, 3248. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, H.; Yang, S.; Chen, Q.; Zhou, X.; Shi, G.; Cheng, Y.; Wild, M. Potential driving factors on surface solar radiation trends over china in recent years. Remote Sens. 2021, 13, 704. [Google Scholar] [CrossRef]
- Yang, J.; Yi, B.; Wang, S.; Liu, Y.; Li, Y. Diverse cloud and aerosol impacts on solar photovoltaic potential in southern China and northern India. Sci. Rep. 2022, 12, 19671. [Google Scholar] [CrossRef]
- Platnick, S.; Meyer, K.G.; King, M.D.; Wind, G.; Amarasinghe, N.; Marchant, B.; Arnold, G.T.; Zhang, Z.; Hubanks, P.A.; Holz, R.E.; et al. The MODIS cloud optical and microphysical products: Collection 6 updates and examples from Terra and Aqua. IEEE Trans. Geosci. Remote Sens. 2017, 55, 502–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platnick, S.; King, M.D.; Ackerman, S.A.; Menzel, W.P.; Baum, B.A.; Riedi, J.C.; Frey, R.A. The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens. 2003, 41, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Menzel, W.P.; Frey, R.A.; Zhang, H.; Wylie, D.P.; Moeller, C.C.; Holz, R.E.; Maddux, B.; Baum, B.A.; Strabala, K.I.; Gumley, L.E. MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteorol. Climatol. 2008, 47, 1175–1198. [Google Scholar] [CrossRef] [Green Version]
- Frey, R.A.; Ackerman, S.A.; Liu, Y.; Strabala, K.I.; Zhang, H.; Key, J.; Wang, X. Cloud detection with MODIS, Part I: Recent improvements in the MODIS cloud mask. J. Atmos. Ocean. Technol. 2008, 25, 1057–1072. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Holz, R.E.; Frey, R.; Eloranta, E.W.; Maddux, B.; McGill, M. Cloud detection with MODIS. Part II: Validation. J. Atmos. Ocean. Technol. 2008, 25, 1073–1086. [Google Scholar]
- King, M.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3826–3852. [Google Scholar] [CrossRef]
- Kahn, B.H.; Schreier, M.M.; Yue, Q.; Fetzer, E.J.; Irion, F.W.; Platnick, S.; Wang, C.; Nasiri, S.L.; L’Ecuyer, T.S. Pixel-scale assessment and uncertainty analysis of AIRS and MODIS ice cloud optical thickness and effective radius. J. Geophys. Res. Atmos. 2015, 120, 11669–11689. [Google Scholar] [CrossRef]
- Khatri, P.; Hayasaka, T.; Iwabuchi, H.; Takamura, T.; Irie, H.; Nakajima, T.Y. Validation of MODIS and AHI Observed Water Cloud Properties Using Surface Radiation Data. J. Meteorol. Soc. Jpn. 2018, 96B, 151–172. [Google Scholar] [CrossRef] [Green Version]
- Huo, J.; Lu, D.; Duan, S.; Bi, Y.; Liu, B. Comparison of the cloud top heights retrieved from MODIS and AHI satellite data with ground-based Ka-band radar. Atmos. Meas. Tech. 2020, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ge, J.; Hu, X.; Wang, M.; Han, Z. Cloud-Top Height Comparison from Multi-Satellite Sensors and Ground-Based Cloud Radar over SACOL Site. Remote Sens. 2021, 13, 2715. [Google Scholar] [CrossRef]
- Yi, B.; Rapp, A.D.; Yang, P.; Baum, B.A.; King, M.D. A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Pixel-to-pixel comparisons. J. Geophys. Res. Atmos. 2017, 122, 4528–4549. [Google Scholar] [CrossRef]
- Yi, B.; Rapp, A.D.; Yang, P.; Baum, B.A.; King, M.D. A comparison of aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Cloud radiative effects. J. Geophys. Res. Atmos. 2017, 122, 4550–4564. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Doelling, D.R.; Loeb, N.G.; Keyes, D.F.; Nordeen, M.L.; Morstad, D.; Nguyen, C.; Wielicki, B.A.; Young, D.F.; Sun, M. Geostationary enhanced temporal interpolation for CERES flux products. J. Atmos. Ocean. Technol. 2013, 30, 1072–1090. [Google Scholar] [CrossRef]
