Dynamic Evaluation of Agricultural Drought Hazard in Northeast China Based on Coupled Multi-Source Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.3. Methods
2.3.1. Comprehensive Drought Index (CDI)
- (1)
- SPEI
- (2)
- VHI
- (3)
- SMCI
- (4)
- CDI
2.3.2. Static and Dynamic Drought Hazard Models
2.3.3. Climatic Yield Anomalies
2.3.4. Statistical Analysis
3. Results and Discussion
3.1. Construction of the CDI
3.1.1. Response of SIF to Different Drought Indices
3.1.2. Comparison of Temporal Variation of Different Drought Indices
3.1.3. Response of Agricultural Drought-Affected Area to Different Drought Indices
3.2. Spatial and Temporal Variation of Drought in NEC Based on CDI
3.3. Quantitative Evaluation of Agricultural Drought Hazard in NEC Based on CDI
3.4. Validation of Hazard Assessment Models
3.5. Limitations
4. Conclusions
- (1)
- Compared with a single drought index, the CDI index for drought monitoring has the advantages of a broad spatial range, long time range, and high accuracy and can reflect agricultural drought well.
- (2)
- The growing season in NEC showed a trend of becoming drier from 1982 to 2020, and the hazard of agricultural drought also showed a non-significant (p < 0.05) increasing trend. However, the trends of the drought index, the impact scope of drought events, and the hazard of agricultural drought all turned around 2000, and the drought hazard was highly significant (p < 0.001) and decreased from 2000 to 2020.
- (3)
- The frequency of drought disasters was the highest and the hazard was the highest in May. The best level of climatic yield anomalies in maize was explained by the drought hazard in August (R2 = 0.28). High hazard levels were mostly distributed in the farmland and grassland areas located in the central and western parts of the study area.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.; Liu, X.; Jiao, W.; Zeng, X.; Xing, X.; Zhang, L.; Yan, J.; Hong, Y. Drought monitoring based on a new combined remote sensing index across the transitional area between humid and arid regions in China. Atmos. Res. 2021, 264, 105850. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021.
- WMO. WMO Provisional Report on the State of the Global Climate 2020; World Meteorological Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Li, E.; Zhao, J.; Pullens, J.W.; Yang, X. The compound effects of drought and high temperature stresses will be the main constraints on maize yield in Northeast China. Sci. Total. Environ. 2022, 812, 152461. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; He, S.; Gao, Y.; Chen, H.; Wang, H. North Atlantic Modulation of Interdecadal Variations in Hot Drought Events Over Northeastern China. J. Clim. 2020, 33, 4315–4332. [Google Scholar] [CrossRef]
- Li, H.; Chen, H.; Sun, B.; Wang, H.; Sun, J. A Detectable Anthropogenic Shift Toward Intensified Summer Hot Drought Events Over Northeastern China. Earth Space Sci. 2020, 7, e2019EA000836. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Gao, Y.; Sun, J.; Wang, H.; Ma, J. Interdecadal Variation and Causes of Drought in Northeast China in Recent Decades. J. Geophys. Res. Atmos. 2020, 125, e2019JD032069. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, H.; Yu, C.; Deng, C.; Liu, C.; Wu, Y.; Yan, J.; Wang, C. Changes in spatiotemporal drought characteristics over northeast China from 1960 to 2018 based on the modified nested Copula model. Sci. Total Environ. 2020, 739, 140328. [Google Scholar] [CrossRef]
- Wang, C.; Linderholm, H.W.; Song, Y.; Wang, F.; Liu, Y.; Tian, J.; Xu, J.; Song, Y.; Ren, G. Impacts of Drought on Maize and Soybean Production in Northeast China during the Past Five Decades. Int. J. Environ. Res. Public Health 2020, 17, 2459. [Google Scholar] [CrossRef] [Green Version]
- Xie, W.; Xiong, W.; Pan, J.; Ali, T.; Cui, Q.; Guan, D.; Meng, J.; Mueller, N.D.; Lin, E.; Davis, S. Decreases in global beer supply due to extreme drought and heat. Nat. Plants 2018, 4, 964–973. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.G.; Olesen, J.E.; Wang, M.; Öztürk, I.; Chen, F. Climate effects on crop yields in the Northeast Farming Region of China during 1961–2010. J. Agric. Sci. 2016, 154, 1190–1208. [Google Scholar] [CrossRef]
