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Abstract: Biosiliceous sedimentation, closely related to carbon sedimentation in water, has a signifi-
cant impact on the marine biogeochemical cycle. However, large-scale monitoring data are scarce
due to the constraints of biosiliceous sedimentation flux (BSF) gathering methods. There are few
reports on the spatiotemporal variation of BSF in estuaries and offshore waters. Additionally, few
studies have used satellite remote sensing methods to retrieve BSF. In the paper, satellite images
from 2000 to 2020 were used for the first time to estimate the BSF distribution of the Pearl River
Estuary (PRE) over the past 20 years, based on a remote sensing model combined with particulate
organic carbon (POC) deposition data and water depth data. The results showed that the BSF ranged
from 100 to 2000 mg/(m2 × d). The accuracy tests indicated that the correlation coefficient (R2) and
significance (P) of Pearson correlation analysis were 0.8787 and 0.0018, respectively. The BSF value
varied seasonally and increased every year. The BSF did not follow a simple trend of decreasing along
the coast to open water. Shenzhen Bay (SZB) generally had a higher BSF value than the Dragon’s
Den Waterway (DDW). The BSF in autumn and winter was investigated using empirical orthogonal
function analysis (EOF). In autumn, the BSF of the PRE’s eastern bank showed little change, while the
BSF of the western bank showed obvious differences. In winter, the BSF in Hong Kong waters and
inlet shoals fluctuated less, whereas the BSF in DDW and Lingding Waterway (LW) fluctuated more.
The grey correlation analysis (GRA) identified two factors affecting BSF: chromophoric dissolved
organic matter (CDOM) and total suspended solids (TSS). Most BSF were primarily affected by TSS
during winter. In spring, the two effects were balanced. TSS affected the east coast in summer, and
CDOM was the dominant effect in autumn. Four main parameters influencing the distribution of BSF
in the PRE were analyzed: ecosystem, reef, flow field and flocculation. This study showed that using
satellite remote sensing to estimate BSF has excellent potential, which is worthy of further discussion
in terms of spatiotemporal resolution and model optimization.

Keywords: satellite remote sensing; biosiliceous sedimentation flux; Pearl River Estuary; EOF

1. Introduction

Biogenic sediment refers to the sediment formed by biological activities on the seabed,
which comes from the residual matter after the death of the marine sedimentary organ-
isms [1]. Biosiliceous sedimentation is biogenic sediment composed of opal (BSi) that is
formed by diatoms as the primary sedimentary biological source.

In the process of biogenic sediment, residual organisms deposit in the water as particles.
The processes by which residual organisms deposit from the surface to the bottom are
complicated. Under hydrodynamic conditions, biological particles deposit and sometimes
are resuspended and transported [2]. The research of deposition processes and the number
of particles reaching the bottom is an important task in modern sedimentology.
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To estimate the number of particles transferred to the bottom of the sediment, the sedi-
mentation flux value is the main quantitative parameter [3]. The significance of studying
biosiliceous sedimentation flux (BSF) has three aspects. Firstly, BSF is critical for under-
standing the carbon cycle [4]. Carbon in sediments is a vital form of “blue carbon” storage,
and offshore biodeposition plays an essential role in the carbon cycle [5]. At the same time,
the sedimentation processes of surface biological particles transported to the seabed have
a significant effect on the biogeochemical cycle of the marine ecosystem [6]. Therefore,
estimating BSF is beneficial when investigating carbon sink potential. Secondly, in estuarine
areas, sediment has a decisive influence on geomorphic stability [2]. As one of the primary
sources of silt, biological siliceous deposits have a high research value in terms of estuarine
delta stability, and they can explain and predict trends in coastline changes. BSF is also
one of the major factors influencing island changes [7]. Finally, estuarine sediments have
significant implications for the long-term management of estuaries [8], such as coastal
project planning and maintaining port passages [9]. Furthermore, the study of BSF can
guide the implementation of dredging and land reclamation work with economic benefits.

