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Abstract: Landslides are one of the extremely high-incidence and serious-loss geological disasters
in the world, and the early monitoring and warning of landslides are of great importance. The
Cheyiping landslide, located in western Yunnan Province, China, added many cracks and dislocations
to the surface of the slope due to the severe seasonal rainfall and rise of the water level, which
seriously threaten the safety of residents and roads located on the body and foot of the slope.
To investigate the movement of the landslide, this paper used Sentinel-1A SAR data processed
by time-series interferometric synthetic aperture radar (InSAR) technology to monitor the long-
time surface deformation. The landslide boundary was defined, then the spatial distribution of
landslide surface deformation from 5 January 2018 to 27 December 2021 was obtained. According to
the monthly rainfall data and the temporal deformation results, the movement of the landslide was
highly correlated with seasonal rainfall, and the Cheyiping landslide underwent seasonal sectional
accelerated deformation. Moreover, the water level change of the Lancang River caused by the water
storage of the hydropower station and seasonal rainfall accelerates the deformation of the landslide.
This case study contributes to the interpretation of the slow deformation mechanism of the Cheyiping
landslide and early hazard warning.

Keywords: Cheyiping landslide; seasonal movement; time-series InSAR technology; deformation
monitoring

1. Introduction

The landslide is the movement of a large amount of rock, mud, or debris along a
slope [1], usually triggered by external factors such as earthquakes, heavy rainfall, wa-
ter level change, typhoons, floods, etc. [2]. A total of 4862 fatal landslide disasters were
recorded from 2004 to 2016 around the world, most of which were located in Central
America, the Caribbean islands, South America, East Africa, Asia, Turkey, Iran, and the
European Alps [3]. The majority of fatal landslides are caused by intense rainfall around
the world, and most disasters occur from June to September in Asia because of the summer
monsoon [4,5]. China suffered numerous disasters compared to other countries. For exam-
ple, in 2010, 87% of the landslides triggered by rainfall in Asia occurred in China, especially
during the peak of rainfall in July and August [6]. Due to huge potential energy, land-
slides carry on a high-speed dangerous geological body after breaking away from the
parent rock, causing serious loss of life and property [7,8]. There were 55,997 fatalities
caused by landslides between 2004 and 2016. From 1950 to 2016, 1911 non-earthquake
landslides caused 28,139 deaths in China [9]. Some landslide events were extremely
hazardous. On 22 March 2014, a landslide near Oso, Washington, USA caused a great
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catastrophe. The mud and debris crossed a floodplain for more than 1 km and then demol-
ished the Steelhead Haven community, killing 43 people and destroying 35 houses [10,11].
On 23 July 2019, a landslide occurred at Jichang Town in Shuicheng, Liupanshui City,
Guizhou Province, resulting in 43 deaths, 9 missing, 11 injuries, and a direct economic loss
of 190 million yuan [12,13]. It can be seen that landslide disasters pose serious harm to
people; therefore, landslide detection and early warning are extremely necessary.

Among the quantifiable parameters in landslide monitoring (volume, position, activity
status, etc.), the surface deformation caused by slope movement is the most direct physical
quality reflecting the current stability and movement condition of the landslide [14]. Tra-
ditional methods such as manual field investigation, Globe Positioning System, real-time
monitoring, photogrammetry, distributed fiber optic sensing, and geodetic methods have
high monitoring accuracy in field measurements [15–18]. While in some places where
the terrain is steep or landslides have already occurred, it is difficult for people to reach
the sites, making field monitoring and rescue operations difficult [19,20]. Because of the
all-weather, all-time, and strong penetrability qualities of the data, Synthetic Aperture
Radar Interferometry (InSAR) developed in the past 30 years can detect micro-deformation
in the early stage of landslide disasters with large space coverage, high monitoring accu-
racy [21,22]. In 1990, Gabriel et al. first proposed the differential interferometric synthetic
aperture radar technique (D-InSAR) and validated its application in surface deformation
monitoring [23,24]. Subsequently, D-InSAR technology has been successively used to
monitor land subsidence [25], earthquakes [26,27], landslide movement [28], etc.

Nevertheless, the D-InSAR method seriously interfered with atmospheric factors,
and the change in the scattering characteristics of ground objects when the observation time
becomes longer leads to a decrease in image coherence, which means that the accuracy of D-
InSAR results often fails to meet expectations [29,30]. To solve this problem, scientists have
proposed time-series InSAR technology [31]. In 2000, Ferretti et al. proposed the permanent
scatterer interferometry technique (PS-InSAR) [32], and Berardino et al. proposed the short
baseline set differential interferometry technique (SBAS-InSAR) in 2002 [33]. Time-series
InSAR technology extracts coherent points with stable scattering characteristics in multi-
scene SAR data for deformation analysis, reducing the decoherence effect caused by long-
term baselines, removing atmospheric effects through statistical methods, and achieving
considerable monitoring for slow and long-term landslides [34,35].

The Cheyiping landslide is an ancient landslide, located in the high-altitude geological
disaster area in northwest Yunnan Province. As early as the 1920s, the residents moved out
because of the severe surface deformation of the landslide. In the 1980s, the overall situation
became stable, so the residents moved back to the original site one after another. After the
rainy season in 2017, there were gaps and cracks at the front, middle, and trailing edges of
the mountain. As the Huangdeng Hydropower Station downstream began to impound
in May 2018, the changes in the water level of the Lancang River impaired the stability
of the landslide. Moreover, Preliminary ground investigations show that the speed of the
landslide is about 1m/a. The slow-moving landslide tends to persist for several years to
decades, and once it occurs, it can cause damage to infrastructure or even serious casualties
in a short period of time [36], which poses a serious threat to the safety of people’s lives and
property. However, the local monitoring of the Cheyiping landslide is still mainly based
on field geological surveys, and there is no detailed and long-term observation record to
clarify the motion of the landslide. Therefore, it is significant to monitor the movement
patterns of the Cheyiping landslide following its resurrection in recent years, especially
based on the time-series InSAR technology, which can obtain monitoring results in a wide
coverage, high resolution, and long time series.

In this paper, 60 scenes of Sentinel-1A data were collected to monitor the Cheyiping
landslide from January 2018 to December 2021 by using PS-InSAR and SBAS-InSAR tech-
niques to get long-time series, high-precision, and high-density surface deformation of
the study area. This study gives a case study to analyze the changes in the time series of
the surface deformation speed and the accumulated settlement of the landslide, detect
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the characteristics of landslide movements and deformation, and explore the inducement
of the landslide based on the geological and geomorphological conditions, the seasonal
rainfall and the fluctuation of the Lancang River water level caused by the hydropower
station. This study reveals the evolution process of the Cheyiping landslide, which could
provide data support for the early warning of landslide disasters, thus, reducing loss of life
and property, and setting a case example for the geological hazard in the nearby region
suffering a similar external environmental condition.

