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Abstract: Change detection (CD) is a crucial task in remote sensing (RS) to distinguish surface changes
from bitemporal images. Recently, deep learning (DL) based methods have achieved remarkable
success for CD. However, the existing methods lack robustness to various kinds of changes in RS
images, which suffered from problems of feature misalignment and inefficient supervision. In this
paper, a deeply supervised attentive high-resolution network (DSAHRNet) is proposed for remote
sensing image change detection. First, we design a spatial-channel attention module to decode
change information from bitemporal features. The attention module is able to model spatial-wise
and channel-wise contexts. Second, to reduce feature misalignment, the extracted features are
refined by stacked convolutional blocks in parallel. Finally, a novel deeply supervised module
is introduced to generate more discriminative features. Extensive experimental results on three
challenging benchmark datasets demonstrate that the proposed DSAHRNet outperforms other
state-of-the-art methods, and achieves a great trade-off between performance and complexity.

Keywords: change detection; convolutional neural network; feature fusion; metric learning; attention
mechanism

1. Introduction

Change detection (CD) is the process of identifying differences in RS images at different
times in the same geographical location [1]. It has been widely applied in such diverse
disciplines as urbanization monitoring [2,3], environmental monitoring [4–7], and disaster
assessment [8,9]. With the rapid development of Earth observation techniques including
WorldView, GF, and Sentinel, huge amounts of RS datasets [10–15] from various sensors are
available, which has created new demands on remote sensing change detection. Therefore,
to exploit multitemporal information from RS data, a lot of efforts on developing new
effective CD methods have been made in the field of remote sensing.

Over the past few decades, many remarkable change detection methods have been
proposed. These CD methods can broadly be divided into two types: traditional and deep
learning (DL) based. Most traditional CD methods detect changes by image mathematical
and statistical techniques, including change vector analysis [16], principal component
analysis [17], slow feature analysis [18], and multivariate alteration detection [19,20].
Handcrafted features or learnable rules are carefully designed to compare representations of
data. Moreover, other machine learning techniques have been applied in CD as classifiers,
including support vector machine [21], spatial domain analysis [22], decision tree [23],
and random forest [24].

Recently, deep learning techniques, especially deep convolutional neural networks
(CNN), have achieved breakthroughs in many fields. Researchers have introduced DL
(VGG [25], Unet [26], ResNet [27], et al.) and semi-supervised learning [28–32] techniques
to improve performance for CD algorithms. These powerful CNN models can learn
hierarchical features. The shallow convolutional layer has a smaller receptive field and
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generates high-resolution low-level features, which are rich in spatial information such as
contour and shape. The deep convolutional layer has a larger receptive field and generates
low-resolution high-level semantic features. For change detection, whether a change has
occurred can be determined by comparing high-level semantic features, and where a
change has occurred can be located by combining low-level spatial features. Most available
DL-based methods have a deep encoder–decoder architecture for CD. The encoder that is
composed of stacked convolution layers learns multi-level deep features with rich spectral
and spatial features from remote sensing images. The decoder fuses multi-level features
from the encoder to obtain change features; then, CD is converted into a task of pixel-wise
classification to identify the change of interest.

In terms of the CD encoder, the latest efforts have been focused on the refinement of
spatial-temporal feature discrimination, through stacking more convolution layers [11,33–35],
and applying attention mechanisms [36–38]. However, these methods bring the high complexity
and cost of computation to CD algorithms. The trade-off between detection precision and
computational complexity must be well considered. In terms of the CD decoder, most efforts
have been made on the separability of interclass. Depending on the type of classifiers, there are
mainly two types of DL-based CD decoders: metric-based [10,12,35,39–41] and classification-
based [11,33,34,36,37,42,43]. Previous metric-based CD decoders detect changes by binarizing
the distance map between bitemporal features. These metric-based methods introduce
metric learning to learn a parameterized embedding space for bitemporal images, where
changed pairs should be as far away as possible, while unchanged pairs should be as close
as possible. Different from metric-based methods, classification-based decoders convert
CD into a classification task by assigning two scores to each point of the image, and two
scores indicate the possibility that belongs to the change/unchange class, respectively.

Although many remarkable CD methods have been proposed, there are still some
shortcomings that can be summed up as follows: (1) Most existing methods generate
high-resolution change features by fusing and upsampling low-scale features, and thus
noise or misalignment may be injected. (2) Most existing loss functions designed for CD
networks are not effective enough to supervise the training process. Semantic information
of bitemporal images is not fully exploited and some implicit relationships between
bitemporal features may be ignored. Thus, it is still challenging to extract bitemporal
features efficiently and change information correctly for DL-based CD methods.

In view of the above-mentioned problems, we propose a deeply supervised attentive
high-resolution network to improve performance for CD. We construct the network based
on two demands. The first is that the network must fully exploit semantic relationships
between bitemporal features, which makes the subsequent decoding process of change
features easier. The second is that the network must enhance features relevant to change
of interest, which allows the changed areas to be identified more precisely. To satisfy the
first demand, we augment a Siamese semantic segmentation branch for bitemporal images,
which is different from existing methods. In addition, we utilize the change labels to provide
supervision signals for the semantic branch, and propose a deep supervision strategy to
assist the optimization process of the network. The deep supervision strategy can effectively
improve the separability of semantic features in the embedding space. To satisfy the second
demand, we refine high-resolution semantic features hierarchically that are extracted by
the encoder, and enhance change features by a specially designed spatial-channel attention
module in the decoder. Varying from existing methods, large kernel convolution in the
attention module is decomposed to capture long-range dependence. Then, attention-refined
features are fed into stacked convolution blocks in parallel to reduce feature misalignment.
In view of the above efforts, our network is capable of capturing high-resolution discriminative
features to improve performance for various kinds of changes in RS images.
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The main contributions made by this work can be summed up as follows:

(1) We propose a novel classification-based change detection network based on encoding-
decoding structure, which introduces an attention mechanism into the change decoder
for the purpose of extracting more discriminative features. Thereby, a robust change
detection algorithm is implemented.

(2) We introduce a novel deeply supervised strategy for intermediate layers in the change
decoder to minimize intermediate feature distances. A new change loss is defined for
the training process of DSAHRNet to improve the network’s performance.