However, little research on the distribution of large-area BSF in modern biodeposition
was found. Traditional measurement methods of sedimentation flux include sediment
traps and 210Pb-dating after collecting column samples. Xia et al. [10] determined the
sedimentation fluxes in the Pearl River Estuary (PRE) and Jinzhou Bay by 210Pb-dating.
Klyuvitkin et al. [3] collected sedimentation flux data with sediment traps in the North
Atlantic and Arctic Interaction area. These two methods have certain limitations. They can
only collect the data of sites and cannot reflect the distribution over the entire region. BSF
estimation in the estuary is inextricably linked to fluid dynamics. In the laboratory, some
researchers developed a sedimentation model for sediment particles. The sedimentation
velocity of sediment particles can be estimated using various parameters in the remote
sensing inversion model [11,12]. The correlation coefficient between the prediction value
of the retrieval model and the laboratory measurement value was above 0.9. However,
the model has limitations in estimating the settling velocity of cohesive sediments. Wang
et al. [13] used mobile laser scanning technology to obtain information, such as the size,
direction, and sphericity of sediment particles, which aided in simulating the deposition
process in water. Compared with the data measured in situ, the information on sediment
particles obtained by mobile laser scanning technology is reliable, especially when the
particle size is above 63 mm. This measurement method is limited by the single scanning
direction and the heterogeneous point distribution. In general, it is of great significance to
invert the BSF distribution in this area by using remote sensing technology.

Satellite remote sensing can efficiently carry out large-scale and regular monitoring of
the study area, and it is a promising technological means for biological sediment research.
The combination of BSF and remote sensing relies heavily on primary productivity and
biological particle sedimentation rates as a link. Researchers found a close quantitative
relationship between the biogenic sediments and the primary productivity of the sea sur-
face [14–16]. Suess first proposed a nonlinear equation to describe the relationship between
primary productivity and biological sediment in combination with water depth [17]. Fol-
lowing that, Armstrong et al. [18] proposed a new semi-analytical equation that can use
primary productivity to calculate biological sediments. Yang developed a model based
on previous research that can quantitatively estimate total biogenic silica sediment in the
Paleo-Yangtze Grand Underwater Delta using satellite remote sensing data such as primary
productivity [2]. Furthermore, the satellite remote sensing model for estimating primary
productivity in the PRE can be continuously improved [19,20]. Therefore, it is possible to
monitor the BSF in the PRE with long-term remote sensing images.

Studies of biogenic silica sediment in the PRE have risen in importance in recent
years. Diatoms are the most abundant phytoplankton in the PRE [21]. With the massive
reduction of terrigenous sediment [22] and the gradual increase in the dominance of
diatoms in the PRE [23], the proportion of biogenic silica in sediments has increased.
Currently, the majority of PRE research on biogenic sediments is concentrated on analyzing
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the composition of the sedimentary substrate, with only a few studies focusing on the
sedimentation rate. Chen et al. [24,25] investigated the modern deposition rate of the
PRE and classified different depositional regions based on depositional characteristics.
According to Zhang et al.’s [15], algae are the primary source of sedimentation in the
PRE area. Some researchers use remote sensing methods to study the factors that affect
biological deposition rate, such as the satellite retrieval model of particulate organic carbon
(POC) [26,27]. Yu et al. [28] investigated the concentration and spatial distribution of
biogenic silica in suspended particulates in the PRE to provide a reference for biosiliceous
sedimentation. Since the 1920s, as eutrophication in the PRE has intensified, aquatic
organic carbon and BSF levels have been steadily rising [29]. In summary, the distribution
of large-scale BSF in the PRE has not been explored, and it is a relatively new research
direction.