2. Study Area and Data
2.1. Study Area

The Cheyiping landslide is a medium-sized, slow-moving planar sliding landslide
composed of clay and sand [37], which is located in Shideng Township, Lanping County,
Lisu Autonomous Prefecture of Nujiang, Yunnan Province. The study area has little culti-
vated land, a large elevation difference, and plenty of deeply cut valleys, in which several
geological disasters are distributed. Figure 1a shows the topography and geographical
location of the study area. The center of landslide is located at 26.7928◦N, 99.1863◦E, with an
altitude range of 1796 to 1855 m, a slope aspect of approximately 250◦, and a terrain slope of
around 25◦. Located along the Lancang River, 155 households with a total of 535 people live
in Cheyiping Village and the primary school on the landslide. In addition, the Bao–Tibet
Highway was built in the middle of it. There have been lots of cracks appearing on the road
and walls in the village because of movement in recent years. The location of the highway
and the village on the landslide are shown in Figure 1b.

Figure 1. Overview of the study area. (a) The geographical location of the Cheyiping landslide
(the red triangle). (b) The Google map of the Cheyiping landslide, labeled with Bao–Tibet highway,
Cheyiping village, and the boundary of the Cheyiping landslide.

2.2. Data

This paper uses 60 scenes of Sentinel-1A SAR ascending data of orbit 172 acquired
from 5 January 2018 to 27 December 2021. The imaging mode is IW (Interferometric Wide-
swath) SLC (Single Look Complex), and the central incident angle is 39.28◦. The resolution
is 13.94 m in azimuth and 2.32 m in the slant range. The Sentinel-1 satellite operates in
the C-band with an orbital height of about 7000 km, with a 12-day revisit period and
a large-scale spatial coverage of 250 km × 250 km. It can perform all-weather and all-
day high-resolution monitoring of the global land and sea surface in multi-polarization.
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Therefore, these characteristics of Sentinel-1A data could meet the requirements of the
landslide observation. The time information of the data used is shown in Table 1.

Table 1. Acquisition time of SAR data.

Number Date Number Date Number Date Number Date

1 5 January 2018 16 31 December 2018 31 7 January 2020 46 13 January 2021
2 29 January 2018 17 24 January 2019 32 31 January 2020 47 6 February 2021
3 22 February 2018 18 17 February 2019 33 24 February 2020 48 14 March 2021
4 18 March 2018 19 13 March 2019 34 19 March 2020 49 7 April 2021
5 11 April 2018 20 6 April 2019 35 12 April 2020 50 1 May 2021
6 5 May 2018 21 12 May 2019 36 6 May 2020 51 25 May 2021
7 29 May 2018 22 5 June 2019 37 30 May 2020 52 18 June 2021
8 22 June 2018 23 29 June 2019 38 23 June 2020 53 12 July 2021
9 16 July 2018 24 23 July 2019 39 17 July 2020 54 5 August 2021
10 9 August 2018 25 16 August 2019 40 10 August 2020 55 29 August 2021
11 2 September 2018 26 9 September 2019 41 3 September 2020 56 22 September 2021
12 26 September 2018 27 3 October 2019 42 27 September 2020 57 16 October 2021
13 20 October 2018 28 27 October 2019 43 21 October 2020 58 9 November 2021
14 13 November 2018 29 20 November 2019 44 14 November 2020 59 3 December 2021
15 7 December 2018 30 14 December 2019 45 20 December 2020 60 27 December 2021

It is necessary to remove terrain phase errors from the satellite orbit information
during the process of image registration and differential interference. Therefore, the POD
precise orbit data was used for orbit refinement when importing data [38,39]. The image of
the study area was cropped out to improve processing efficiency (Figure 2). The SRTM1
30 m elevation data jointly measured by NASA and the Department of Defense’s National
Mapping Agency (NIMA) were used in the interferometric processing to remove the
topographic phase [40].

Figure 2. The Sentinel-1A SAR data coverage.

3. Methodology

The workflow of this paper is shown in Figure 3, which is mainly divided into datasets,
data process, results, deformation analysis, and inducement analysis of landslide. The data
processing method is described in detail here.
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Figure 3. The workflow of the study.

3.1. The Principle of PS-InSAR

The process of PS-InSAR uses multi-scene SAR images to detect highly coherent
persistent scatterers (PSs) that are not affected by time and space baseline decorrelation
based on a statistical analysis of the stability of amplitude and phase information in the time
series. From these PSs, the topography, elevation, and atmospheric phases are estimated
and eliminated before the deformation phase is ultimately separated.

Firstly, the image acquired on 16 August 2019 was selected as the super master image,
and the master-slave image pairs were established to generate the connection network
as shown in Figure 4a. Secondly, all the slave images are co-registered on the super
master image to correct the deviation caused by the incident angle and orbit position
during imaging. Next, the super master and slave images are subjected to interference
processing to generate differential interferogram pair sequences, and the topographic
phase is eliminated by using the DEM data. Then, the stable candidate points in the time
series are selected, and the amplitude dispersion value is used to represent the phase
standard deviation to measure the stability of the point target on the time series. When
the coherence of the point target on the time series is smaller than a fixed value, known as
the amplitude dispersion index (the ratio of SAR intensity average to Standard Deviation),
it can be set as a candidate point [41]. Then, Delaunay’s triangulated irregular network
was built between persistent scatterers. Linear deformation rate and elevation error are
inverted in phase unwrapping. Data processing is greatly disturbed by atmospheric effects.
Fortunately, the atmosphere is not correlated in time, only in space. According to this
feature, the atmospheric phase could be removed through high-pass filtering in the time
domain and low-pass filtering in the spatial domain on multi-view images. Therein, we can
get the final average deformation rate and the deformation variable per phase, and finally
convert the result of the Doppler coordinate system to the geographic coordinate system.
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(a) (b)

Figure 4. (a) Time−Position map of PS-InSAR. (b) Time−Position map of SBAS-InSAR. The master
image is presented as a red star, the slave images are presented as black dots, and all images are
marked with the serial number in Table 1. Each line represents a master-slave image pair, and the
horizontal and vertical coordinates show their time and space baselines.

3.2. The Principle of SBAS-InSAR

Using a scene of the super master image, and the coherence will be weakened when
the baseline becomes longer. To reduce the possibility of spatiotemporal decoherence, Be-
rardino et al. proposed a small baseline set method that combines multiple main images to
form a short spatiotemporal baseline, which ensures the coherence of the interferogram [42].
The combination of isolated data pairs with long time intervals has achieved good results
for areas with fast changes in the coherence of ground objects, especially in vegetation
coverage areas [43].

To begin with, the max space baseline was set as 2% of the critical baseline value,
and the max time baseline was set as 90 days. The possible image connections are consid-
ered acceptable when the space and time baseline are less than the maximum thresholds.
The interference pair diagram is shown in Figure 4b. Secondly, a total of 169 interferograms
are generated, and the ratio of the range looks and azimuth looks is set as 4:1 in multilook
processing. The Goldstein adaptive filtering method is used to remove noise, and the
Delaunay MFC method is used for phase unwrapping [44–49]. The third step is orbital
refinement and phase re-flattening. A Ground Control Point (GCP) file must be previously
generated. Firstly, a representative image was chosen in all filtered interferograms and
unwrapped images, respectively, as shown in Figure 5. Then GCPs were chosen in slant
range image (Figure 5b) with reference to each phase in Figure 5a. The criteria for GCPs
selection are no residual topography fringes, far away from the displacement area, and no
phase jumps. Finally, 30 GCPs were selected and checked to be suitable for as many image
pairs as possible. After inputting the GCP file, the phase ramp is estimated to remove the
residual phase and phase ramp. Next, the deformation rate is obtained by the singular
value decomposition (SVD) method, and the spatio-temporal filter is used for removing
the atmospheric phase, which is the same as PS-InSAR. In the end, the displacement on the
time series is calculated, and the deformation result is obtained by geocoding.
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(a) (b)

Figure 5. (a) Filtered interferogram, which is used for determining terrain and deformation areas.
(b) Unwrapped interferogram with 30 GCPs. The red plus sign represents GCPs.

