Evaluation of MODIS DT, DB, and MAIAC Aerosol Products over Different Land Cover Types in the Yangtze River Delta of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. MODIS Aerosol Products
2.1.1. DT Products
2.1.2. DB Products
2.1.3. MAIAC Products
2.2. Ground-Based Measurements
2.2.1. AERONET Data
2.2.2. SONET Data
2.3. Land Cover Data
2.4. Evaluation Method
2.4.1. Spatiotemporal Matching
2.4.2. Evaluation Method
3. Results
3.1. Overall Accuracy of DT, DB, and MAIAC
3.2. Influence of Land Cover Types on AOD Retrieval
3.3. DT and DB AOD Correction
3.4. Influence of Observation Geometry on AOD Retrieval
3.5. Influence of Aerosol Types on AOD Retrieval
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.Q.; Guo, J.P.; Ding, A.J.; Liao, H.; Liu, J.J.; Sun, Y.L.; Wang, T.J.; Xue, H.W.; Zhang, H.S.; Zhu, B. Aerosol and boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 2017, 4, 810–833. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought: How do aerosols affect precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Bellouin, N.; Quaas, J.; Gryspeerdt, E.; Kinne, S.; Stier, P.; Watson-Parris, D.; Boucher, O.; Carslaw, K.S.; Christensen, M.; Daniau, A.L.; et al. Bounding Global Aerosol Radiative Forcing of Climate Change. Rev. Geophys. 2020, 58, e2019RG000660. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.M.; Ariya, P.A. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmos. Environ. 2006, 40, 795–820. [Google Scholar] [CrossRef]
- Mehta, M.; Singh, R.; Singh, A.; Singh, N.; Anshumali. Recent global aerosol optical depth variations and trends—A comparative study using MODIS and MISR level 3 datasets. Remote Sens. Environ. 2016, 181, 137–150. [Google Scholar] [CrossRef]
- Hsu, N.C.; Herman, J.R.; Torres, O.; Holben, B.N.; Tanre, D.; Eck, T.F.; Lavenu, F. Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications. J. Geophys. Res. 1999, 104, 6269–6279. [Google Scholar] [CrossRef]
- Butt, E.W.; Rap, A.; Schmidt, A.; Scott, C.E.; Pringle, K.J.; Reddington, C.L.; Richards, N.A.D.; Woodhouse, M.T.; Ramirez-Villegas, J.; Yang, H.; et al. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate. Atmos. Chem. Phys. 2016, 16, 873–905. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Martin, R.V. Satellite remote sensing of surface air quality. Atmos. Environ. 2008, 42, 7823–7843. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.C.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res. Atmos. 2007, 112, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhao, X.; Kahn, R.; Mishchenko, M.; Remer, L.; Lee, K.H.; Wang, M.; Laszlo, I.; Nakajima, T.; Maring, H. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: A review and perspective. Ann. Geophys. 2009, 27, 2755–2770. [Google Scholar] [CrossRef]
- Povey, A.C.; Grainger, R.G. Known and unknown unknowns: Uncertainty estimation in satellite remote sensing. Atmos. Meas. Tech. 2015, 8, 4699–4718. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R.C.; Liu, Y. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia. Atmos. Chem. Phys. 2016, 16, 1255–1269. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Y.; Wu, W.L.; Fan, M.; Wei, J.; Tan, Y.H.; Wang, Q. Evaluation of MAIAC aerosol retrievals over China. Atmos. Environ. 2019, 202, 8–16. [Google Scholar] [CrossRef]
- Li, B.; Yuan, H.; Feng, N.; Tao, S. Comparing MODIS and AERONET aerosol optical depth over China. Int. J. Remote Sens. 2009, 30, 6519–6529. [Google Scholar] [CrossRef]
- Drury, E.; Jacob, D.J.; Wang, J.; Spurr, R.J.D.; Chance, K. Improved algorithm for MODIS satellite retrievals of aerosol optical depths over western North America. J. Geophys. Res. Atmos. 2008, 113, D16204. [Google Scholar] [CrossRef] [Green Version]