Considering that the biogenic sediment retrieval model can be used to estimate total
biogenic sediment in the region [2], we inferred that the distribution of BSF can be obtained
by pixel-by-pixel calculation of satellite images. The current primary productivity results
in the PRE have a low spatial resolution and cannot meet the needs of the study on
biological sediment distribution in the PRE. Therefore, it is necessary to calculate PRE’s
primary productivity results with higher spatial resolution using Landsat images. The
Landsat image has a spatial resolution of 30 m and a high signal-to-noise ratio. It can
detect small-scale features, making it an excellent data source for coastal and estuarine
environmental monitoring [30]. Other parameters used to calculate primary productivity
could be extracted from moderate resolution imaging spectroradiometer (MODIS) products.
MODIS is a medium-spatial-resolution sensor carried by Aqua and Terra satellites. It
has 36 bands with spatial resolution including 250 m, 500 m and 1000 m. The temporal
resolution of MODIS is one day. It has provided continuous information on the earth’s
surface since it launched in 1999 [31].

In view of the above idea, we tried to estimate the BSF of the PRE using long-term
Landsat remote sensing images and MODIS products. The spatiotemporal changes and
distribution mechanisms of BSF in the PRE were investigated based on the BSF results.
We aimed to overcome the difficulties of human and material resources in manual field
sampling by using remote sensing methods to calculate the BSF. At the same time, our
study provides a reference for analyzing the process of diatom biological particles from
the surface layer to the bottom of the water. Our work provides technical support for the
large-scale acquisition of regional biogenic sediment distribution.

2. Materials and Methods
2.1. Study Area

The PRE region is located between longitudes 113◦E and 114◦20′E and latitudes
21◦40′N and 23◦10′N (Figure 1). This region is a bell-shaped area with a north–south
distance of approximately 49 km and a width ranging from 4 km to 48 km [19]. As a
typical subtropical estuary, the PRE has high biological productivity [26]. Moreover, it
is a complex hydrodynamic system governed by many physical factors, such as bottom
topography, river flow, wind field and coastal current [32], as well as a sedimentary system
with complex sedimentary structures [33]. The optical components of the water surface in
the PRE are complex, so it is a challenge for remote sensing retrieval [34]. With the rapid
urbanization of the Pearl River Delta in recent years, large quantities of nutrients have
flowed into the PRE region, increasing the frequency of phytoplankton bloom events [35].
Notably, high levels of phytoplankton indicate high potential for biodeposition.

2.2. Data Sources
2.2.1. In Situ Data

Chlorophyll-a (Chla) data were collected in the field twice in 2016: once in the winter
(February) and once in the summer (August). Figure 1 depicts the sites. The concentration
of Chla (Cchla) was determined by spectrophotometry. Quantitative water samples were
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collected and filtered through 25mm Whatman glass fiber filters before being stored in a
refrigerator. They were extracted in the laboratory with a 90% acetone solution and then
measured with a spectrophotometer to determine Cchla [37].
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In situ data on biodeposition fluxes were found in the literature. Only a few pieces
of data on sedimentation fluxes were collected using sediment traps in China’s coastal
waters. We applied the PRE annual average deposition flux data around 2000, which was
acquired using the 210Pb-dating method [36]. Due to the age of the data, the geographic
coordinates were appended based on labels of the sampling point map. The data needed to
be converted to BSF before verifying accuracy.

2.2.2. Satellite Data

The remote sensing data used in this study include Landsat-5, Landsat-7, and Landsat-
8 images. Images with less cloud cover and no missing cells are preferred. The selected im-
ages were mostly collected during the autumn and winter seasons. All Landsat images are
downloaded from the United States Geological Survey (USGS) (https://glovis.usgs.gov/,
accessed on 10 October 2021).

MODIS images and products corresponding to the time of the Landsat image were
also used. MODIS images were used for spatiotemporal data fusion. Given the similarity
of the water quality conditions in the PRE region, the differences in photosynthetically
active radiation (PAR) values are minor. Due to the high temporal resolution of MODIS, the
MODIS product corresponding to the time of each selected Landsat image can be obtained.
Therefore, the PAR data were obtained by processing MODIS products.