4. Results
4.1. Results in LOS Direction and Comparison

The results of the two time-series InSAR methods are shown in Figure 6a,b. It can
be noted that there are few monitoring results in many places because of the decoherence.
The ground objects in the research region are mostly bare soil, and natural characteristics
like flora have low coherence, so there will be decoherence due to the long time baseline.
The PS-InSAR and SBAS-InSAR select out high phase-correlation points for further analysis,
which are mostly dispersed among man-made features, such as buildings and roads [50].
As a result, the raster is inconsistent with a few monitoring points. The red deformation
result represents the deformation rate as positive, indicating that the objects move close to
the satellite in the radar line-of-sight (LOS) direction, whereas the objects move away from
the satellite in the LOS direction in the green area.

(a) (b)

Figure 6. Monitoring results in LOS direction by PS-InSAR (a) and SBAS-InSAR (b), respectively.
The annual average velocity results overlay the Sentinel-2 satellite data. The red raster shows uplifted
deformation in the LOS direction, the green indicates descend.

The average deformation rate in the study area obtained by the PS-InSAR ranges from
−25.7 to 61 mm/a. However, there are insufficient monitoring points on the landslide body
to establish the landslide’s deformation condition. The average deformation rate obtained
by the SBAS-InSAR ranges from −15.3 to 157.8 mm/a, and the deformation magnitude
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of the landslide is much larger than that in other areas, which proves that this method is
effective. Comparing the results of the two methods, the deformation trends of the two
methods are generally consistent, but the SBAS-InSAR has far more monitoring points than
PS-InSAR. The SBAS-InSAR results have more coherent points on the features with larger
deformation, which depicts the deformation more accurately. These differences are mainly
due to the different principles of the two methods combining the interferometric image
pairs. The PS-InSAR uses only one main image to produce interference pairs, and when the
time baseline between the main and auxiliary images becomes longer, the ground objects
will change significantly in the natural vegetation coverage area, resulting in decoherence.
Whereas the SBAS-InSAR uses the short baseline set criterion to generate image pairs, which
greatly reduces the number of low-coherence points, and, thus, the results of SBAS-InSAR
were selected to conduct further analysis of the Cheyiping landslide.

4.2. Projection of Deformation Direction

The deformation results obtained by time-series InSAR processing are along the radar
line of sight (LOS). Deformation usually occurs in the direction of the steepest slope, so
the deformation parallel to the direction of the maximum slope is regarded to indicate the
deformation features of a landslide [51,52]. The projection method of deformation rate
proposed by Colesanti et al. in 2006 is used to project the deformation from LOS to the
maximum slope direction (slope) [53]. The spatial relationship between LOS direction
and slope direction is shown in the following Figure 7, and the projection transformation
formulas are as Formulas (1) and (2).

vslope =
1

cos β
× vLOS (1)

cos β =(− sin α × cos ϕ)× (− sin θ × cos αs)+

(− cos α × cos ϕ)× (− sin θ × sin αs)+

sin ϕ × cos θ

(2)

Figure 7. Spatial relationship between vslope and vLOS directions for a point (black dot) located on
the slope. vslope is the deformation rate along the slope, vLOS is the deformation rate along the LOS
direction. β is the angle between the vLOS and vslope directions, rotating from vslope to LOS direction.
α is the aspect angle. ϕ is the slope angle. θ is the angle between the vertical direction and LOS,
i.e., the incidence angle with reference to flat land. αs is the angle between the satellite azimuth and
the true north direction, rotating from the north to ascending orbit direction in our study, and for the
Sentinel-1A at orbit 172 is −12◦.
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Along LOS, the direction from the target to the sensor is positive, and the direction
along LOS away from the sensor is negative; along the slope, the upward movement is
positive, and downward movement is negative, as indicated by the red and blue plus signs
in Figure 7. When the cos β is close to 0, the vslope tends toward infinity. Therefore, the fixed
threshold Herrera et al. proposed was used in 2013 (cos β = ±0.3) to avoid great anomalies
in the absolute value during the conversion from vslope to vLOS, and vslope cannot be larger
than 3.33 times that of vLOS. Therefore, when cos β < −0.3, cos β = −0.3; when cos β > 0.3,
cos β = 0.3 [38]. The result of projecting the LOS direction result obtained by the SBAS
method to the slope direction is shown in Figure 8. The positive and negative values of
the deformation rate, as well as the magnitude of the value, have altered when compared
to the LOS direction result in Figure 6b. It is logical that the velocity of the landslide is
negative and indicates a downward movement along the slope. The dividing line of the
change in slope aspect, or the location where significant deformation occurs, is the junction.
Figure 8 clearly depicts the delimitation of the Cheyiping landslide (the range shown by
the black solid line).

Figure 8. Deformation rate and interpretation boundary of the Cheyiping landslide. Two white
dotted lines represent the lines of profiles, which are labeled with start and end coordinates.

5. Analysis and Discussion
5.1. Delimitation of the Landslide

According to the slope direction results in Figure 8, the deformation rate of the
landslide varies from −528.3∼−15.9 mm/a, and the plane shape of the landslide presents
an irregular triangle with a length of approximately 1500 m from east to west and a width
of approximately 800 m from north to south. According to the field investigation data,
the landslide covers an area of about 0.8 km2, the thickness of the landslide body ranges
from 7 to 35 m, the average thickness is about 10 m, and the volume of the landslide body
is about 8 million m3. The front edge of the landslide is bounded by the left bank of the
Lancang River, a road in the south, gullies in the north, and the rear wall of the landslide
which extends to Beizhiqing Village.
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5.2. Time Series Change of Landslide Deformation Field

The regional distribution of the landslide surface deformation differs significantly.
Figure 8 depicts cross-sections of the landslide body with the greatest deformation rate
(as shown by the white dashed line), from which we retrieved the deformation rate and
cumulative deformation in a partial time series. The deformation change of Profile A and
Profile B is shown in Figure 9.

(a) (b)

Figure 9. Time−series cumulative deformation of profiles. (a) Profile A. (b) Profile B. The solid
lines represent cumulative deformation from 5 January 2018, until the date, corresponding to the
left vertical axis; and the dotted lines represent the average annual deformation rate of points on
the profile lines, corresponding to the right vertical axis. The grey parts represent the elevation of
the profiles.

Figure 9a illustrates that the farther away from the Lancang River, the slower the
landslide deforms. The sliding rate is the most extreme along the river bank, where the
deformation rate surpasses −430 mm/a and the highest settlement is about 1790 mm.
In Figure 9b, the landslide deformation rate increases, then decrease, and finally increases
again. There are two subsidence centers on profile B located at 0.38 km and 0.8 km, and the
highest subsidence rate reaches −230 mm/a, and the greatest deformation is −850 mm. It
is worth noting that on the deformation curves of profiles A and B, the deformation of the
middle part is smaller than that of the neighborhood. The positions of 0.57 km of profile
line A and 0.6 km of profile line B are Bao–Tibet highway and Cheyiping village, and the
cement floor is more stable than that of the soil. Therefore, there is an upward trend in the
middle of settlement curves. Figure 10c–h shows the deformation photos. There are many
cracks in the ground in the village (Figure 10c,d), on the walls of houses (Figure 10e,f),
and on the roads (Figure 10g,h). In general, the landslide sinks at different rates over time.
The foot of the landslide body is the most active zone of deformation, and the village and
highway are relatively stable.