- Rutan, D.A.; Kato, S.; Doelling, D.R.; Rose, F.G.; Nguyen, L.T.; Caldwell, T.E.; Loeb, N.G. CERES synoptic product: Methodology and validation of surface radiant flux. J. Atmos. Ocean. Technol. 2015, 32, 1121–1143. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Oreopoulos, L.; Barker, H.W. Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm. Q. J. R. Meteorol. Soc. 1999, 126, 301–330. [Google Scholar] [CrossRef]
- Pincus, R.; Barker, H.W.; Morcrette, J.-J. A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous clouds. J. Geophys. Res. 2003, 108, 4376. [Google Scholar] [CrossRef]
- Barker, H.W.; Cole, J.N.S.; Morcrette, J.J.; Pincus, R.; Räisänen, P.; von Salzen, K.; Vaillancourt, P.A. The Monte Carlo independent column approximation: An assessment using several global atmospheric models. Q. J. R. Meteorol. Soc. 2008, 134, 1463–1478. [Google Scholar] [CrossRef]
- Andrews, R.W.; Stein, J.S.; Hansen, C.; Riley, D. Introduction to the open source PVLIB for python Photovoltaic system modelling package. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014. [Google Scholar]
- Holmgren, W.F.; Hansen, C.W.; Mikofski, M.A. Pvlib python: A python package for modeling solar energy systems. J. Open Source Softw. 2018, 3, 884. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, D.L. Global Physical Climatology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 25–48. [Google Scholar]
- Zhang, H.; Zhao, M.; Chen, Q.; Wang, Q.; Zhao, S.; Zhou, X.; Peng, J. Water and ice cloud optical thickness changes and radiative effects in East Asia. J. Quant. Spectrosc. Radiat. Transf. 2020, 254, 107213. [Google Scholar] [CrossRef]
- Li, Y.; Yi, B.; Min, M. Diurnal variations of cloud optical properties during day-time over China based on Himawari-8 satellite retrievals. Atmos. Environ. 2022, 277, 119065. [Google Scholar] [CrossRef]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 923–1054. [Google Scholar]
Experiments | CTL | (CF − 10%) − CTL | (CTP − 10%) − CTL | (CER − 10%) − CTL | (CWP + 10%) − CTL | |
---|---|---|---|---|---|---|
FIX | IC | 0.72 | −0.08 (−11%) | −0.01(0%) | 0.04 (5.6%) | 0.03 (4.2%) |
WC | 1.16 | −0.12 (−10.3%) | 0.0 (0%) | 0.03 (2.6%) | 0.03 (2.6%) | |
AC | 1.78 | −0.17 (−9.5%) | −0.01 (0%) | 0.07 (3.9%) | 0.05 (2.8%) |
Experiments | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
OAT | IC | 0.76 (12.4%) | 0.59 (10.6%) | 0.62 (10.5%) | 0.77 (14%) |
WC | 0.97 (15.8%) | 1.07 (19.1%) | 1.18 (19.9%) | 1.29 (23.5%) | |
AC | 1.65 (26.8%) | 1.54 (27.4%) | 1.71 (28.8%) | 1.99 (36.2%) | |
TAT | IC | 1.67 (18.4%) | 1.66 (17.9%) | 0.81 (11.6%) | 0.76 (14.6%) |
WC | 1.78 (19.6%) | 2.36 (25.4%) | 1.53 (22%) | 1.35 (26%) | |
AC | 3.26 (35.8%) | 3.68 (39.6%) | 2.21 (31.8%) | 2.04 (39.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Yi, B. An Assessment of the Influences of Clouds on the Solar Photovoltaic Potential over China. Remote Sens. 2023, 15, 258. https://doi.org/10.3390/rs15010258
Jiang Y, Yi B. An Assessment of the Influences of Clouds on the Solar Photovoltaic Potential over China. Remote Sensing. 2023; 15(1):258. https://doi.org/10.3390/rs15010258
Chicago/Turabian StyleJiang, Yuhui, and Bingqi Yi. 2023. "An Assessment of the Influences of Clouds on the Solar Photovoltaic Potential over China" Remote Sensing 15, no. 1: 258. https://doi.org/10.3390/rs15010258
APA StyleJiang, Y., & Yi, B. (2023). An Assessment of the Influences of Clouds on the Solar Photovoltaic Potential over China. Remote Sensing, 15(1), 258. https://doi.org/10.3390/rs15010258