Because no MODIS products were found before 2002, we needed to find their replace-
ment. The bands of Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) are the same as
some bands of MODIS, and many ocean remote sensing retrieval algorithms are based
on these two sensors [38]. In the study, the PAR products of SeaWiFS and MODIS data
sources were obtained using the same algorithm with the same band of the two sen-
sors. The error between using SeaWiFS products and MODIS products in this paper is
small. Accordingly, we used SeaWiFS data as a supplement. MODIS images were down-
loaded from the National Aeronautics and Space Agency (NASA) data website (https:
//ladsweb.modaps.eosdis.nasa.gov/, accessed on 15 October 2021), and MODIS products
were acquired from the Ocean Aqua data website (https://oceandata.sci.gsfc.nasa.gov/,
accessed on 15 October 2021). SeaWiFS products were obtained from the Environmental

https://glovis.usgs.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://oceandata.sci.gsfc.nasa.gov/
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Research Division’s Data Access Program (ERDDAP) website of the National Oceanic and
Atmospheric Administration (NOAA) (https://oceanwatch.pifsc.noaa.gov/, accessed on
21 October 2021). Appendix A shows the specific data used in this paper.

2.2.3. Ancillary Data

The general bathymetric chart of the oceans (GEBCO) water depth data, with a spa-
tial resolution of 15 arcs, were used in this study. This dataset was created using an
algorithm and mathematical technology to interpolate measured water depth data. We
downloaded them from GEBCO’s official website (https://www.gebco.net/data_and_
products/histOrical_data_Sets/, accessed on 10 November 2021).

The POC deposition data were derived from the simulated distribution map [39].
Organic carbon sinks due to the complex power effect of gravity and salinity [40]. The
POC deposition rate in the PRE was calculated using the well-validated one-dimensional
river network and three-dimensional river hydrology and water quality model, in addition
to the ROW-Column AESOP (RCA) water quality model. The simulation results could
be used in further scientific research [39,41,42]. Temperature, salinity, diatom, blue algae
concentrations and organic carbon concentrations of various solubility and granularity
are among the parameters of the RCA three-dimensional water quality models. The one-
dimensional river network was acquired based on the Saint-Venant equati which were
solved using a three-level joint solution. The three-dimensional hydrodynamic model
employed the Estuarine, Coastal and Ocean Modeling System with Sediments (ECOMSED).
The inputted boundary conditions include water levels, tide, wind speed, wind direction
and flow field.

The distributed graph was image digitized with matrix & laboratory (MATLAB)
software. The POC sedimentation rate in each grid was extracted from the fake color
display into the grid layer. After using ArcGIS software to georeference the layer, the
30 m resolution data were produced by bilinear interpolation. Its spatial resolution was
consistent with the Landsat imagery. Appendix B shows the result.

2.3. Methods and Process

We preprocessed the downloaded Landsat image and then performed atmospheric
correction. After that, in the SeaWiFS data analysis system (SeaDAS) software, the research
area of MODIS PAR products was cut. Used the PAR data for bilinear interpolation
to achieve the uniform spatial resolution as the Landsat image. To obtain sea surface
temperature (SST), we applied the Google Earth Engine (Gee) platform. The Environment
for Visualizing Images (ENVI) software was used to calculate water depth data, euphotic
depth (Zeu), and chlorophyll-a concentration. Eventually, we used interface description
language (IDL) and MATLAB software to write programs based on the chosen model and
calculate the primary productivity and BSF in the PRE.