To further investigate the changes in landslide movement in the time dimension, we
generated time series deformation of the overall landslide images presented in Figure 11. It
can be seen that the deformation of the landslide developed progressively from the front
edge to the trailing edge, and the sliding range on the horizontal projection surface grew.
In the height direction, the magnitude of sinking is likewise increasing. It is worth noting
that the front edge of the landslide along the Lancang River demonstrates deformation
characteristics before the trailing edge, and the front edge drives the trailing edge to slide,
demonstrating traction sliding characteristics.
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Figure 10. Field survey photos. (a) The trailing edge has sunk. (b) The front edge has slid. (c) Cracks
in the Cheyiping primary school. (d) Cracks in villagers’ homes. (e) Fissures in the walls. (f) Cracks
in houses. (g) Cracks in the road in the village. (h) Deformation of Bao–Tibet highway.

Figure 11. Time−series cumulative deformation calculated from 5 January 2018 of the landslide on
each acquisition date. The base map is the SAR intensity average image, and the dates are labeled on
the top right corner of every subgraph.
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Based on the deformation characteristics of various portions of the landslide, five
distinct areas a, b, c, d, and e were identified. Figure 12 shows manual field survey photos
and monitoring results in these areas. The field investigation reveals that the trailing edge
generates cracks and subsidence (Figure 12a). The deformation rate in Area a is around
−140 mm/a (as shown in Figure 12f), with a cumulative deformation of −560 mm (as
shown in Figure 12g). Lateral surface cracks have developed in the top and middle parts of
the landslide, spreading to the north and south sides, and the vertical dislocation is visible
on both sides of the crack (Figure 12b). The typical points in Area b deform at a rate of
roughly −220 mm/a, with a cumulative deformation of −880 mm. However, because the
Bao-Tibet Highway runs through the heart of the landslide, and it is near the village,
the stability of the landslide is critical. The field photos demonstrate that the road has
begun to crack, and the fissures are growing, where noticeable subsidence and dislocation
are apparent. At the same time, the ground in the village was fractured, and the cracks were
repaired with mortar by the villagers (Figure 12c). The deformation rate of the characteristic
points in Area c is about −170 mm/a, and the accumulated settlement reaches −680 mm.
Area d is located in the middle and lower part of the landslide (Figure 12d), with more
cracks on the surface than the upper part, the deformation rate is around −290 mm/a,
and the accumulated settlement is −1160 mm. The front edge of the landslide lies near the
Lancang River, and the deformation in Area e is the most noticeable (Figure 12e). As the
landslide descends, the landslide continues to crack and sink. The deformation rate in
Area e is measured at a maximum of −430 mm/a, and the accumulated subsidence is
−1790 mm, so the front edge is vulnerable to slide and collapse.

Figure 12. Field survey photos and monitoring results. (a) Cracks on the trailing edge (Area a in (f)).
(b) Faults in the middle−upper part (Area b in (f)). (c) Fissures on the pavement in Cheyiping village
(Area c in (f)). (d) Cracks in the middle and lower part (Area d in (f)). (e) Collapse on the front edge
(Area e in (f)). (f) Deformation rates of regional typical points. (g)Accumulated settlement of three
typical points in each area of (f).

5.3. Seasonal Movement Characteristics of Landslides

Figure 12g shows the cumulative deformation of the feature points over time, which
is tentatively judged to be brought about by seasonal rainfall, given the physical setting of
the study area. Specifically, the landslide deformation rate is significantly accelerated in the
rainy season and slowed down in the wet season. The study area has distinct dry and wet
seasons, with rainfall concentrated from May to October. According to different motion
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change characteristics, we plotted the cumulative deformation for selected points in areas a
and b (as shown in Figure 12g) in Figure 13a and areas c, d, and e in Figure 13b. Figure 13
shows the relationship between the total deformation and the monthly average rainfall.

(a)

(b)

Figure 13. Time−series cumulative deformation of feature points. (a) The feature points in Area a, b
(as shown in Figure 12f). (b) The feature points in Area c, d, e (as shown in Figure 12f).

It can be seen from Figure 13 that the rainfall mainly takes place from May to October,
and precipitation always reaches its peak in July, with the maximum average total rainfall
in July 2019 reaching 462 mm. These rainfall season months are marked as mauve blocks,
and the rest are wet season months. Time series analysis reveals that the displacement is
corrected to the precipitation, and the rainfall variations have more impact on the middle
and lower part of the landslide body than on the top body. The cumulative deformation
curves of areas a and b have a slight trend of accelerated deformation after every wet season,
as shown by the periods of time in the black dashed lines and red arrows in Figure 13a.
The cumulative deformation curves of areas c, d, and e show segmented changes, and there
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are four acceleration periods in Figure 13b. Around four rainy seasons (from July 2018
to January 2019, from July 2019 to February 2020, from August 2020 to February 2021,
and from September 2021 to November 2021), the slope of the curves increased, indicating
the deformation accelerated, and the curves flattened in the rest months (from February
2019 to June 2019, from March 2020 to July 2020 and from March 2021 to August 2021).
The landslide has clearly changed during the last four years. The cumulative deformation
of Area a, which is the slowest, grew by four times from 100 mm to 500 mm. Area e had the
most dramatic deformation, reaching 1700mm by the end of 2021, more than three times
that of 2018.

Analyzing and comparing the change characteristics of the deformation variable
curves in these five regions, it was found that the slope of the curve becomes steeper
one to two months after the first rainy month. For example, in Figure 13b, the rainy
seasons started in May from 2018 to 2021, whereas the acceleration period began in July
2018, June 2019, August 2020, and August 2021 separately. Moreover, the influence of the
precipitation on the landslide body often lasts for several months, as evidenced by the fact
that the accelerated deformation ended in January 2019, February 2020, February 2021,
and November 2021. Therefore, seasonal rainfall has a strong inducing effect on landslide
deformation. The generation and disappearance of this aggravating effect will not be
reflected immediately, but are usually delayed for a period of time, which has been found
in many studies [54,55]. This is because it takes a period of time for rainfall to infiltrate
into the landslide rock mass, so its influence on the deformation rate of the landslide has a
hysteresis, which is consistent with many studies [56–59].

5.4. The Inducement of the Landslide

Whether the landslide slips or not depends on the relationship between the slope angle
and the critical angle, and the critical angle is influenced by the block material composition,
size, shape, and water content. Most of the non-earthquake landslides are triggered by
broken structures, soil strength, intensive rainfall, and the effect of water level in many
studies [60–62]. Accordingly, the causes of the Cheyiping landslide are divided into internal
causes, mainly topography, geology, geotechnical properties, and external causes of water
for analysis.