(3) We evaluate our network by comparing it with eight state-of-the-art (SOTA) change
detection networks on three benchmark datasets, and extensive comparative experiments
reveal that the proposed network outperforms these recent SOTA change detection
networks, yielding the highest F1 score of 92.11%, 96.94%, and 83.57%, respectively.

The rest of this paper is organized as follows: The related works of DL-based CD
methods are reviewed in Section 2. Section 3 introduces the proposed method in detail.
The settings and results of experiments are reported in Section 4. Section 5 discusses our
proposed method. Finally, Section 6 draws the conclusion of our work.

2. Related Work

This section provides a brief review of recent change detection methods with deep
learning techniques in remote sensing. Change detection is a critical task in the field of
remote sensing, and many DL-based change detection techniques have been developed
in recent years. According to the feature learning process for input bitemporal images,
the DL-based change detection networks can be roughly classified into two categories:
single-stream and double-stream.

Single-stream networks usually use a semantic segmentation network to distinguish
changes from the concatenation or difference of two bitemporal images. Daudt et al. [43]
proposed a fully convolutional early fusion network based on UNet [26], named FC-EF.
FC-EF concatenates the bitemporal images along the channel before feeding them into
the network. Liu et al. [44] integrated depthwise separable convolution [45] into UNet
to achieve better performance for change detection. Peng et al. [46] used a modified
UNet++ [47], which is a powerful segmentation network built with dense skip connections,
to detect changed regions.

Double-stream networks are commonly constructed on the Siamese structure. The
Siamese network with sharing weights extracts multi-level features from bitemporal
images, then the output features are concatenated along the channel to classify or calculate
distance maps by a certain metric. Therefore, the discrimination of features and the feature
fusion strategy are critical to identifying changes. To improve the discriminative power
of networks, most recent works adopt multi-level fusion strategies [33,34,42,48], deep
supervision [10,11] and attention mechanisms [12,36–38,49,50]. Shi et al. [10] proposed a
dual attentive convolutional Siamese network in which the convolutional block attention
module (CBAM) [51] was integrated to make features more discriminative. Zhang et al. [11]
proposed a difference discrimination network and multiple deeply supervised modules
to enhance intermediate layers’ learning ability. Chen et al. [34] proposed a feature
constraint change detection network. A novel dual encoder–decoder backbone was
designed to suppress background noise, and a self-supervised learning strategy was
introduced to constrain feature learning. Xu et al. [42] proposed a multidirectional fusion
pathway strategy to boost information paths in the network. Chen et al. [37] proposed a
transformer-based Siamese network to model contexts within the spatial-temporal domain.
Nevertheless, these networks are inefficient to reduce feature misalignment and may suffer
from the problem of high computational complexity brought from stacked convolution
layers or multi-level feature fusions.
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Although the above-mentioned methods have achieved good performance, most of
them are in a supervised learning manner with annotated data. For practical purposes,
it is more attractive to design semi-supervised CD methods that require partially labeled
data sets. Peng et al. [28] proposed a semi-supervised CD network based on a generative
adversarial network. In the network, the discriminator was employed to distinguish
whether a change map is from the unlabeled samples or the ground truth. The generator
learned the information from both the labeled and unlabeled samples through entropy
adversarial training. Bandara et al. [29] proposed a semi-supervised CD framework to
enhance the performance of CD approaches, where consistency regulation was applied to
leverage the information from unlabeled bitemporal images. Apart from these methods,
Zheng et al. [31] presented an unsupervised building CD network with single-temporal
supervised learning to bypass the problem of collecting pairwise labeled images. In this
method, first, pseudo bitemporal image pairs were constructed by random permutation
in mini-batch to provide change supervisory signals and change labels were generated
by logical exclusive OR (xor) operation on bitemporal building labels. Next, the network
was trained with an effective multi-task architecture for joint semantic segmentation and
change detection on the constructed pseudo bitemporal images.

Inspired by previous works, we incorporate an attention mechanism and deep supervision
into the CD network in our method. We propose a novel spatial-channel attention module
to learn change features in a spatial-wise and channel-wise manner. We apply multiple
deeply supervised modules to assist network training by maximizing the similarity between
the changed (unchanged) pairs. As a result, a high-performance double-stream CD network
is constructed in this paper.

3. Methodology

In this section, we provide details of the proposed network. First, the overall procedure
of the proposed DSAHRNet is illustrated (see Figure 1). Then, we present details of our
designed SCAM and change decoder. Finally, the loss function of the network is defined.

3.1. Overview

The overall procedure of the proposed network is illustrated in Figure 1. It consists
of three parts: a feature encoder, a deep attentive high-resolution change decoder, and a
classifier. We adopt a modified HRNet18 [52] as our encoder to extract multi-level features.
Then, the encoded features are fed to the proposed change decoder with the aim of learning
long-range differences between bitemporal features. The change decoder is comprised of
hierarchical feature fusion modules and parallel convolution blocks (PCBs). In the process
of decoding, extracted bitemporal features are fused in a bottom-up manner by SCAM to
generate change features. Next, the bitemporal features and change features are refined by
stacked convolutional blocks in parallel. In this way, the bitemporal images are mapped into
features in an embedding space, which is represented semantic information of bitemporal
images. Change features are refined to reduce misalignment. Finally, the classifier predicts
a pixel-level change map according to the concatenation of the change features. In the
training process, the change map is exploited to calculate the classification loss (Equation (8))
with labels, and the bitemporal features are deeply supervised by the contrastive loss
(Equation (7)). The hybrid loss (Equation (12)) is employed to improve the convergence
stability of the proposed network and bring better detection results.

The inference detail of our DSAHRNet is presented in Algorithm 1. Let {(I1, I2)}
represent a pair of bitemporal images, and y represents the ground truth. The inference
and training process of DSAHRNet can be summarized as follows:

(1) First, the bitemporal images {(I1, I2)} are input into the weight-sharing Siamese
encoder, with each obtaining a group of multi-level features Fi = { f i

1, f i
2, f i

3, f i
4},

i = 1, 2.
(2) Next, the same level features are merged at the channel dimension to obtain change

features, ci, i = 1, 2, 3, 4, where SCAMs are applied hierarchically.