The accuracy of the BSF results was evaluated using the Pearson Correlation Analysis
with Pearson’s correlation coefficient (R2) and significant value (P). We used the empirical
orthogonal function analysis (EOF) method to analyze the spatiotemporal changes of
BSF. The main water quality factors affecting BSF were determined using grey relational
analysis (GRA). The corresponding pixel values of the two images are searched through
a 7 × 7 window in GRA, with a comparison sequence established to calculate the grey
relational grade (GRG). We assigned the window’s GRG value to the central pixel, and the
window was cycled through to obtain the entire GRG distribution image [43,44]. Figure 2
shows the technical roadmap.

https://oceanwatch.pifsc.noaa.gov/
https://www.gebco.net/data_and_products/histOrical_data_Sets/
https://www.gebco.net/data_and_products/histOrical_data_Sets/
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2.4. Model Selection
2.4.1. Remote Sensing Spatiotemporal Fusion Model

The remote sensing spatiotemporal fusion model was used to select a better chlorophyll-
a retrieval model. The enhanced spatial and temporal adaptive reflectance fusion model
(ESTARFM) is currently the most widely used and mature; there are some improved meth-
ods based on it [45]. Our work applied the ESTARFM model. Appendix C depicts the
model’s specific introduction and the effect of its use in this paper.

2.4.2. Chlorophyll-a Retrieval Model Based on Landsat Imagery

Chlorophyll-a retrieval was a step in calculating BSF. If Chla is calculated using remote
sensing images with insufficient spatial resolution, the data within the PRE range can be
covered by dozens of grids, which cannot adequately reflect the distribution. Therefore, the
Chla retrieval algorithm should be established based on higher spatial resolution remote
sensing images, such as Landsat.

In the absence of spectral data, the Chla data and remote sensing images must be
consistent in time to construct a suitable chlorophyll-a retrieval model. However, the time
of in situ data frequently deviates from the remote sensing images. Some studies generally
used the method of averaging the measured data [46] or discarding some data. A higher
resolution remote sensing image corresponding to the Chla data could be obtained after
fusing the Landsat and MODIS images.

The Chla retrieval model used in this study is based on previous research findings and
verified by ESTARFM and field data. Appendix D depicts the selected Chla retrieval model.

2.4.3. Sea Surface Temperature Retrieval Model

The SST in this work was retrieved with the Statistical Mono-Window (SMW) algo-
rithm developed and used by Climate Monitoring Satellite Application Facility (CM-SAF).
The algorithm is based on the linear radiative transfer equation for surface emissivity:

SST = Ai
Tb
ε

+ Bi
1
ε
+ Ci (1)

where Tb denotes the top-of-atmosphere brightness temperature in the Landsat’s thermal
infrared channels, and ε is the surface emissivity. Ai, Bi and Ci are algorithm coefficients
derived using the air temperature, water vapor, and ozone distribution datasets [47].
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On the GEE platform, we calculated SST with the algorithm written by Ermida et al. [48].

2.4.4. Euphotic Depth Retrieval Model

The euphotic depth (Zeu) was typically calculated from the diffuse attenuation coef-
ficient at 490 nm (Kd(490)). Ye [19] proposed the following relationship between Zeu and
Kd(490) in the PRE region:

Zeu =
4.605

[1.3386× Kd(490) + 0.4125]
(2)

This equation was obtained by measuring the diffuse attenuation coefficients of the
sites in the PRE area. Thus, this regional algorithm is more suitable for the field situation of
the PRE compared with the general algorithm and the algorithm in other regions.

According to Yang’s research, the optimal Kd(490) retrieval model in PRE was deter-
mined with the collected field datasets [44]. This model was proposed by Tiwari et al. [49]
in 2014:

Kd(490) = 0.011405 + 0.92× Rrs(670)
Rrs(490)

(3)

where Rrs(670) refers to the reflectance of the water surface at 670 nm, which is the re-
flectance in the red band of Landsat images in this paper; Rrs(490) refers to the reflectance
of the water surface at 490 nm, which is the reflectance in the blue band of Landsat images
in this paper.