- Ganzeveld, L.; Bouwman, L.; Stehfest, E.; van Vuuren, D.P.; Eickhout, B.; Lelieveld, J. Impact of future land use and land cover changes on atmospheric chemistry-climate interactions. J. Geophys. Res. Atmos 2010, 115, D23301. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.Q.; Li, T.W.; Shen, H.F.; Zheng, L.; Zhang, L.P. Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces. Atmos. Environ. 2019, 200, 280–301. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ding, J.; Li, L.; Li, X.; Zhang, Z.; Ran, S.; Ge, X.; Zhang, J.; Wang, J. Characteristics of aerosol optical depth over land types in central Asia. Sci. Total Environ. 2020, 727, 138676. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Cermak, J.; Yang, K.; Pauli, E.; Chen, Y. Land Use and Land Cover Influence on Sentinel-2 Aerosol Optical Depth below City Scales over Beijing. Remote Sens. 2022, 14, 4677. [Google Scholar] [CrossRef]
- Sun, K.; Gao, Y.; Qi, B.; Yu, Z.F. The Influence of Underlying Land Cover on the Accuracy of MODIS C6.1 Aerosol Products-A Case Study over the Yangtze River Delta Region of China. Remote Sens. 2022, 14, 938. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.Y.; Wang, L.C.; Gong, W.; Hu, B.; Shi, Y.F. Spatial-temporal characteristics of aerosol loading over the Yangtze River Basin during 2001–2015. Int. J. Climatol. 2018, 38, 2138–2152. [Google Scholar] [CrossRef]
- Li, L.; Chen, C.H.; Fu, J.S.; Huang, C.; Streets, D.G.; Huang, H.Y.; Zhang, G.F.; Wang, Y.; Jang, C.; Wang, H.L. Air quality and emissions in the Yangtze River Delta, China. Atmos. Chem. Phys. 2010, 11, 1621–1639. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.Z.; Xu, X.B.; Zhao, C.S.; Yan, P. A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Adv. Atmos. Sci. 2012, 29, 1006–1026. [Google Scholar] [CrossRef]
- Huang, R.J.; Zhang, Y.L.; Bozzetti, C.; Ho, K.F.; Cao, J.J.; Han, Y.M.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jiang, L.; Chen, C.; Liu, D.T.; Du, S.S.; Zhang, Y.J.; Yang, Y.F.; Tang, L.L. Characteristics and Sources of Black Carbon Aerosol in a Mega-City in the Western Yangtze River Delta, China. Atmosphere 2020, 11, 315. [Google Scholar] [CrossRef] [Green Version]
- Barnes, W.L.; Pagano, T.S.; Salomonson, V.V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE T. Geosci. Remote 1998, 36, 1088–1100. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Gao, Z. Validation and Accuracy Assessment of MODIS C6.1 Aerosol Products over the Heavy Aerosol Loading Area. Atmosphere 2019, 10, 548. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Wang, Y.J.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanre, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Remer, L.A.; Levy, R.C.; Mattoo, S.; Tanre, D.; Gupta, P.; Shi, Y.X.; Sawyer, V.; Munchak, L.A.; Zhou, Y.P.; Kim, M.; et al. The Dark Target Algorithm for Observing the Global Aerosol System: Past, Present, and Future. Remote Sens. 2020, 12, 2900. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res.-Atmos. 2007, 112, D13211. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Munchak, L.A. A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm. Atmos. Meas. Tech. 2016, 9, 3293–3308. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE T. Geosci. Remote 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Deep blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Hsu, N.C.; Lee, J.; Sayer, A.M.; Carletta, N.; Chen, S.H.; Tucker, C.J.; Holben, B.N.; Tsay, S.C. Retrieving near-global aerosol loading over land and ocean from AVHRR. J. Geophys. Res. Atmos. 2017, 122, 9968–9989. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Martonchik, J.; Wang, Y.J.; Laszlo, I.; Korkin, S. Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. Atmos. 2011, 116, D03210. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. Atmos. 2011, 116, D03211. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res. Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Holben, B.N.; Eck, T.F.; Dubovik, O.; Slutsker, I. Cloud-screening and quality control algorithms for the AERONET database. Remote Sens. Environ. 2000, 73, 337–349. [Google Scholar] [CrossRef]