5.4.1. Topography and Geology

The Cheyiping landslide is located in an area of the sloping terrain, with an overall the
slope direction of about 255◦, a slope length of 1500 m, a terrain slope of 15◦ to 20◦, a village
side slope height of 1.5 to 4.7 m, and a slope gradient of 65◦ to 280◦. Morphologically, it is a
moderately steep and long slope, which can be classified as a loose cap rock slope according
to the slope process. With the sliding of the slope body concentrated on the front edge and
the middle, the movement rate of the back end is small and belongs to a traction landslide.
The topography of the area has a steep slope and a large relative height difference. resulting
in a large gravitational potential energy of soil on the slope, which provides the impetus for
the sliding of the slope material [60]. According to regional geological data, the Cheyiping
fault developed on the west side of the Bao-Tibet highway at about 350–400 m, which
could cause the geological structure to fragment and change the tectonic stress field, thus,
increasing the risk of landslides [56].

5.4.2. Lithology

In Lanping county, the Mesozoic strata are mainly exposed, followed by the Ceno-
zoic and Paleozoic, and a very small amount of unidentified metamorphic rock series.
The Mesozoic is almost all over the region, mainly composed of Cretaceous, Jurassic,
Triassic siltstone, silty mudstone, and quartz sandstone. The Cenozoic is the sandstone,
conglomerate, and calcareous siltstone of the Tertiary, and the sandy clay and sandy gravel
of the Quaternary. Paleozoic strata are dominated by mudstones, sandstones, and Car-
boniferous bioclastic tuffs, schists, and andesites. The geology of the study area is shown in
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Figure 14 (source of data: https://geocloud.cgs.gov.cn, accessed on 27 September 2022).
Meanwhile, there are small amounts of basalt, andesite, and other volcanic rocks located
in the eastern and western margins. The rock mass is mainly composed of layered and
fractured structural soft rocks, so the weak structure affects the engineering geological
properties [63].

The surface of the landslide is brownish-red and brownish-yellow clay with debris
in the residual slope of the Quaternary System. The soil structure is loose, the water
permeability is strong, the soil softens and collapses when it meets water, and the stability
is poor; thus, excavation disturbance is prone to collapse and landslide. The underlying
stratum is the purple-red and grey-green sandstone and mudstone weathering rock of
the Jurassic Middle Jurassic Huakai Zuo Group (J2h), which is mainly exposed on the
ridges of the north and south sides of the village and on the steeper topography of the
village, with weak lithology. The rocks within the slope are strongly weathered mudstone
interspersed with muddy siltstone, which is a weak structural plane due to the poor
connectivity in rock and soil bodies. The dip Angle of the structural plane is similar to that
of the natural slope, which forms the sliding plane.

Figure 14. The geological map of the study area.

5.4.3. Influence of Seasonal Rainfall and Water Level

Water is a major cause of landslides [61]. The involvement of water removes the
adsorption bond between soil particles, changes the pore water pressure, reduces the resis-
tance to sliding, and erodes the strength of the soil. According to previous studies [64,65],
continuous rainfall and rapid changes in the water level have a joint impact on the dis-
placement rate of the landslide. The stability of the landslide decreased with the increase in
rainfall intensity and the changes in the water level of the Lancang River. The combination
of these two factors in the study area may be the main reason for the accelerated deforma-
tion of the Cheyiping landslide. Moreover, the unregulated discharge of water for domestic
use by residents in the village and the erosion of the two gullies on the slope impair the
stability of the slope.

• Seasonal rainfall. The region of the landslide is characterized by the low-latitude
mountain monsoon and typical vertical distribution of the three-dimensional climate,
with the highest temperature in July and the lowest temperature in January. With a
clear division between wet and dry seasons, the rainfall in the study area is regular.
The average annual precipitation is 1002.4 mm and the average annual rainfall is

https://geocloud.cgs.gov.cn


Remote Sens. 2023, 15, 51 16 of 20

158 days, with the rainy season from late May to mid-October, which accounts for over
90% of the annual precipitation. The monsoonal climate and seasonal precipitation
concentrated in the summer provide a strong trigger for the landslide. According to
the ERA5-Land reanalysis dataset, the seasonal precipitation around the Cheyiping
area from 2018 to 2021 is shown in Figure 15, indicating that the amount of rainfall in
the rainy season is much greater than in the wet season.

Figure 15. Seasonal precipitation. Wet season: from May to October. Dry season: from January to
April, November, and December.

Persistent rainfall increases the pore pressure of the landslide, which reduces the sheer
strength of the soil, the bond between the rock particles, and the friction within the
landslide, resulting in a high risk of landslides [66]. Water causes expansion and
contraction of geotechnical particles, which can alter the pore pressure of the landslide
and seasonal rainfall makes this change frequently, whereas pore pressure changes
are the main driver of landslide movement, and the larger pore pressure changes can
induce landslides [67].

• Erosion and water level rise of the Lancang River. The study area is located in the
high mountain area and canyon in the middle-upper reaches of the Lancang River.
The Lancang River runs north to south through the mountain valley in Lanping
County, with a natural drop of 127 m, an average slope of 9.8%, an average annual
flow of 909 m3, and the driest flow of 277 m3. Moreover, the front edge of the
Cheyiping landslide is adjacent to the Lancang River. The Huangdeng Hydropower
Station is built at the position of 99.1197◦E, 26.5597◦N, which is 26 km away from
the landslide, as shown in Figure 16a. The normal storage level of the reservoir is
1619 m, which started to store water in May 2018. The water level in the Cheyiping
landslide section was 1557 m; however, after the impoundment, the water level rose
by 62 m. By checking the width of the river surface in the radar image Figure 16b,c, it
is possible to determine that the water level has significantly risen from January 2018
to January 2019.
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Figure 16. Variation of the Lancang River water level before and after impoundment. (a) The relative
locations of the Cheyiping landslide and the Huangdeng Hydropower Station. (b) SAR image of
white dotted line range in (a) on 5 January 2018. (c) SAR image of white dotted line range in (a) on
24 January 2019.

Changes in water level have multiple effects on the stability of landslides. The rise
in water level caused by the Huangdeng Hydropower Station storage will affect the
geotechnical strength of the slope, the groundwater level, and the pressure difference
between the water inside and outside the slope. When the water level changes, there
is a lag in the change of the groundwater level, and the pressure difference between
the inside and outside of the landslide will disrupt the original equilibrium of the
slope [68]. When the water level rises, the external pressure enhances the stability of
the slope to a certain extent, and in this case, the accelerated deformation of the slope
is typically a result of the softening impact of the water. Therefore, the deformation
rate of the slope during the high water level is significantly higher than during the
low water level [69].

6. Conclusions

In this study, Sentinel-1A images were collected, and the time-series deformation
monitoring results of the Cheyiping landslide from 5 January 2018 to 27 December 2021
were obtained using the time-series InSAR technology. The monitoring results of the
PS-InSAR and the SBAS-InSAR show the same deformation trend in most regions, while
the SBAS-InSAR intensively detects the landslide with many more monitoring points.
The results of the slope direction shows that the deformation rate of the landslide increases
from the back edge to the front edge, the deformation rate at the foot of the slope near the
Lancang River reaches approximately −430 mm/a, and the accumulated subsidence during
the study period is as high as −1790 mm. The front edge of the landslide occurs first, driving
the overall movement of the landslide. Based on these results, it was found that the intense
concentrated seasonal rainfall accelerates the surface deformation of the slope, and the
deformation velocity slows down in the dry season, meaning the landslide movement
shows a periodical accelerated trend. Moreover, the water level change of the Lancang River
brought by the water storage of the Huangdeng hydropower station downstream makes
the landslide destabilized, and seasonal rainfall and water level changes of the Lancang
River were the primary causes for the significant movement of the Cheyiping landslide.
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In summary, the time-series InSAR technology is feasible for monitoring the defor-
mation of the Cheyiping landslide. The analysis of the time-series changes of landslide
deformation based on geological and geomorphological factors, seasonal rainfall, and water
level changes of the Lancang River can predict the landslide movement. In the future,
accurate landslide hazard warnings could be carried out by combining field survey data
with remote sensing data, thus, providing protection for the life and property safety of the
residents in this area.