2.4.5. Empirical Method for Bathymetry

Liu [50] studied the Xisha Islands and provided a new empirical method to quickly
estimate the water depths of optically shallow waters without in situ bathymetry data:

H = m1
ln(qRrs(band1))

ln(qRrs(band2))
−m0 (4)

where mi denotes the coefficients estimated from known reflectance and water depth values,
and q is a fixed constant that ensures a positive logarithm in all cases. The blue and green
bands of the Landsat data were designated as band1 and band2, respectively.

Considering the GEBCO_2014 data as the known water depth value, the model with
the highest correlation coefficient was obtained by fitting the reflectance after atmospheric
correction (R2 = 0.64, q = 46, m1 = 2.142, m0 = 5.695). After the model retrieval, it was
discovered that the estimated value in the PRE area does not correspond to the actual
situation. The index retrieval model performs better due to the difference in water quality
between the PRE and the Xisha Islands [51]. As a result, the water depth estimation model
used in this paper is:

H = −1.188× exp
(

1.327× Rrs(band1)

Rrs(band2)

)
(5)

where band1 and band2 denote the blue and green bands of the Landsat data, respectively.

2.4.6. Primary Productivity Estimation Model

Few studies have investigated the primary productivity in the PRE with high spatial
resolution satellite imagery. According to some researchers, the vertically generalized
productivity model (VGPM) is the most applicable of all 24 models for estimating marine
primary productivity, and the estimated value of primary productivity is relatively sta-
ble [52]. The parameters required by the VGPM model are chlorophyll concentration, sea
surface temperature, photosynthetically active radiation and euphotic depth. Appendix E
describes the VGPM model used in the paper.
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2.4.7. BSF Estimation Model

Yang developed a method for estimating biosilica deposits using satellite remote
sensing; the calculation equation is given [2]:

Wopal =
5× PPnet × (Si : C)

0.0238× LSR0.1425
B × D0.8292

(6)

where Wopal denotes the BSF; PPnet is the marine primary productivity; LSRB is the POC
deposition flux; D is the water depth and (Si:C) is the molar ratio of silicon to carbon in
the water. Si:C ranges from 0.015 in oligotrophic central oceans to 0.45 in coastal waters [2].
In our study, we set the value to 0.3. This equation is obtained after correction in offshore
waters using the relational equation between marine primary productivity and ocean
bottom surface sediments proposed by Sarnthein et al. [53].

According to Yang’s discussion, this model is appropriate for calculating BSF in the
estuary. Moreover, we overcome the limitations of this method to a certain extent. Yang
considered only three main parameters, and the POC sinking flux was obtained based
on an average estimate of the whole region. In our study, POC sedimentation data were
calculated by inputting various parameters. As a result, we considered the effects of other
variables, such as nutrients, water flow and algal concentration. The primary producers
are primarily diatoms in the PRE [21,23]. Therefore, the sedimentation flux estimated from
primary productivity is very close to the BSF. In conclusion, the model is suitable for this
study.

3. Results
3.1. BSF Results

There are a lot of clouds in the PRE area for a long time, especially in spring and
summer. As a result, very few Landsat images were available for remote sensing retrieval
in the PRE each year. Therefore, the most suitable image, which has the least cloud cover
over water in the PRE, is frequently acquired in autumn and winter. Figure 3 depicts the
calculated BSF distribution of the PRE over 21 years. Clouds obscured the remote sensing
images chosen in 2014, resulting in missing values in some areas.

The distribution results showed that the BSF is not a simple change trend along the
coast to open water. There was no absolute difference in the magnitude of the BSF values
on the west and east coasts, but the average values on coasts differed at various times. The
changes in BSF values were spatially related to islands, waterways and bays, and shoals.
Shenzhen Bay’s BSF value was 500–1000 mg/(m2 × d) higher than the surrounding waters
almost every year. The BSF value of the Dragon’s Den Waterway (DDW) was usually lower
than that of the surrounding waters. In autumn, the BSF value in the vicinity of the inlet
shoal was significantly higher than in the surrounding waters. Except in winter, the BSF
value around Qi’ao Island was generally higher than the surrounding waters.