- Li, Z.Q. Sun-sky radiometer observation network with the extension of multi-wavelength polarization measurements. J. Remote Sens. 2015, 19, 495–519. [Google Scholar]
- Li, Z.Q.; Xu, H.; Li, K.T.; Li, D.H.; Xie, Y.S.; Li, L.; Zhang, Y.; Gu, X.F.; Zhao, W.; Tian, Q.J.; et al. Comprehensive Study of Optical, Physical, Chemical, and Radiative Properties of Total Columnar Atmospheric Aerosols over China: An Overview of Sun–Sky Radiometer Observation Network (SONET) Measurements. Bull. Am. Meteorol. Soc. 2018, 99, 739–755. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Lyapustin, A.; Broday, D.M.; Chatfield, R. Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 2019, 224, 12–28. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.-J. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. J. Geophys. Res. Atmos. 2013, 118, 7864–7872. [Google Scholar] [CrossRef]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13965–13989. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.Q.; Peng, Y.R.; Sun, L. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos. Environ. 2019, 201, 428–440. [Google Scholar] [CrossRef]
- Liu, N.; Zou, B.; Feng, H.H.; Wang, W.; Tang, Y.Q.; Liang, Y. Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China. Atmos. Chem. Phys. 2019, 19, 8243–8268. [Google Scholar] [CrossRef]
Site | Project | Longitude | Latitude | Data Period | Number of Matches (n) | ||
---|---|---|---|---|---|---|---|
DT | DB | MAIAC | |||||
TH | AEROENT | 120.215 | 31.421 | 09/2005–08/2016 | 722 | 956 | 1512 |
QDH | AEROENT | 119.053 | 29.556 | 08/2007–10/2008 | 53 | 53 | 88 |
HZC | AEROENT | 120.157 | 30.290 | 04/2008–02/2009 | 69 | 84 | 103 |
HZZ | AEROENT | 119.727 | 30.257 | 08/2007–08/2009 | 174 | 176 | 195 |
NUIST | AEROENT | 118.717 | 32.206 | 09/2008–08/2010 | 107 | 137 | 156 |
SX | AEROENT | 116.782 | 32.558 | 05/2008–12/2008 | 86 | 98 | 96 |
XZ | AEROENT | 117.142 | 34.217 | 06/2013–05/2019 | 831 | 1135 | 1238 |
HF | AEROENT | 117.162 | 31.905 | 11/2005–11/2008 | 86 | 107 | 118 |
LA-TM | AEROENT | 119.440 | 30.324 | 10/2007–03/2009 | 93 | 101 | 112 |
HF | SONET | 117.162 | 31.905 | 01/2013–12/2019 | 484 | 510 | 562 |
NJ | SONET | 118.957 | 32.115 | 01/2013–12/2019 | 357 | 476 | 528 |
SH | SONET | 121.481 | 31.284 | 01/2013–12/2019 | 221 | 370 | 397 |
Land Cover Type | Site | Forest | Wetland | Cropland | Urban | Barren | Water |
---|---|---|---|---|---|---|---|
Forest | QDH | 64.86 | 9.67 | 0.00 | 1.08 | 0.17 | 24.22 |
LATM | 99.92 | 0 | 0 | 0.08 | 0 | 0 | |
HZZ | 93.47 | 0.27 | 1.4 | 4.19 | 0 | 0.67 | |
Cropland | HF | 3.28 | 1.05 | 60.33 | 33.41 | 0.05 | 1.88 |
SX | 9.47 | 2.69 | 63.61 | 15.67 | 0.00 | 8.56 | |
Urban | HZC | 21.92 | 0.42 | 0.22 | 71.22 | 0.39 | 5.83 |
SH | 0.3 | 0.11 | 0 | 92.93 | 0.05 | 6.61 | |
Mixed | XZ | 12.66 | 0.08 | 43.94 | 42.35 | 0.03 | 0.94 |
NJ | 36.15 | 1.72 | 26.9 | 29.08 | 0.51 | 5.64 | |
NUIST | 33.39 | 1.00 | 39.14 | 23.17 | 0.22 | 3.08 | |
Water | TH | 20.67 | 2.75 | 1.61 | 27.58 | 0.14 | 47.25 |
Season | Data | n | Above EE (%) | Below EE (%) | Within EE (%) | RMSE | Bias | R2 | a |
---|---|---|---|---|---|---|---|---|---|