- Yu, X.; He, X.; Zheng, H.; Guo, R.; Ren, Z.; Zhang, D.; Lin, J. Spatial and temporal analysis of drought risk during the crop-growing season over northeast China. Nat. Hazards 2014, 71, 275–289. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, S.; Li, K.; Zhang, J.; Wang, C. Drought risk assessment of millet and its dynamic evolution characteristics: A case study of Liaoning Province, China. Ecol. Indic. 2022, 143, 109407. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, J.; Wang, C. Risk assessment of drought disaster in typical area of corn cultivation in China. Theor. Appl. Climatol. 2017, 128, 533–540. [Google Scholar] [CrossRef]
- Geng, G.; Wu, J.; Wang, Q.; Lei, T.; He, B.; Li, X.; Mo, X.; Luo, H.; Zhou, H.; Liu, D. Agricultural drought hazard analysis during 1980-2008: A global perspective. Int. J. Climatol. 2016, 36, 389–399. [Google Scholar] [CrossRef]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate Change 2001: Impacts, Adaptation, And Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Kim, H.; Park, J.; Yoo, J.; Kim, T.-W. Assessment of drought hazard, vulnerability, and risk: A case study for administrative districts in South Korea. J. Hydro-Environ. Res. 2015, 9, 28–35. [Google Scholar] [CrossRef]
- Cheval, S.; Dumitrescu, A.; Birsan, M.-V. Variability of the aridity in the South-Eastern Europe over 1961–2050. Catena 2017, 151, 74–86. [Google Scholar] [CrossRef]
- van der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating Palmer drought severity index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Zambrano, F.; Lillo-Saavedra, M.; Verbist, K.; Lagos, O. Sixteen Years of Agricultural Drought Assessment of the BioBío Region in Chile Using a 250 m Resolution Vegetation Condition Index (VCI). Remote Sens. 2016, 8, 530. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Singh, R.; Kogan, F. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Bento, V.A.; Gouveia, C.M.; DaCamara, C.C.; Trigo, I.F. A climatological assessment of drought impact on vegetation health index. Agric. For. Meteorol. 2018, 259, 286–295. [Google Scholar] [CrossRef]
- Jiao, W.; Wang, L.; Smith, W.K.; Chang, Q.; Wang, H.; D’Odorico, P. Observed increasing water constraint on vegetation growth over the last three decades. Nat. Commun. 2021, 12, 3777. [Google Scholar] [CrossRef] [PubMed]
- Williamson, S.N.; Hik, D.; Gamon, J.; Kavanaugh, J.L.; Koh, S. Evaluating Cloud Contamination in Clear-Sky MODIS Terra Daytime Land Surface Temperatures Using Ground-Based Meteorology Station Observations. J. Clim. 2013, 26, 1551–1560. [Google Scholar] [CrossRef]
- Xu, L.; Abbaszadeh, P.; Moradkhani, H.; Chen, N.; Zhang, X. Continental drought monitoring using satellite soil moisture, data assimilation and an integrated drought index. Remote Sens. Environ. 2020, 250, 112028. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Wang, C.; Guo, E. Characteristic Analysis of Droughts and Waterlogging Events for Maize Based on a New Comprehensive Index through Coupling of Multisource Data in Midwestern Jilin Province, China. Remote Sens. 2020, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Deng, M.; Di, L.; Han, W. Delivery of agricultural drought information via web services. Earth Sci. Inform. 2015, 8, 527–538. [Google Scholar] [CrossRef]
- Mo, K.C.; Lettenmaier, D.P. Objective Drought Classification Using Multiple Land Surface Models. J. Hydrometeorol. 2014, 15, 990–1010. [Google Scholar] [CrossRef]
- Rajsekhar, D.; Singh, V.P.; Mishra, A.K. Multivariate drought index: An information theory based approach for integrated drought assessment. J. Hydrol. 2015, 526, 164–182. [Google Scholar] [CrossRef]
- Qiu, R.; Li, X.; Han, G.; Xiao, J.; Ma, X.; Gong, W. Monitoring drought impacts on crop productivity of the U.S. Midwest with solar-induced fluorescence: GOSIF outperforms GOME-2 SIF and MODIS NDVI, EVI, and NIRv. Agric. For. Meteorol. 2022, 323, 109038. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J. A Global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef] [Green Version]