Author Contributions: Conceptualization, L.Z. and Y.C.; methodology, L.Z., Y.C. and Y.G.; software,
Y.G. and J.L.; validation, H.Z. and X.L.; formal analysis, Y.G.; investigation, Y.G. and H.Z.; writing—
original draft preparation, Y.G.; writing—review and editing, L.Z.; visualization, Y.G. and Q.Z.;
supervision, L.Z.; project administration, L.Z.; funding acquisition, L.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Joint Funds of the National Natural Science Foundation
of China [grant number U2268217], the National Natural Science Foundation of China [grant number
41876226], and the Strategic Priority Research Program of the Chinese Academy of Sciences [grant
numbers XDA19090135]. L. Zhang is the corresponding author of this paper (zhanglu@radi.ac.cn).

Data Availability Statement: The Sentinel-1A data is available on ASF Data Search (https://search.
asf.alaska.edu), the SRTM (The Shuttle Radar Topography Mission) elevation data are available
online at http://srtm.csi.cgiar.org/, precipitation data is provided by ERA5-Land reanalysis dataset
(https://cds.climate.copernicus.eu), and the geological map are based on data from GeoCloud
(https://geocloud.cgs.gov.cn). All links accessed on 27 September 2022.

Acknowledgments: The author would like to thank the editors and the reviewers for their sugges-
tions and comments, which helped us improve the study greatly.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cruden, D.M. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol. 1991, 43, 27–29. [CrossRef]
2. Dai, F.; Lee, C.; Ngai, Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [CrossRef]
3. Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181.

[CrossRef]
4. Turner, A.G.; Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Chang. 2012, 2, 587–595.

[CrossRef]
5. Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [CrossRef]
6. Kirschbaum, D.; Adler, R.; Adler, D.; Peters-Lidard, C.; Huffman, G. Global Distribution of Extreme Precipitation and High-Impact

Landslides in 2010 Relative to Previous Years. J. Hydrometeorol. 2012, 13, 1536–1551. [CrossRef]
7. Huang, R. Large-Scale Landslides and Their Sliding Mechanisms in China Since the 20th Century. Chin. J. Rock Mech. Eng. 2007,

26, 433–454.
8. Runqiu, H. Some catastrophic landslides since the twentieth century in the southwest of China. Landslides 2009, 6, 69–81.

[CrossRef]
9. Lin, Q.; Wang, Y. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides 2018,

15, 2357–2372. [CrossRef]
10. Iverson, R.M.; George, D.L.; Allstadt, K.; Reid, M.E.; Collins, B.D.; Vallance, J.W.; Schilling, S.P.; Godt, J.W.; Cannon, C.M.;

Magirl, C.S.; et al. Landslide mobility and hazards: Implications of the 2014 Oso disaster. Earth Planet. Sci. Lett. 2015, 412, 197–208.
[CrossRef]

11. Collins, B.D.; Reid, M.E. Enhanced landslide mobility by basal liquefaction: The 2014 State Route 530 (Oso), Washington,
landslide. Geol. Soc. Am. Bull. 2020, 132, 451–476. [CrossRef]

12. Ma, S.; Xu, C.; Xu, X.; He, X.; Qian, H.; Jiao, Q.; Gao, W.; Yang, H.; Cui, Y.; Zhang, P.; et al. Characteristics and causes of the
landslide on July 23, 2019 in Shuicheng, Guizhou Province, China. Landslides 2020, 17, 1441–1452. [CrossRef]

13. Zhao, W.; Wang, R.; Liu, X.; Ju, N.; Xie, M. Field survey of a catastrophic high-speed long-runout landslide in Jichang Town,
Shuicheng County, Guizhou, China, on July 23, 2019. Landslides 2020, 17, 1415–1427. [CrossRef]

14. Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization
and Monitoring. Remote Sens. 2013, 5, 1045–1065. [CrossRef]

15. Gili, J.; Corominas, J.; Rius, J. Using Global Positioning System techniques in landslide monitoring. Eng. Geol. 2000, 55, 167–192.
[CrossRef]

https://search.asf.alaska.edu
https://search.asf.alaska.edu
http://srtm.csi.cgiar.org/
https://cds.climate.copernicus.eu
 https://geocloud.cgs.gov.cn
http://doi.org/10.1007/BF02590167
http://dx.doi.org/10.1016/S0013-7952(01)00093-X
http://dx.doi.org/10.5194/nhess-18-2161-2018
http://dx.doi.org/10.1038/nclimate1495
http://dx.doi.org/10.1130/G33217.1
http://dx.doi.org/10.1175/JHM-D-12-02.1
http://dx.doi.org/10.1007/s10346-009-0142-y
http://dx.doi.org/10.1007/s10346-018-1037-6
http://dx.doi.org/10.1016/j.epsl.2014.12.020
http://dx.doi.org/10.1130/B35146.1
http://dx.doi.org/10.1007/s10346-020-01374-x
http://dx.doi.org/10.1007/s10346-020-01380-z
http://dx.doi.org/10.3390/rs5031045
http://dx.doi.org/10.1016/S0013-7952(99)00127-1


Remote Sens. 2023, 15, 51 19 of 20

16. Yin, Y.; Wang, H.; Gao, Y.; Li, X. Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three
Gorges Reservoir, China. Landslides 2010, 7, 339–349. [CrossRef]

17. Mora, P.; Baldi, P.; Casula, G.; Fabris, M.; Ghirotti, M.; Mazzini, E.; Pesci, A. Global Positioning Systems and digital photogram-
metry for the monitoring of mass movements: Application to the Ca’ di Malta landslide (northern Apennines, Italy). Eng. Geol.
2003, 68, 103–121.

18. Shi, X.; Xu, Q.; Zhang, L.; Zhao, K.; Dong, J.; Jiang, H.; Liao, M. Surface displacements of the Heifangtai terrace in Northwest
China measured by X and C-band InSAR observations. Eng. Geol. 2019, 259, 105181. [CrossRef]

19. Sun, Y.J.; Zhang, D.; Shi, B.; Tong, H.J.; Wei, G.Q.; Wang, X. Distributed acquisition, characterization and process analysis of
multi-field information in slopes. Eng. Geol. 2014, 182, 49–62. [CrossRef]

20. Dong, J.; Zhang, L.; Li, M.; Yu, Y.; Liao, M.; Gong, J.; Luo, H. Measuring precursory movements of the recent Xinmo landslide in
Mao County, China with Sentinel-1-and ALOS-2 PALSAR-2 datasets. Landslides 2018, 15, 135–144. [CrossRef]

21. Colesanti, C.; Wasowski, J. Investigating landslides with space-borne synthetic aperture radar (SAR) interferometry. Eng. Geol.
2006, 88, 173–199.