Remote Sens. 2023, 15, 45 5 of 22

(3) Then, both bitemporal features F1, F2 and change features {ci, i = 1, 2, 3, 4} are refined
by PCBs and SCAMs.

(4) After that, the classifier generates a change mask M from multi-level change features
{ci, i = 1, 2, 3, 4}. LBCE and LDice are calculated between the predicted change mask
M and the ground truth y by Equation (8) and Equation (9), while LBCL is calculated
for intermediate bitemporal features by Equation (7).

(5) Finally, the sum of LBCE, LDice and LBCL are back-propagated to optimize model weights.

Algorithm 1 Inference of DSAHRNet for change detection

1: Input : I = {(I1, I2)}(a pair of bitemporal images)
2: Output : M (a prediction change mask)
3: // step1: feature extraction by HRNet18
4: for i in {1,2} do
5: Fi = [ f i

1, f i
2, f i

3, f i
4] = HRNet18(Ii)

6: end
7: // step2: use SCAM to generate change features hierarchically
8: c0=None
9: for i in {1,2,3,4} do

10: ci = SCAM(Concat( f 1
i , f 2

i , ci−1))
11: end
12: // step3: refine features
13: for i in {1,2,3,4} do
14: f 1

i , f 2
i , ci = PCB( f 1

i , f 2
i , ci)

15: end
16: for i in {1,2,3,4} do
17: ci = SCAM(Concat( f 1

i , f 2
i , ci−1))

18: end
19: // step4: obtain change mask by the classifier
20: M = Classifier(Concat(c1, c2, c3, c4))

B B

SCAM

B

B B

B

SCAM

B B

SCAM

B

B B

B

SCAM

B B

SCAM

B

B B

B

SCAM

B B

SCAM

B

B B

B
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Convolutional 
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Attention Module
UpsamplingB Basic Block + 

Concatenate and 

Convolution (upsample if 

nessary)
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+ 
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3  3  Conv 3  3  Conv 
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M: 1   H   WM: 1   H   W

Figure 1. Overview of our DSAHRNet model.
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3.2. Deep Attentive High-Resolution Change Decoder

The change decoder is designed to generate multi-level change features and semantic
features with high resolution required for CD. The decoding process consists of following
three steps:

Fusing and Upsampling. After feature extraction by the encoder, we obtain four
features at the sizes of (h/4, w/4), (h/8, w/8), (h/16, w/16), (h/32, w/32) (h, w represents
the height and width of input images). We first concatenate feature pairs hierarchically
along the channel dimension to generate four change features at different levels, then
decode change features by an attention module, named SCAM. Finally, we upsample
low-level features to concatenate with high-level features in a bottom-up manner. As a
result, we learn multi-level attention-refined change features for change detection. This
step corresponds to the pseudo-code in lines 9–10 of Algorithm 1.

Our intuition of refining features is that emphasizing those features relevant to change
of interest, and suppressing those features irrelevant to change. Consequently, we design a
spatial-channel attention module, which is shown in Figure 2. The channel attention module
(see Figure 2b) aims to capture channel-wise importance through a channel attention map,
and it focuses on ‘which channel’ to emphasize or suppress from the concatenated feature.
The channel attention module is calculated as follows:

Mavg
c = MLP(AvgPool(F)) (1)

Mmax
c = MLP(MaxPool(F)) (2)

Mc(F) = σ
(

Mavg
c + Mmax

c

)
(3)

where F ∈ RC×H×W denotes the input feature, C, H, W is the channel dimension, height,
and width of the feature. Firstly, we perform a global average pooling and a global max
pooling to obtain two vectors with the size of C× 1× 1, denoted by Mavg

c and Mmax
c . Then,

a weight-shared multi-layer perception (MLP) gives weights to each channel on the two
vectors. Afterward, we perform a sigmoid operator on the element-wise sum of the two
vectors to obtain the channel attention map Mc(F). Finally, multiply the original feature
with Mc(F) to obtain the channel-refined feature F

′
.

input 

feature F

channel 

attention 

module

spatial 

attention 

module

refined 
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input 

feature F

Channel attention module

Spatial attention module
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refined 

feature F˝ 

input 

feature F
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(c)

Figure 2. Architecture of the proposed SCAM: (a) overview of SCAM; (b) channel attention module,
and (c) spatial attention module.



Remote Sens. 2023, 15, 45 7 of 22

The spatial attention module (see Figure 2c) focuses on ’which area’ to emphasize
or suppress on the channel-refined feature F

′
. The key step is producing an attention

map which indicates the importance of each pixel. A well-known method is using large
kernel convolution [51,53]. However, large kernel convolution brings a large quantity of
computational cost and parameters. Inspired by the use of visual attention [54], we decompose
a large kernel convolution into three convolutional layers to decrease the computational
complexity and capture long-range dependence. The three convolutional layers are a spatial
local convolution (depth-wise convolution, DW-Conv), a spatial long-range convolution
(depth-wise dilation convolution, DW-D-Conv), and a 1× 1 channel convolution. Therefore,
the proposed spatial attention module can be expressed as:

Ms(F) = Conv1×1(DW-D-Conv7×7(DW-Conv5×5(F))) (4)

where F ∈ RC×H×W is the input feature, C, H, W is the channel dimension, height,
and width of the feature. ⊗ denotes the element-wise product. The subscript of each
convolutional operator represents the kernel size. Ms(F) denotes the final spatial attention
map. Finally, the input feature F is refined as follows:

F
′
= Mc(F)⊗ F (5)

F
′′
= F

′
+ Ms(F

′
)⊗ F

′
(6)

We validated this module by visualizing features with Grad-CAM [55]. As shown
in Figure 3, the features refined by SCAM are mostly concentrated on building areas
with clearer boundaries, which indicates that our SCAM indeed calculates more accurate
bitemporal features and change features.

T1

T2

(a) (b) (c)

bitemporal features

change feature

bitemporal features

change feature

Figure 3. Feature visualization of our SCAM. Red denotes higher attention values and blue denotes
lower values. (a) a pair of building images in the LEVIR-CD dataset; (b) unrefined feature maps;
and (c) refined feature maps through multiple SCAMs.