- Meza, I.; Siebert, S.; Döll, P.; Kusche, J.; Herbert, C.; Rezaei, E.E.; Nouri, H.; Gerdener, H.; Popat, E.; Frischen, J.; et al. Global-scale drought risk assessment for agricultural systems. Nat. Hazards Earth Syst. Sci. 2020, 20, 695–712. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.W. A Heuristic Method for Estimating the Relative Weight of Predictor Variables in Multiple Regression. Multivar. Behav. Res. 2000, 35, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, M.; Liu, Y. Crop yield and production responses to climate disasters in China. Sci. Total. Environ. 2021, 750, 141147. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xu, Z.; Zhao, J.; Huang, W. A drought rarity and evapotranspiration-based index as a suitable agricultural drought indicator. Ecol. Indic. 2017, 82, 530–538. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Paulo, A.; Rosa, R.D.; Pereira, L.S. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1481–1491. [Google Scholar] [CrossRef]
- Kogan, F. World droughts in the new millennium from AVHRR-based vegetation health indices. Eos Trans. Am. Geophys. Union 2002, 83, 557–563. [Google Scholar] [CrossRef]
- Kogan, F.; Guo, W.; Yang, W. SNPP/VIIRS vegetation health to assess 500 California drought. Geomat. Nat. Hazards Risk 2017, 8, 1383–1395. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jiao, W.; Zhang, H.; Huang, C.; Tong, Q. Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sens. Environ. 2017, 190, 96–106. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A.; Saha, D.; Velicogna, I.; Famiglietti, J.S. Validation of GRACE based groundwater storage anomaly using in-situ groundwater level measurements in India. J. Hydrol. 2016, 543, 729–738. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, W.; Sun, F.; Wang, H. Changes of compound hot and dry extremes on different land surface conditions in China during 1957–2018. Int. J. Climatol. 2021, 41, E1085–E1099. [Google Scholar] [CrossRef]
- Li, K.; Tong, Z.; Liu, X.; Zhang, J.; Tong, S. Quantitative assessment and driving force analysis of vegetation drought risk to climate change: Methodology and application in Northeast China. Agric. For. Meteorol. 2020, 282–283, 107865. [Google Scholar] [CrossRef]
- Adarsh, S.; Reddy, M.J. Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms. Int. J. Clim. 2015, 35, 1107–1124. [Google Scholar] [CrossRef]
- Du, C.; Chen, J.; Nie, T.; Dai, C. Spatial–temporal changes in meteorological and agricultural droughts in Northeast China: Change patterns, response relationships and causes. Nat. Hazards 2022, 110, 155–173. [Google Scholar] [CrossRef]
- Xue, L.; Kappas, M.; Wyss, D.; Putzenlechner, B. Assessing the Drought Variability in Northeast China over Multiple Temporal and Spatial Scales. Atmosphere 2022, 13, 1506. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Li, Q.; Zhao, J.; Guo, X.; Ying, H.; Deng, G.; Rihan, W.; Wang, S. Vegetation Productivity Dynamics in Response to Climate Change and Human Activities under Different Topography and Land Cover in Northeast China. Remote Sens. 2021, 13, 975. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, K. Capability of Existing Drought Indices in Reflecting Agricultural Drought in China. J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006064. [Google Scholar] [CrossRef]
- Wu, B.; Ma, Z.; Yan, N. Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sens. Environ. 2020, 244, 111813. [Google Scholar] [CrossRef]
- Hu, Q.; Pan, F.; Pan, X.; Hu, L.; Wang, X.; Yang, P.; Wei, P.; Pan, Z. Dry-wet variations and cause analysis in Northeast China at multi-time scales. Theor. Appl. Climatol. 2018, 133, 775–786. [Google Scholar] [CrossRef]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Hu, Y.; Zhou, B.; Han, T.; Li, H.; Wang, H. Out-of-Phase Decadal Change in Drought Over Northeast China Between Early Spring and Late Summer Around 2000 and Its Linkage to the Atlantic Sea Surface Temperature. J. Geophys. Res. Atmos. 2021, 126, e2020JD034048. [Google Scholar] [CrossRef]
- Garba, I.; Salifou, I.; Sallah, A.; Samba, A.; Toure, I.; Yapo, Y.; Agoumo, A.; Soumana, S.; Oumarou, A.; Tychon, B.; et al. Mapping of zones at risk (ZAR) in West Africaby using NGI, VCI and SNDVI from the e-station. Int. J. Adv. Res. 2017, 5, 1377–1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Hubbard, K.; Lin, X.; Yang, X. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Glob. Chang. Biol. 2013, 19, 3481–3492. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.G.; Jabloun, M.; Olesen, J.E.; Öztürk, I.; Wang, M.; Chen, F. Effects of climatic factors, drought risk and irrigation requirement on maize yield in the Northeast Farming Region of China. J. Agric. Sci. 2016, 154, 1171–1189. [Google Scholar] [CrossRef]