22. Xiao, B.; Zhao, J.; Li, D.; Zhao, Z.; Xi, W.; Zhou, D. The Monitoring and Analysis of Land Subsidence in Kunming (China)
Supported by Time Series InSAR. Sustainability 2022, 14, 12387 . [CrossRef]

23. Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Method for Detecting Surface Motions and Mapping Small Terrestrial or Planetary
Surface Deformations with Synthetic Aperture Radar. U.S. Patent US4975704A, 4 December 1990.

24. Gabriel, A.; Goldstein, R.; Zebker, H. Mapping Small Elevation Changes over Large Areas—Differential Radar Interferometry.
J. Geophys.-Res.-Solid Earth Planets 1989, 94, 9183–9191. [CrossRef]

25. Amelung, F.; Galloway, D.; Bell, J.; Zebker, H.; Laczniak, R. Sensing the ups and downs of Las Vegas: InSAR reveals structural
control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483–486. .<0483:STUADO>2.3.CO;2. [CrossRef]

26. Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The Displacement Field of the Landers
Earthquake Mapped by Radar Interferometry. Nature 1993, 364, 138–142. [CrossRef]

27. Kenyi, L.; Kaufmann, V. Estimation of rock glacier surface deformation using SAR interferometry data. IEEE Trans. Geosci. Remote
Sens. 2003, 41, 1512–1515. [CrossRef]

28. Kimura, H.; Yamaguchi, Y. Detection of landslide areas using satellite radar interferometry. Photogramm. Eng. Remote Sens. 2000,
66, 337–344.

29. Liu, G.; Buckley, S.M.; Ding, X.; Chen, Q.; Luo, X. Estimating Spatiotemporal Ground Deformation With Improved Permanent-
Scatterer Radar Interferometry. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2762–2772. [CrossRef]

30. Wasowski, J.; Bovenga, F. Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current
issues and future perspectives. Eng. Geol. 2014, 174, 103–138. [CrossRef]

31. Colesanti, C.; Ferretti, A.; Prati, C.; Rocca, F. Monitoring landslides and tectonic motions with the Permanent Scatterers Technique.
Eng. Geol. 2003, 68, 3–14.

32. Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry.
IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212.

33. Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline
differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [CrossRef]

34. Osmanoglu, B.; Sunar, F.; Wdowinski, S.; Cabral-Cano, E. Time series analysis of InSAR data: Methods and trends. ISPRS J.
Photogramm. Remote Sens. 2016, 115, 90–102. [CrossRef]

35. Zhao, C.; Kang, Y.; Zhang, Q.; Lu, Z.; Li, B. Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde
Reservoir Area), China, Using the InSAR Method. Remote Sens. 2018, 10, 993. . [CrossRef]

36. Lacroix, P.; Handwerger, A.L.; Bievre, G. Life and death of slow-moving landslides. Nat. Rev. Earth Environ. 2020, 1, 404–419.
[CrossRef]

37. Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [CrossRef]
38. Herrera, G.; Gutierrez, F.; Garcia-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernandez-Merodo, J.A.; Cooksley, G. Multi-

sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens.
Environ. 2013, 128, 31–43. [CrossRef]

39. Cigna, F.; Bateson, L.B.; Jordan, C.J.; Dashwood, C. Simulating SAR geometric distortions and predicting Persistent Scatterer
densities for ERS-1/2 and ENVISAT C-band SAR and InSAR applications: Nationwide feasibility assessment to monitor the
landmass of Great Britain with SAR imagery. Remote Sens. Environ. 2014, 152, 441–466. [CrossRef]

40. Feng, W.; Jiawei, D.; Xiaoyu, Y.I.; Zhang, G. Deformation Analysis of Woda Village Old Landslide in Jinsha River Basin Using
Sbas-Insar Technology. J. Eng. Geol. 2020, 28, 384–393.

41. Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20.
[CrossRef]

42. Lanari, R.; Lundgren, P.; Manzo, M.; Casu, F. Satellite radar interferometry time series analysis of surface deformation for Los
Angeles, California. Geophys. Res. Lett. 2004, 31, 021294. [CrossRef]

43. Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An overview of the small BAseline subset algorithm:
A DInSAR technique for surface deformation analysis. Pure Appl. Geophys. 2007, 164, 637–661.

http://dx.doi.org/10.1007/s10346-010-0220-1
http://dx.doi.org/10.1016/j.enggeo.2019.105181
http://dx.doi.org/10.1016/j.enggeo.2014.08.025
http://dx.doi.org/10.1007/s10346-017-0914-8
http://dx.doi.org/10.3390/su141912387
http://dx.doi.org/10.1029/JB094iB07p09183
http://dx.doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2
http://dx.doi.org/10.1038/364138a0
http://dx.doi.org/10.1109/TGRS.2003.811996
http://dx.doi.org/10.1109/TGRS.2009.2028797
http://dx.doi.org/10.1016/j.enggeo.2014.03.003
http://dx.doi.org/10.1109/TGRS.2002.803792
http://dx.doi.org/10.1016/j.isprsjprs.2015.10.003
http://dx.doi.org/10.3390/rs10070993
http://dx.doi.org/10.1038/s43017-020-0072-8
http://dx.doi.org/10.1007/s10346-013-0436-y
http://dx.doi.org/10.1016/j.rse.2012.09.020
http://dx.doi.org/10.1016/j.rse.2014.06.025
http://dx.doi.org/10.1109/36.898661
http://dx.doi.org/10.1029/2004GL021294


Remote Sens. 2023, 15, 51 20 of 20

44. Tang, H.; Wasowski, J.; Juang, C.H. Geohazards in the three Gorges Reservoir Area, China Lessons learned from decades of
research. Eng. Geol. 2019, 261, 105267. [CrossRef]

45. Jia, H.; Wang, Y.; Ge, D.; Deng, Y.; Wang, R. InSAR Study of Landslides: Early Detection, Three-Dimensional, and Long-Term
Surface Displacement Estimation-A Case of Xiaojiang River Basin, China. Remote Sens. 2022, 14, 1759. [CrossRef]

46. Yao, J.; Yao, X.; Liu, X. Landslide Detection and Mapping Based on SBAS-InSAR and PS-InSAR: A Case Study in Gongjue County,
Tibet, China. Remote. Sens. 2022, 14, 4728. [CrossRef]

47. Soltanieh, A.; Macciotta, R. Updated Understanding of the Ripley Landslide Kinematics Using Satellite InSAR. Geosciences 2022,
12, 298. [CrossRef]

48. Jiao, R.; Wang, S.; Yang, H.; Guo, X.; Han, J.; Pei, X.; Yan, C. Comprehensive Remote Sensing Technology for Monitoring Landslide
Hazards and Disaster Chain in the Xishan Mining Area of Beijing. Remote Sens. 2022, 14, 4695. . [CrossRef]

49. Mishra, V.; Jain, K. Satellite based assessment of artificial reservoir induced landslides in data scarce environment: A case study
of Baglihar reservoir in India. J. Appl. Geophys. 2022, 205, 104754. [CrossRef]

50. Perissin, D.; Ferretti, A. Urban-target recognition by means of repeated spaceborne SAR images. IEEE Trans. Geosci. Remote Sens.
2007, 45, 4043–4058. [CrossRef]