The water quality conditions in the study area were generally consistent, so we
averaged the BSF values across the study area for a time series analysis of annual changes.
Because of the obvious difference in biogenic sediment between seasons, the analysis of
changes in the mean value of the BSF should be divided into four seasons. However, there
is only one distribution result in summer. Therefore, the BSF results in spring, autumn, and
winter were chosen for mean comparison analysis, respectively. The results are shown in
Figure 4.
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Figure 3. The distribution results of BSF from 2000–2020 in the PRE. The distribution results are
ordered by season. Due to the limitation of remote sensing data sources, only one image was selected
for each year. There are three images in spring and only one result in summer. The unit of BSF is
mg/(m2 × d).
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Figure 4. The variation trend of the Pearl River Estuary’s average BSF value in spring, autumn, and
winter from 2000 to 2020. Because there is only one distribution result in summer, no change trend
analysis is performed. Based on the situation in winter and autumn, with more distribution results,
the BSF has shown an overall increasing trend over the past 20 years.

In the springs of 2004, 2008, and 2010, the average value of BSF fluctuated around
1500 mg/(m2 × d), which shows a trend of first increasing and then decreasing. During
the three-year spring period, the general trend slightly declined, and the slope of the trend
line reaches 17 mg/(m2 × d) per year. Over the previous 21 years, the PRE’s average
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BSF value in autumn ranged from 500 to 2000 mg/(m2 × d), and it was between 100
and 600 mg/(m2 × d) in winter. Examining the change in BSF over the years, it generally
showed an upward trend from 2000 to 2020, but fluctuated in some years. According to the
growing trend, the BSF value in autumn is greater than that in winter, and the slope of the
trend line reaches 44 mg/(m2 × d) per year. In the winter, it is only 12 mg/(m2 × d) per
year. We also discovered the BSF in the PRE decreased from 2013 to 2016 in winter. This
shows that the interannual variation of BSF in the PRE is increasing overall, but oscillating.

3.2. Accuracy Verification

Four calculated results were validated: chlorophyll-a, primary productivity, water
depth and BSF. To some extent, Chla reflects the number of sedimentary organisms and
is a key indicator for BSF calculation. The purpose of chlorophyll verification is to assess
the uncertainty of the estimated value of the basic parameters in the BSF calculation
process. The primary influencing factors of biological sedimentation in the biological
sedimentation calculation model are primary productivity and water depth. As a result, the
accuracy verification of the primary productivity and water depth results can determine the
calculation process error. The accuracy verification of BSF is the final test of the feasibility
of the method model in this paper. The accuracy verification was tested based on Pearson’s
correlation coefficient (R2), significance value (p), slope, and root mean square error (RMSE).
The fit effect will be better if the R2 and slope are closer to one, and the values of RMSE and
p are lower.

3.2.1. Chla Results Verification

After excluding the interference of factors such as cloud cover and atmospheric correc-
tion failure, 32 pairs of satellite-retrieved data paired with observed stations were generated.
Table 1 shows the three models that were compared with the single-band model used in this
paper. The regionally tuned algorithm (RTA20) model was created for the Chla retrieval
of the Landsat-8 satellite, which was applied to the Hong Kong coastal areas [54]. The
symbolic regression (SR) model is a newly proposed Chla retrieval model suitable for the
PRE region [55]. The sea surface multispectral index (SSMI) model is a model applied
for Landsat-5 to retrieve offshore Chla [56]. Table 2 shows the fitted parameters between
the in situ values and the retrieved values for the four models. Figure 5 depicts the rela-
tionship between field measurements and model retrieval results for the four algorithms,
respectively.

Table 1. The chlorophyll-a retrieval model used in this paper for accuracy comparison with the
single-band model. B1, B2 and B3 represent blue band, green band and red band, respectively.