Spring | DT | 1224 | 75.65 | 1.06 | 23.29 | 0.279 | 0.228 | 0.789 | 1.018 |
DB | 1296 | 9.88 | 31.17 | 58.95 | 0.169 | −0.052 | 0.772 | 0.974 | |
MAIAC | 1497 | 21.24 | 17.04 | 61.72 | 0.217 | 0.033 | 0.667 | 1.013 | |
Summer | DT | 575 | 49.22 | 4.52 | 46.26 | 0.248 | 0.134 | 0.767 | 0.917 |
DB | 503 | 7.16 | 52.48 | 40.36 | 0.228 | −0.116 | 0.806 | 1.011 | |
MAIAC | 696 | 28.74 | 14.8 | 56.46 | 0.265 | 0.071 | 0.691 | 1.058 | |
Autumn | DT | 996 | 42.97 | 5.92 | 51.11 | 0.218 | 0.104 | 0.726 | 0.913 |
DB | 1073 | 12.86 | 26 | 61.14 | 0.149 | −0.032 | 0.786 | 0.912 | |
MAIAC | 1388 | 28.17 | 6.34 | 65.49 | 0.192 | 0.071 | 0.772 | 1.000 | |
Winter | DT | 444 | 29.51 | 6.98 | 63.51 | 0.175 | 0.068 | 0.736 | 0.982 |
DB | 1331 | 24.94 | 17.06 | 58.00 | 0.175 | 0.035 | 0.781 | 1.156 | |
MAIAC | 1524 | 14.3 | 11.88 | 73.82 | 0.132 | −0.009 | 0.821 | 0.830 |
Land Cover | Data | n | Above EE (%) | Below EE (%) | Within EE (%) | RMSE | Bias | R2 | a |
---|---|---|---|---|---|---|---|---|---|
Forest | DT | 320 | 5.94 | 25.31 | 68.75 | 0.163 | −0.059 | 0.794 | 0.874 |
DB | 330 | 0.91 | 62.12 | 36.97 | 0.201 | −0.151 | 0.826 | 0.910 | |
MAIAC | 395 | 8.35 | 12.41 | 79.24 | 0.130 | −0.022 | 0.843 | 0.909 | |
Urban | DT | 290 | 79.66 | 1.38 | 18.96 | 0.304 | 0.254 | 0.715 | 0.887 |
DB | 454 | 23.13 | 28.19 | 48.68 | 0.196 | −0.013 | 0.610 | 0889 | |
MAIAC | 500 | 18.00 | 19.00 | 63.00 | 0.175 | −0.022 | 0.650 | 0.720 | |
Cropland | DT | 612 | 45.1 | 1.31 | 53.59 | 0.188 | 0.123 | 0.829 | 1.08 |
DB | 715 | 9.23 | 31.89 | 58.88 | 0.154 | −0.042 | 0.808 | 1.059 | |
MAIAC | 776 | 9.15 | 12.11 | 78.74 | 0.126 | −0.008 | 0.849 | 0.960 | |
Mixed1 | DT | 464 | 59.27 | 1.51 | 39.22 | 0.219 | 0.156 | 0.840 | 1.034 |
DB | 613 | 8.48 | 38.01 | 53.51 | 0.183 | −0.078 | 0.794 | 0.998 | |
MAIAC | 684 | 8.19 | 16.37 | 75.44 | 0.145 | −0.029 | 0.831 | 0.907 | |
Mixed2 | DT | 831 | 53.67 | 1.93 | 44.4 | 0.200 | 0.133 | 0.834 | 0.974 |
DB | 1135 | 22.73 | 16.3 | 60.97 | 0.172 | 0.025 | 0.791 | 1.035 | |
MAIAC | 1238 | 17.12 | 9.53 | 73.35 | 0.141 | 0.021 | 0.841 | 0.998 | |
Water | DT | 722 | 72.16 | 1.8 | 26.04 | 0.332 | 0.245 | 0.671 | 0.878 |
DB | 956 | 15.69 | 20.4 | 63.91 | 0.164 | −0.01 | 0.765 | 0.953 | |
MAIAC | 1512 | 43.98 | 10.52 | 45.50 | 0.286 | 0.135 | 0.634 | 1.029 |
Data | n | Above EE (%) | Below EE (%) | Within EE (%) | RMSE | Bias | R2 | a |
---|---|---|---|---|---|---|---|---|
DB | 414 | 2.66 | 56.52 | 40.82 | 0.211 | −0.150 | 0.834 | 0.915 |
DB Bias-Corrected | 414 | 14.49 | 17.63 | 67.88 | 0.155 | −0.023 | 0.818 | 0.881 |
DB MRE-Corrected | 414 | 21.26 | 18.60 | 60.14 | 0.227 | 0.025 | 0.803 | 1.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Liu, J.; Jiao, D.; Zha, Y.; Cao, S. Evaluation of MODIS DT, DB, and MAIAC Aerosol Products over Different Land Cover Types in the Yangtze River Delta of China. Remote Sens. 2023, 15, 275. https://doi.org/10.3390/rs15010275
Jiang J, Liu J, Jiao D, Zha Y, Cao S. Evaluation of MODIS DT, DB, and MAIAC Aerosol Products over Different Land Cover Types in the Yangtze River Delta of China. Remote Sensing. 2023; 15(1):275. https://doi.org/10.3390/rs15010275
Chicago/Turabian StyleJiang, Jie, Jiaxin Liu, Donglai Jiao, Yong Zha, and Shusheng Cao. 2023. "Evaluation of MODIS DT, DB, and MAIAC Aerosol Products over Different Land Cover Types in the Yangtze River Delta of China" Remote Sensing 15, no. 1: 275. https://doi.org/10.3390/rs15010275
APA StyleJiang, J., Liu, J., Jiao, D., Zha, Y., & Cao, S. (2023). Evaluation of MODIS DT, DB, and MAIAC Aerosol Products over Different Land Cover Types in the Yangtze River Delta of China. Remote Sensing, 15(1), 275. https://doi.org/10.3390/rs15010275