Convolutional Forward Pass. To obtain the final change mask, most existing methods
fuse extracted multi-level features by concatenation or element-wise addition. These
methods are able to take advantage of multi-level features. However, simply fusing different
level features may introduce misalignment to change features, which leads to noisy change
borders or pseudo-changes. To overcome these cons, we propose parallel convolutional
blocks to filter noise. As shown in Figure 1, the PCB is composed of gray nodes, and there
are four PCBs at different levels in our network. The attention-refined multi-level change
features are fed into t convolutional blocks in parallel, and the bitemporal features are
processed in the same manner to extract more information of interest. Both bitemporal
features and change features have four branches, channels of the four branches are 18, 36,
72, and 144, in turn, which are lower than most existing methods. The convolutional block
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we used is the basic-block ( shown in Figure 4) from ResNet [27]. The block consists of two
3× 3 convolutional layers, and two batch normalization [56] layers followed a ReLU [57]
activation layer. In this way, we further refine extracted features without downsampling to
maintain its high resolution for the further decoding process. Lines 13–14 of Algorithm 1
reflect the process of the convolutional forward pass.

x

x

F(x)+x

Figure 4. Structure of a basic block.

Fusing and Classification. In the wake of the high-resolution convolutional forward
pass, we use hierarchically SCAMs again (see in lines 16–17 of Algorithm 1) to assemble
information in the network. Then, the concatenation of multi-level change features is fed
into a classifier to generate a change mask (see in line 20 of Algorithm 1). The classifier
consists of two 3 × 3 convolutional layers, an upsampling operation, and an Argmax
operation. We apply two 3× 3 convolutional layers and an upsampling operation on the
concatenation of multi-level change features to obtain the discriminative map D ∈ R2×H×W .
The value in the first channel of D indicates the probability that the corresponding pixel
belongs to the unchange class, while the other channel indicates the probability that the
corresponding pixel belongs to the change class. Finally, an Argmax operation is employed
to generate the final change mask M ∈ R1×H×W by finding the class with the maximum
value for each pixel of the discriminative map D.

The visualization of feature maps is displayed in Figure 5. It can be seen that the
bitemporal features have higher values in the building areas, and there is less interference
in the change feature map after refinements of PCBs and SCAMs. Hence, we can conclude
that our proposed deep attentive high-resolution change decoder can extract discriminative
features and model the long-range dependence for change detection effectively.

T1

T2

(a) (b) (c)

bitemporal features

change feature

bitemporal features

change feature

(d)

bitemporal features

change feature

Figure 5. Feature visualization of our PCBs and SCAM. Red denotes higher attention values and blue
denotes lower values. (a) a pair of building images in the LEVIR-CD dataset; (b) refined feature maps
through SCAMs; (c) further refined feature maps through PCBs; and (d) feature maps that are refined
by SCAMs again.
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3.3. Deep Supervision and Loss Function

The batch contrastive loss (BCL) [58] and the binary cross-entropy (BCE) loss are
widely used for change detection in remote sensing. The BCL is used to measure the
similarity between the distance map and the ground truth, which is defined as follows:

LBCL =
N

∑
i,j=0

1
2
[(1− yi,j)d2

i,j + yi,j max
(
m− di,j, 0

)2
] (7)

where di,j represents the Euclidean distance of the feature pair at point (i, j). yi,j denotes
the label at point (i, j), which is 0 or 1. N is the size of the distance map. m is the margin to
filter out pixel pairs with a distance lower than this value.

The BCE loss can be calculated as follows:

LBCE = − 1
N

N

∑
i,j=0

[
yi,j log xi,j +

(
1− yi,j

)
log
(
1− xi,j

)]
(8)

where yi,j and xi,j denote the ground-truth label and the predicted probability of change
class at point (i, j), respectively.

To weaken the effect of unbalanced categories, the dice coefficient loss is combined
with BCE loss, which is defined as:

LDice = 1− 2× |X⋂Y|
|X|+ |Y| (9)

where X and Y denote the predicted change map, and the ground-truth label,
⋂

, represents
the intersection of X and Y.

Unlike previous networks, our network has two auxiliary branches to extract bitemporal
semantic features (see Figure 1) and one branch for change detection. To improve the
convergence of our network by alleviating the vanishing gradient problems and learn
multi-level discriminative features for intermediate layers, we introduce a deeply supervised
module into the change decoder based on the auxiliary branches.

Figure 6 illustrates the calculation process of change loss, which is described in the
fourth step of Section 3.1. As shown in Figure 6, the multi-level change features are
concatenated to generate the change map. For the two groups of intermediate features
{ f 1

i , i = 2, 3, 4} and { f 2
i , i = 2, 3, 4}, a Euclidean distance map di is calculated at the ith

level. We leverage a BCL to pull unchanged bitemporal features closer and push changed
bitemporal features away between f 1

i and f 2
i , and use a BCE loss to measure the similarity

among probability distributions of change class and unchange class. In addition, we
introduce dice coefficient loss to alleviate the class imbalance problem. The final change
loss function is formulated as:

di =

√(
f 1
i − f 2

i
)(

f 1
i − f 2

i
)T , i = 2, 3, 4 (10)

M = classi f ier(Concat(c1, c2, c3, c4)) (11)

L = LBCE(M, y) + LDice(M, y) + λ× ∑
i=2,3,4

LBCL(di, y) (12)

where λ represents the weight for deep supervision. According to our experimental results
in Section 4.7, λ was set to 0.1. di represents the Euclidean distance of the feature pair
( f 1

i , f 2
i ). M ∈ R1×H×W denotes the final change mask, H, W is the height and width of

the mask.
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Figure 6. Deep supervision in the DSAHRNet.

4. Experiments

In this section, extensive experiments are conducted using three public change detection
datasets. First, we introduce the three datasets in detail. Second, we provide details of
evaluation metrics and the training process. Third, we briefly introduce eight state-of-the-art
comparative methods for change detection. Finally, quantitative experiments are exhibited
to demonstrate the superiority of the proposed method.

4.1. Data Sets

To fully verify the effectiveness of our method, we carried out experiments on three
public datasets, which can be summarized as follows:

(1) LEVIR-CD [12] is a public large-scale building change detection dataset. It consists
of 637 very high-resolution (0.5 m/pixel) image patch pairs with a size of 1024 × 1024 pixels.
These bitemporal images were collected from several cities in Texas of the United States
with a time span of 5–14 years. Following the official train/validation/test split, we cropped
images into 256 × 256 without overlapping to obtain 7120 image patch pairs for training,
1024 pairs for validation, and 2048 pairs for testing.