- Dai, M.; Huang, S.; Huang, Q.; Leng, G.; Guo, Y.; Wang, L.; Fang, W.; Li, P.; Zheng, X. Assessing agricultural drought risk and its dynamic evolution characteristics. Agric. Water Manag. 2020, 231, 106003. [Google Scholar] [CrossRef]
Data Type | Data Contents | Resolution | Time Span | Data Sources |
---|---|---|---|---|
Meteorological data | Daily precipitation, temperature, sunshine, wind speed and average relative humidity, etc. | 113 weather stations in NEC | 1960–2020 | Meteorological Data Center of China Meteorological Administration (http://data.cma.cn/, accessed on 17 March 2022) |
Remote sensing data | 7-day NDVI, BT | 4 × 4 km | 1982–2020 | Global Vegetation Health Products (https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/index.php, accessed on 17 March 2022) |
8-day SIF | 0.05° × 0.05° | 2000–2020 | Global OCO-2 SIF data set (GOSIF) (https://globalecology.unh.edu/data/GOSIF.html, accessed on 17 March 2022) | |
Land cover | 1 × 1 km | 2010 | The Data Center for Resources and Environmental Sciences of the Chinese Academy of Sciences (RESDC) (http://www.resdc.cn, accessed on 17 March 2022) | |
Soil data | Daily root-zone soil moisture | 0.25° × 0.25° | 1980–2020 | The Global Land Evaporation Amsterdam Model (GLEAM v3.6a) datasets (https://www.gleam.eu/, accessed on 17 March 2022) |
Historical disaster data | Drought-affected agricultural areas | Provinces in NEC | 1986–2015 | The Crop and Disaster Databases of the Ministry of Agriculture of the People’s Republic of China (http://www.zzys.moa.gov.cn/, accessed on 17 March 2022) |
Yield data | Maize yield and area | Provinces in NEC | 1980–2020 | National Bureau of Statistics of China (https://data.stats.gov.cn/, accessed on 17 March 2022) |
Other data | scPDSI | 4 × 4 km | 1960–2020 | Terra climate data sets (http://www.climatologylab.org, accessed on 17 March 2022) |
Drought | Meteorological Index | Vegetation Index | Soil Index | Comprehensive Index |
---|---|---|---|---|
Disaster levels | SPEI | VHI | SMCI | CDI |
None | (−0.5, +∞) | (0.4, 1] | (0.4, 1] | (−0.2, 1] |
Light | (−1.0, −0.5] | (0.3, 0.4] | (0.3, 0.4] | (−0.2, −0.4] |
Moderate | (−1.5, −1.0] | (0.2, 0.3] | (0.2, 0.3] | (−0.4, −0.6] |
Severe | (−2.0, −1.5] | (0.1, 0.2] | (0.1, 0.2] | (−0.6, −0.8] |
Extreme | (−∞, −2.0] | [0, 0.1] | [0, 0.1] | [−1, −0.8] |
Hazard Levels | May | Jun | Jul | Aug | Sep |
---|---|---|---|---|---|
Extra-low | [0, 0.206) | [0, 0.192) | [0, 0.151) | [0, 0.104) | [0, 0.136) |
Low | [0.206, 0.335) | [0.192, 0.335) | [0.151, 0.247) | [0.104, 0.173) | [0.136, 0.218) |
Moderate | [0.335, 0.475) | [0.335, 0.465) | [0.247, 0.348) | [0.173, 0.260) | [0.218, 0.301) |
High | [0.475, 0.651) | [0.465, 0.629) | [0.348, 0.494) | [0.260, 0.397) | [0.301, 0.429) |
Extra-high | [0.651, 1] | [0.629, 1] | [0.494, 1] | [0.397, 1] | [0.429, 1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Wang, C.; Rong, G.; Wei, S.; Liu, C.; Yang, Y.; Sudu, B.; Guo, Y.; Sun, Q.; Zhang, J. Dynamic Evaluation of Agricultural Drought Hazard in Northeast China Based on Coupled Multi-Source Data. Remote Sens. 2023, 15, 57. https://doi.org/10.3390/rs15010057
Li K, Wang C, Rong G, Wei S, Liu C, Yang Y, Sudu B, Guo Y, Sun Q, Zhang J. Dynamic Evaluation of Agricultural Drought Hazard in Northeast China Based on Coupled Multi-Source Data. Remote Sensing. 2023; 15(1):57. https://doi.org/10.3390/rs15010057
Chicago/Turabian StyleLi, Kaiwei, Chunyi Wang, Guangzhi Rong, Sicheng Wei, Cong Liu, Yueting Yang, Bilige Sudu, Ying Guo, Qing Sun, and Jiquan Zhang. 2023. "Dynamic Evaluation of Agricultural Drought Hazard in Northeast China Based on Coupled Multi-Source Data" Remote Sensing 15, no. 1: 57. https://doi.org/10.3390/rs15010057
APA StyleLi, K., Wang, C., Rong, G., Wei, S., Liu, C., Yang, Y., Sudu, B., Guo, Y., Sun, Q., & Zhang, J. (2023). Dynamic Evaluation of Agricultural Drought Hazard in Northeast China Based on Coupled Multi-Source Data. Remote Sensing, 15(1), 57. https://doi.org/10.3390/rs15010057