51. Bejar-Pizarro, M.; Notti, D.; Mateos, R.M.; Ezquerro, P.; Centolanza, G.; Herrera, G.; Bru, G.; Sanabria, M.; Solari, L.; Duro, J.; et al.
Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sens. 2017, 9, 876.
[CrossRef]

52. Aslan, G.; Foumelis, M.; Raucoules, D.; De Michele, M.; Bernardie, S.; Cakir, Z. Landslide Mapping and Monitoring Using
Persistent Scatterer Interferometry (PSI) Technique in the French Alps. Remote Sens. 2020, 12, 1305. . [CrossRef]

53. Cascini, L.; Fornaro, G.; Peduto, D. Advanced low- and full-resolution DInSAR map generation for slow-moving landslide
analysis at different scales. Eng. Geol. 2010, 112, 29–42. [CrossRef]

54. Handwerger, A.L.; Huang, M.H.; Fielding, E.J.; Booth, A.M.; Burgmann, R. A shift from drought to extreme rainfall drives a
stable landslide to catastrophic failure. Sci. Rep. 2019, 9, 1569. [CrossRef] [PubMed]

55. Dille, A.; Kervyn, F.; Handwerger, A.L.; d’Oreye, N.; Derauw, D.; Bibentyo, T.M.; Samsonov, S.; Malet, J.P.; Kervyn, M.; Dewitte, O.
When image correlation is needed: Unravelling the complex dynamics of a slow-moving landslide in the tropics with dense radar
and optical time series. Remote Sens. Environ. 2021, 258, 112402. [CrossRef]

56. Wang, Y.; Cui, X.; Che, Y.; Li, P.; Jiang, Y.; Peng, X. Automatic Identification of Slope Active Deformation Areas in the Zhouqu
Region of China With DS-InSAR Results. Front. Environ. Sci. 2022, 10, 883427. [CrossRef]

57. Ma, S.; Qiu, H.; Hu, S.; Yang, D.; Liu, Z. Characteristics and geomorphology change detection analysis of the Jiangdingya
landslide on July 12, 2018, China. Landslides 2021, 18, 383–396. [CrossRef]

58. Fobert, M.A.; Singhroy, V.; Spray, J.G. InSAR Monitoring of Landslide Activity in Dominica. Remote Sens. 2021, 13, 815. .
[CrossRef]

59. Xue, C.; Chen, K.; Tang, H.; Liu, P. Heavy rainfall drives slow-moving landslide in Mazhe Village, Enshi to a catastrophic collapse
on 21 July 2020. Landslides 2022, 19, 177–186. [CrossRef]

60. Zhu, Y.; Yao, X.; Yao, L.; Zhou, Z.; Ren, K.; Li, L.; Yao, C.; Gu, Z. Identifying the Mechanism of Toppling Deformation by InSAR :
A Case Study in Xiluodu Reservoir, Jinsha River. Landslides 2022, 19, 2311–2327. [CrossRef]

61. Medhat, N.I.; Yamamoto, M.y.; Tolomei, C.; Harbi, A.; Maouche, S. Multi-temporal InSAR analysis to monitor landslides using
the small baseline subset (SBAS) approach in the Mila Basin, Algeria. Terra Nova 2022, 34, 407–423. [CrossRef]

62. Liu, Y.; Yang, H.; Wang, S.; Xu, L.; Peng, J. Monitoring and Stability Analysis of the Deformation in the Woda Landslide Area in
Tibet, China by the DS-InSAR Method. Remote Sens. 2022, 14, 532. [CrossRef]

63. Ying-Wen, Y.; Wei, L.; Na, F. The Feature and Prevent-Control Policy of Geological Disaster of Lanping in Nujiang, Yunnan.
Yunnan Geol. 2019, 38, 2019.

64. Li, D.; Yin, K.; Leo, C. Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall. Environ. Earth Sci.
2010, 60, 677–687. [CrossRef]

65. Xia, M.; Ren, G.M.; Ma, X.L. Deformation and mechanism of landslide influenced by the effects of reservoir water and rainfall,
Three Gorges, China. Nat. Hazards 2013, 68, 467–482. [CrossRef]

66. Handwerger, A.L.; Fielding, E.J.; Huang, M.H.; Bennett, G.L.; Liang, C.; Schulz, W.H. Widespread Initiation, Reactivation, and
Acceleration of Landslides in the Northern California Coast Ranges due to Extreme Rainfall. J. Geophys.-Res.-Earth Surf. 2019,
124, 1782–1797. [CrossRef]

67. Schulz, W.H.; McKenna, J.P.; Kibler, J.D.; Biavati, G. Relations between hydrology and velocity of a continuously moving
landslide-evidence of pore-pressure feedback regulating landslide motion? Landslides 2009, 6, 181–190. [CrossRef]

68. Zhao, S.; Zeng, R.; Zhang, H.; Meng, X.; Zhang, Z.; Meng, X.; Wang, H.; Zhang, Y.; Liu, J. Impact of Water Level Fluctuations on
Landslide Deformation at Longyangxia Reservoir, Qinghai Province, China. Remote Sens. 2022, 14, 212. . [CrossRef]

69. Chen, M.l.; Qi, S.c.; Lv, P.f.; Yang, X.g.; Zhou, J.w. Hydraulic response and stability of a reservoir slope with landslide potential
under the combined effect of rainfall and water level fluctuation. Environ. Earth Sci. 2021, 80, 25. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.enggeo.2019.105267
http://dx.doi.org/10.3390/rs14071759
http://dx.doi.org/10.3390/rs14194728
http://dx.doi.org/10.3390/geosciences12080298
http://dx.doi.org/10.3390/rs14194695
http://dx.doi.org/10.1016/j.jappgeo.2022.104754
http://dx.doi.org/10.1109/TGRS.2007.906092
http://dx.doi.org/10.3390/rs9090876
http://dx.doi.org/10.3390/rs12081305
http://dx.doi.org/10.1016/j.enggeo.2010.01.003
http://dx.doi.org/10.1038/s41598-018-38300-0
http://www.ncbi.nlm.nih.gov/pubmed/30733588
http://dx.doi.org/10.1016/j.rse.2021.112402
http://dx.doi.org/10.3389/fenvs.2022.883427
http://dx.doi.org/10.1007/s10346-020-01530-3
http://dx.doi.org/10.3390/rs13040815
http://dx.doi.org/10.1007/s10346-021-01782-7
http://dx.doi.org/10.1007/s10346-022-01908-5
http://dx.doi.org/10.1111/ter.12591
http://dx.doi.org/10.3390/rs14030532
http://dx.doi.org/10.1007/s12665-009-0206-2
http://dx.doi.org/10.1007/s11069-013-0634-x
http://dx.doi.org/10.1029/2019JF005035
http://dx.doi.org/10.1007/s10346-009-0157-4
http://dx.doi.org/10.3390/rs14010212
http://dx.doi.org/10.1007/s12665-020-09279-7

	Introduction
	Study Area and Data
	Study Area
	Data

	Methodology
	The Principle of PS-InSAR
	The Principle of SBAS-InSAR

	Results
	Results in LOS Direction and Comparison
	Projection of Deformation Direction

	Analysis and Discussion
	Delimitation of the Landslide
	Time Series Change of Landslide Deformation Field
	Seasonal Movement Characteristics of Landslides
	The Inducement of the Landslide
	Topography and Geology
	Lithology
	Influence of Seasonal Rainfall and Water Level


	Conclusions
	References