(2) CDD dataset [59] is a public general change detection dataset. It consists of 11
season-varying remote sensing image pairs obtained by Google Earth. Data set was generated
by cropping with image size 256× 256 pixels. Therefore, we obtained 10,000/3000/3000 patch
pairs for training/validation/testing, respectively.

(3) SYSU-CD [10] contains 20,000 pairs of 0.5 m aerial images collected from Hong
Kong between the years 2007 and 2014. It includes six types of changes: groundwork before
construction; suburban dilation; change of vegetation; newly built urban buildings; road
expansion; and sea construction. This dataset was obtained by cropping and augmenting
from original 800 image pairs. For each pair, 25 pairs of 256 × 256 size were sampled
randomly. Finally, 20,000 pairs were divided into training, verification, and test sets with a
ratio of 6:2:2.

4.2. Implementation Details

We implemented our DSAHRNet with the Pytorch framework, trained using an
NVIDIA RTX TITAN with 24 GB of GPU memory. To improve the generalization ability of
our model, each slice in the dataset was normalized. Following previous works [34], several
data augmentation strategies were applied before being fed into the model. The strategies
include random rotating (probability = 0.3, ‖angle‖ ≤ 20◦), transposing (probability = 0.2),
flipping (probability = 0.3), and adding Gaussian noise (probability = 0.3, mean = 0,
10 ≤ variance ≤ 40).

We used an HRNet18 [52] as our encoder. The original HRNet18 has four stages, and
each stage outputs a feature representation. These features will be fed into the change
decoder to produce a change mask. The margin m in the BCL took a value of 2, and the
weight λ for DS was set to 0.1. In the process of training, the batch size of all experiments
was equal to 16 according to our experimental results in Appendix A. Following [12], we
adopted an AdamW optimizer using a linear decay learning rate scheduler with an initial
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learning rate of 1 × 10−4. The learning rate was kept for the first 100 epochs and linearly
decayed to 0 until trained for 200 epochs. The weight with the highest validation F1 score
will be saved as the checkpoint for testing.

4.3. Evaluation Metrics

To measure the performance of the proposed method, we adopt five typical evaluation
metrics: overall accuracy (OA), precision (Pre), recall (Rec), F1 score, and intersection over
union (IoU). We only report these metrics with regard to the change class, and they can be
expressed as follows:

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1 =
2 · Precision · Recall

Precision + Recall
(15)

OA =
TP + TN

TP + FP + TN + FN
(16)

IoU =
DetectionResult ∩ GroundTruth
DetectionResult ∪ GroundTruth

(17)

where TP, FP, TN, and FN denote the number of true positive, false positive, true negative,
and false negative, respectively. A higher F1 score represents a better overall performance
of the method.

4.4. Comparative Methods

To demonstrate the superiority of DSAHRNet, the following eight SOTA change
detection methods are compared:

• Fully Convolutional-Early Fusion (FC-EF) [43]: Early fusion method. The bitemporal
images are concatenated along the channel dimension and processed through a
UNet [26] architecture to generate a change map;

• Fully Convolutional-Siamese-Concatenation (FC-Siam-conc) [43]: Late fusion method,
which is a variation of FC-EF. FC-Siam-conc extracts multi-level features with a
Siamese backbone, and the same-level features are concatenated to fuse the
bitemporal information;

• Fully Convolutional-Siamese-Difference (FC-Siam-diff) [43]: Late fusion method,
which is similar to FC-Siam-conc. FC-Siam-diff concatenates the absolute difference of
bitemporal features to fuse the bitemporal information;

• Feature Constraint Network for Change Detection (FCCDN) [34]: FCCDN proposes
a dual encoder–decoder backbone for CD and introduces a self-supervised learning
strategy to supervise feature learning;

• ChangeFormer [36]: Transformer-based method, which constructs a hierarchical
transformer encoder to extract fine-grained features, and a multi-layer perception
decoder to model long-range dependencies for CD.

• Deeply Supervised Image Fusion Network (DSIFNet) [11]: Multi-level feature fusion
method, which adopts channel attention and spatial attention for more discriminative
features. A multi-level deep supervision strategy is introduced to efficiently train
intermediate layers and enhance the performance of the network;

• Siamese NestedUNet for Change Detection(SNUNet-CD) [33]: Multi-level feature
fusion method, which is the combination of Siamese network and UNet++. To obtain
high-resolution features of bitemporal images, the dense skip connection mechanism
is employed between its encoder and decoder;

• Deeply Supervised Attention Metric-Based Network (DSAMNet) [10]: Metric-Based
method, which integrates convolutional block attention modules [51] to extract more
discriminative features.
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We implemented the above CD networks using their public codes, and hyper-parameters
were as consistent as possible with the original literature.

4.5. Results Evaluation

In this subsection, we validate the overall performance of DSAHRNet and comparative
methods. The quantitative results of all methods on the LEVIR-CD, CDD, and SYSU-CD
test sets are summarized in Table 1. As shown in Table 1, compared with other methods,
the proposed method achieves better performance on the three benchmark datasets.

Table 1. Quantitative results on the three CD test sets. we mark the best score in bold.

Methods LEVIR-CD CDD SYSU-CD
OA(%) IoU(%) Pre(%) Rec(%) F1(%) OA(%) IoU(%) Pre(%) Rec(%) F1(%) OA(%) IoU(%) Pre(%) Rec(%) F1(%)

FC-EF [43] 97.26 60.66 69.35 82.89 75.52 96.88 77.55 83.78 91.25 87.36 88.88 62.89 74.69 79.92 77.22
FC-Siam-diff [43] 98.27 72.88 78.43 91.14 84.31 97.74 83.07 87.91 93.78 90.75 89.83 65.49 76.66 81.79 79.14
FC-Siam-conc [43] 98.37 73.55 80.78 89.15 84.76 97.64 82.36 87.39 93.47 90.33 89.71 65.36 76.04 82.30 79.05

DSAMNet [10] 98.24 73.78 75.32 97.30 84.91 99.06 92.52 93.52 98.85 96.12 89.61 64.68 76.54 80.67 78.55
DSIFNet [11] 98.88 79.98 89.70 88.07 88.87 98.65 89.00 96.15 92.29 94.18 91.17 67.43 83.80 77.54 80.55

ChangeFormer [36] 99.09 83.51 91.45 90.57 91.01 99.21 93.58 95.92 97.45 96.68 91.33 67.66 84.87 76.94 80.71
SNUNet-CD/48 [33] 99.13 84.15 91.78 91.00 91.39 99.11 92.77 95.93 96.56 96.25 91.54 69.27 82.81 80.90 81.85

FCCDN [34] 99.17 84.61 94.28 89.19 91.66 98.63 88.81 96.16 92.08 94.07 91.22 67.72 83.58 78.12 80.75
DSAHRNet(ours) 99.20 85.38 92.26 91.96 92.11 99.27 94.07 96.38 97.51 96.94 92.48 71.78 86.18 81.12 83.57

Experiment on the LEVIR-CD dataset. The quantitative results in the first sub-table
of Table 1 show that DSAHRNet achieves the highest OA, IoU, and F1 scores of 99.20%,
85.38%, and 92.11%, respectively. It can be observed that the FC-EF model obtains the worst
performance because of its early fusion strategy. Benefiting from encoder–decoder structure
and late fusion strategy, the baselines of FC-Siam-conc and FC-Siam-diff outperform FC-EF,
yielding an improvement of at least 8.79% in F1 score. Benefiting from the application
of CBAM, DSAMNet achieves the highest score in recall, but its precision is limited
at 75.32%, only higher than FC-EF. It can be seen in Figure 7 that the change maps
predicted by DSAMNet have larger boundaries than the ground-truth label, resulting
in a poor performance on the LEVIR-CD test sets. We believe that such a phenomenon is
caused by concatenating misaligned features. Among these baselines, late fusion baselines
(SNUNet-CD, DSIFNet, and ChangeFormer) show obvious advantages over the early
fusion baseline, exhibiting significant improvements by at least 5% in terms of F1 score.
FCCDN achieves an excellent balance between precision (94.28%) and recall (89.19%),
through its self-supervision learning strategy and a proposed dual encoder–decoder
backbone. However, FCCDN still relies on upsampling to obtain the high-resolution change
map, which can be interfered by external factors around boundaries. Our DSAHRNet
integrates SCAM and PCB modules to filter external interference that is irrelevant to change,
and perform best on the LEVIR-CD test sets.

Six inference results on the LEVIR-CD test sets are displayed in Figure 7. Here, only
the best six models are presented. We can see that our DSAHRNet performs better than
comparative methods in complex scenarios. Concretely, ChangeFormer is not robust to
large changed regions, e.g., Figure 7f. DSAMNet can not correctly render the shapes
of changed regions; then, it produces more false positives. Though DSIFNet locates
changes more precisely than DSAMNet, it generates more false negatives, e.g., Figure 7d–f.
Our DSAHRNet successfully detects most changed regions with accurate boundaries,
e.g., Figure 7a–d. As shown in Figure 7e, DSAHRNet can avoid more false alarms compared
with other methods, and overcome the interference of other changes such as illuminations
and trees. For large-scale changed regions in Figure 7f, DSAHRNet is only inferior to
DSAMNet, but performs better in other scenarios, e.g., Figure 7a–e.

Experiment on the CDD dataset. The quantitative results on the CDD test sets are
listed in the middle sub-table of Table 1. The proposed DSAHRNet achieves the first
against other comparative methods in OA, IoU, precision, F1 score, and the third in recall,
yielding a result of 96.94% in F1 score. DSAHRNet outperforms the other eight methods
by 0.26–9.59% in terms of F1. It can be seen that the baseline FC-EF is still inferior to
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FC-Siam-diff and FC-Siam-conc. DSAMNet integrates CBAM into the network to make
features more discriminative before calculating the distance map, thus reaching the highest
score of 98.95% in recall, and the fourth in F1 score (96.12%). However, DSAMNet still
can not produce precise shapes of changed regions, leading to a lower score in precision
and F1. DSIFNet obtains a higher precision score (96.15%) than the DSAMNet model,
but other scores are lower. It can be observed in Figure 8 that change maps obtained by
DSIFNet have more undetected change regions. By using the dense nodes in the decoder of
UNet++, SNUNet-CD maintains its robustness on the CDD test sets, and F1 ranks third at
96.25%. However, different level features have equal attention, and there are more shallow
features in the network. The shallow features will contribute more to the detection of
changes, which results in limited improvement. FCCDN does not perform as well as in
the LEVIR-CD dataset. We think its self-supervised learning strategy is not adapted to
multi-class change detection. ChangeFormer achieves the second F1 score (96.68%) in
detection performance, by using self-attention to capture long-range contexts.

T1 T2 Ground Truch ChangeFormer DSAMNet DSIFNet FCCDN SNUNet-CD DSAHRNet

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7. Six inference results of different methods on the LEVIR-CD test sets. The (a–f) indicate
samples from LEVIR-CD and the change maps obtained by different methods. We highlight
interesting regions with green rectangles. True positive is plotted in white, true negative is plotted in
black, false positive is plotted in red, and false negative is plotted in blue.

Figure 8 provides an intuitive picture of comparative methods’ performance on the
CDD test sets. As shown in Figure 8, ChangeFormer, SNUNet-CD, and our DSAHRNet
maintain their great performance on the SYSU-CD test sets, but our DSAHRNet generates
the closest results with the ground truth. There are less omissions in the results of our
DSAHRNet, and DSAHRNet performs well on multi-scale changed objects. For instance,
in Figure 8a–d, most comparative methods incorrectly classify the thin and small changed
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regions, such as vehicles, small buildings, and narrow roads, while DSAHRNet can
distinguish them accurately. Regarding large areas of change, as seen in Figure 8e,f,
DSAHRNet is able to detect large areas of changed buildings, and small areas surrounding
the buildings.

T1 T2 Ground Truch ChangeFormer DSAMNet DSIFNet FCCDN DSAHRNet

(a)

(b)

(c)

(d)

(e)

(f)

SNUNet-CD

Figure 8. Six inference results of different methods on the CDD test sets. The (a–f) indicate samples
from LEVIR-CD and the change maps obtained by different methods. We highlight interesting regions
with green rectangles. True positive is plotted in white, true negative is plotted in black, false positive
is plotted in red, and false negative is plotted in blue.

Experiment on the SYSU-CD dataset. The comparison results in the last sub-table of
Table 1 show that DSAHRNet outperforms other methods with a remarkable advantage.
Our DSAHRNet exhibits the highest IoU (71.78%) and F1 (83.57%) scores on the SYSU-CD
test sets. Several challenging samples are illustrated in Figure 9 to verify different methods’
generalization abilities. It can be seen that our DSAHRNet filters out many pseudo-changes,
yielding higher scores on OA (92.48%) and Rec (81.12%). In Figure 9a–d, DSAHRNet
performs well in multiple scenarios of urban, port, and forest, while other methods
are sensitive to pseudo-changes from seasonal changes and illumination changes. It is
noteworthy that our DSAHRNet detects a mislabeled vegetation change in Figure 9e,
and presents the clearest boundary of vegetation change in Figure 9f.

4.6. Model Computation Complexity

To fairly compare the computational complexity and parameters with other works, we
report F1 vs. numbers of parameters (Params) and F1 vs. multiply accumulate operations
(MACs) trade-offs on the SYSU-CD test sets in Table 2. MACs can purely describe
computational complexity from the mathematical perspective. To reduce computational
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complexity, our DSAHRNet only generates four level features with 18, 36, 72, and 144 channels,
respectively. It can be seen that our DSAHRNet obtains the highest F1 score (83.89%) with
the complexity of 13.157G MACs and 14.656M parameters. visualization comparisons on
F1 vs. parameters and F1 vs. MACs are displayed in Figure 10, and we can conclude that
our DSAHRNet achieves the best F1 score with competitive efficiency.

T1 T2 Ground Truch ChangeFormer DSAMNet DSIFNet FCCDN DSAHRNet

(a)

(b)

(c)

(d)

(e)

(f)

SNUNet-CD

Figure 9. Six inference results of different methods on the SYSU-CD test sets. The (a–f) indicate
samples from LEVIR-CD and the change maps obtained by different methods. We highlight
interesting regions with green rectangles. True positive is plotted in white, true negative is plotted in
black, false positive is plotted in red, and false negative is plotted in blue.

Table 2. Performance-complexity trade-off for change detection on the SYSU-CD dataset. We mark
the best F1 score in bold.

Methods MACs(G) Params(M) F1(%)

FC-EF [43] 3.562 1.348 77.22
DSAMNet [10] 75.29 16.951 78.55

FC-Siam-diff [43] 4.699 1.347 79.14
FC-Siam-conc [43] 5.303 1.543 79.05

DSIFNet [11] 82.264 35.728 80.55
FCCDN [34] 12.522 6.307 80.75

ChangeFormer [36] 202.829 41.005 80.71
SNUNet-CD/48 [33] 123.12 27.068 81.85

DSAHRNet(ours) 13.157 14.656 83.57
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Figure 10. Illustration comparisons of performance. Here, performance is measured in F1 score.
(a) an illustration comparison of performance and parameters, and (b) an illustration comparison of
performance and MACs.

4.7. Ablation Study

In this subsection, we present the ablation study of DSAHRNet on the SYSU-CD
dataset. Our DSAHRNet integrates SCAM, PCB, and DS modules for change detection.
To validate the effectiveness of these modules, we design ablation experiments with four
metrics: IoU, precision, recall, and F1 score on the SYSU-CD dataset. In the following
experiments, only normalization is applied in the training stage. We denote the basic
model without proposed components as ’Base’, whose encoder is brought from the trained
FC-Siam-conc model.

Ablation experiments of our DSAHRNet on the SYSU-CD dataset are reported in
Table 3. Figure 11 illustrates the ablation result on the SYSU-CD test sets. It can be observed
from Figure 11 that our proposed modules can improve semantic correctness. As shown
in Table 3, the ’Base’ receives the lowest F1 score of 78.43%, which is slightly lower than
FC-Siam-conc of 79.05%. Results of the second line to the fourth line show the effect of a
single module on the ’Base’ model. First, the introduction of PCB can obviously improve
F1 score of 2.2%. The result of ’Base+PCB’ demonstrates that our PCB can reduce feature
misalignment efficiently among bitemporal features, and extract more accurate features
for change detection. Moreover, by integrating SCAM into the ’Base’ model, ’Base+SCAM’
achieves an improvement in F1 score of 1.9%, which shows that our SCAM can decode
change features from bitemporal features within the spatial-temporal domain. Finally, our
DS module can optimize the training process of DSAHRNet by making the feature pairs
more distinguishable in the embedding space, ’Base+DS’ achieves an improvement in F1
score of 1.21%. We set the hyper-parameter λ between (0, 0.1) to explore the sensitivity of
the proposed DS module on the SYSU-CD dataset. As shown in Table 4, the F1 score reaches
the highest F1 score when λ is set to 0.1. Other combinations of the proposed modules
are tried, and all the combinations can achieve distinct accuracy improvements. The
combination of ’Base+PCB+SCAM+DS’ achieves the highest score in F1 (81.89%) among
a series of ’Base’ models. It is noteworthy that ’Base+PCB+SCAM+DS’ is slightly higher
than the second model, SNUNet-CD, in the F1 score of 0.04%. Row 8 to row 10 of Table 3
present the quantitative results with different encoders, and we obtain the best model for
change detection when we replace the ’Base’ encoder with HRNet18.
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Table 3. Ablation study of our DSAHRNet on the SYSU-CD dataset. Values in bold font are the best.
We present the performance shift with ±.

Methods IoU(%) Pre(%) Rec(%) F1(%)

Base 64.51 78.60 78.26 78.43 ± 0.03
Base+SCAM 67.12 79.96 80.70 80.33 ± 0.06

Base+PCB 67.56 82.15 79.19 80.64 ± 0.08
Base+DS 66.17 80.18 79.10 79.64 ± 0.02

Base+PCB+DS 68.40 81.93 80.56 81.24 ± 0.04
Base+PCB+SCAM 68.55 82.46 80.25 81.34 ± 0.05
Base+DS+SCAM 67.22 81.73 79.11 80.40 ± 0.11

Base+PCB+SCAM+DS 69.33 82.57 81.22 81.89 ± 0.12
van_tiny [54]+PCB+SCAM+DS 68.91 82.19 81.00 81.59 ± 0.03
HRNet18 [52]+PCB+SCAM+DS 71.47 85.16 81.64 83.36 ± 0.05

Table 4. Effect of hyperparameter λ on the performance of the proposed DSAHRNet for the
SYSU-CD dataset.

Methods λ IoU(%) Pre(%) Rec(%) F1(%)

Base 0 64.51 78.60 78.26 78.43
Base+DS 0.001 66.12 80.24 78.98 79.60
Base+DS 0.01 63.14 79.50 75.42 77.41
Base+DS 0.05 65.47 79.96 79.96 79.13
Base+DS 0.1 66.17 80.18 79.10 79.64

T1 T2 Ground Truch Base Base+DS Base+PCB Base+SCAM

(a)

(b)

(c)

(d)

(e)

Base+DS+PCB+

SCAM

HRNet18+DS

+PCB+SCAM

Figure 11. Ablation results of the proposed method on the SYSU-CD test sets. The (a–e) indicate
samples from LEVIR-CD and the change maps obtained by different methods. True positive is plotted
in white, true negative is plotted in black, false positive is plotted in red, and false negative is plotted
in blue.
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5. Discussion

In this paper, extensive experiments are implemented on three benchmark datasets,
LEVIR-CD, CDD, and SYSU-CD. Through quantitative comparison, our DSAHRNet is
superior to other methods in F1-score, and achieves a better trade-off between performance
and complexity than other methods. Our DSAHRNet has good adaptability to multi-scale
change areas due to the introductions of DS, PCB, and SCAM; these modules enable the
network to learn discriminative features. Our method can be considered as a combination of
the metric-based and classification-based method due to the introduction of the DS module.
It is a metric-based method when we only calculate a distance map from bitemporal
features to generate a change map, and it is a classification-based method when we
only calculate probability distributions of change class and unchange class. At the same
time, it should be pointed out that the network also has some potential limitations.
First, we choose a tiny model, HRNet18, as our feature encoder for a better trade-off
between performance and complexity. When a deeper encoder, e.g., ResNet50, HRNet48,
is employed, the computational complexity of the DSAHRNet will increase significantly
because there are a lot of convolutional layers in the change decoder. Second, DSAHRNet
needs sufficient and effective training data for training. Table 5 reports the adaptability
of the proposed method with 10% and 50% labeled images. The results show that the
proposed method has different degrees of performance degradation to partially labeled
datasets, and there is still a large room for improvement. Therefore, a future direction may
be reducing the model complexity in the change decoder by model compression techniques.
Moreover, we will conduct further research on semi-supervised or unsupervised learning
to facilitate the practical application of change detection in remote sensing.

Table 5. The adaptability of the proposed model to different numbers of labeled images.

Labeled Images LEVIR-CD CDD SYSU-CD
OA(%) IoU(%) Pre(%) Rec(%) F1(%) OA(%) IoU(%) Pre(%) Rec(%) F1(%) OA(%) IoU(%) Pre(%) Rec(%) F1(%)

10% 97.83 67.30 74.27 87.77 80.46 95.31 66.59 80.74 79.17 79.95 89.07 63.10 75.56 79.29 77.38
50% 98.68 78.48 82.49 94.17 87.94 97.90 83.82 90.12 92.30 91.20 91.44 69.45 81.46 82.48 81.97
100% 99.20 85.38 92.26 91.96 92.11 99.27 94.07 96.38 97.51 96.94 92.48 71.78 86.18 81.12 83.57

6. Conclusions

In this paper, a novel deep learning network (DSAHRNet) is proposed for change
detection in remote sensing images. To extract change features precisely, our DSAHRNet
is constructed on the encoder–decoder structure with the proposed SCAM and PCB.
The SCAM exploits attention maps to enhance the process of feature fusion. The PCB
refines extracted features to make them more discriminative. Moreover, a DS strategy
is introduced to optimize feature learning. Compared with existing SOTA methods, our
DSAHRNet achieved the best performance on three benchmark datasets, and a better
trade-off between complexity and performance, which indicates that the proposed method
is robust and effective for change detection.
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The following abbreviations are used in this manuscript:

DSAHRNet Deeply Supervised Attentive High-Resolution Network
FC-EF Fully Convolutional-Early Fusion
FC-Siam-Conc Fully Convolutional-Siamese-Concatenation
FC-Siam-diff Fully Convolutional-Siamese-Difference
FCCDN Feature Constraint Network for Change Detection
DSIFNet Deeply Supervised Image Fusion Network
SNUNet-CD Siamese NestedUNet for Change Detection
DSAMNet Deeply Supervised Attention Metric-Based Network
CBAM Convolutional Block Attention Module
GT Ground Truth
TP True Positive
TN True Negative
FP False Positive
SCAM Spatial-Channel Attention Module
PCB Parallel Convolution Block
RS Remote Sensing
CD Change Detection
DS Deep Supervision
BCE Binary Cross-Entropy
BCL Batch Contrastive Loss
CNN Convolutional Neural Network

Appendix A. Qualitative Results of Our Model with Different Hyperparameters on
the SYSU-CD Dataset

In this section, we provide additional qualitative results of our model with different
hyperparameters on the SYSU-CD dataset. First, we adapt the batch size from 4 to 32
for the SYSU-CD dataset with the learning rate of 1 × 10−4, and only normalization is
applied in the training stage. As shown in Figure A1, our model is stable to different batch
sizes. Next, we adapt the learning rate from 1 × 10−6 to 1 × 10−3 with the batch size
of 16, Figure A2 shows the performance of our network on the SYSU-CD dataset with
different learning rates, and the F1 score reaches the peak when the learning rate approaches
1 × 10−4. Considering the training speed and experimental consistency, the batch size is
set to 16, and the learning rate is set to 1 × 10−4 in our experiments.

4 8 16 32
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Figure A1. Qualitative results of our model with different batch sizes on the SYSU-CD dataset.
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Figure A2. Effect of learning rate on the performance of the proposed DSAHRNet for the
SYSU-CD dataset.
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