Model Equation Optimized Parameters Citation

RTA20
X = log10

(
Rrs(B1)
Rrs(B2)

)
Chla = 10a+b∗X+c∗X2

a = 0.19
Nazeer et al., 2020 [54]b = 1.24

c = 5

SR Chla = a + b ∗ B1
B2 + c ∗ B1

B3 + d ∗ B1
B3 ∗

B2
B3

a = 0.2071
b = 4.7685
c = 3.7177
d = 1.2649

Huang et al., 2021 [55]

SSMI
X = (B1)2

(B3)2

Chla = a ∗ exp(b ∗ X)

a = 1.998
b = −23.74 Mahasandana et al., 2009 [56]

From Table 2, the R2, p, and slope show that the RTA20 model is more suitable.
The RMSE shows that the single-band model is better than the other three models. The
difference in R2 between single-band and RTA20 is 0.025, not notable. The difference in
RMSE between the single-band model and RTA20 is 0.52, which shows that the stability of
the RTA20 model is not as good as that of the single-band model. From Figure 5a, When
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the chlorophyll is in the 1~4 mg/m3 range, the R2 of the single-band model reaches 0.5393,
and the RMSE of the single-band model is only 0.5913. Considering that the average value
of Chla’s concentration in the PRE is 2.642 mg/m3, which is in the 1~4 mg/m3 range, the
single-band model retrieves the Chla of most pixels more accurately due to the stability of
the model and the distribution of Chla’s concentration in the PRE.

The possible reason that the model used in this paper suits BSF retrieval better than
other models is the distribution of sampling points for the data used when building the
model. Figure 1 shows that the sampling points used to build the model in this study
are evenly distributed throughout the PRE. The sampling points used to build the RTA20
model are mainly distributed in the coastal waters of Hong Kong [54]. The sampling points
used to build the SR model are arranged linearly from the PRE to the open sea [55]. The
SSMI model is established based on the sampling point data of the Bangpakong River
estuary [56]. Therefore, it is relatively better to use the single-band model with Landsat
images to retrieve the Cchla of the whole PRE area in this study.

Overall, based on the above data and analysis, the single-band inversion model is
better suited for retrieving the Chla using the Landsat satellite in this study.

Table 2. Statistical evaluation between the in situ Chla and the estimation value of Chla algorithms.
The average in situ Chl-a value is 2.642 mg/m3.

Model R2 p Slope RMSE

Single-band 0.1236 0.048 0.1236 0.706
RTA20 0.1488 0.0293 0.238 1.221

SR 0.1429 0.0329 0.1429 1.9854
SSMI 0.114 0.0588 0.114 2.0187
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Figure 5. Relationship between the value of in situ Chla and Chla estimated by the model (N = 32).
The solid line is the fitted trend line, and the dashed line is the y = x line. (a) The single-band model
used in this paper. The points in the red area are when the in situ Chla data is 1~4 mg/m3. The fitting
effect is better, with the R2 reaching 0.5393; (b) The RTA20 model; (c) The SR model; (d) The SSMI
model.
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3.2.2. Primary Productivity Results Verification

The PRE region was often covered by extensive cloud cover from April to September.
Due to cloud interference and other factors, no field data corresponding to the time and
space of Landsat remote sensing imagery were found for primary productivity. We looked
for the previous literature on the primary productivity of the Pearl River Estuary [19,57,58]
and compared the data to the primary productivity value of the corresponding period
retrieved in this paper (Table 3). Because the study area of the paper is not exactly the same
as the previous literature, the mean of primary productivity will differ.

The primary productivity value calculated for each month in this study was compared
with the primary productivity value calculated in the prior studies for the same season.
We discovered that the differences were generally within 100 mg × m−2day−1 and that
the change rule was basically the same. The researchers believe that the PRE’s primary
productivity value is highest in September and lowest in February [19]. The primary
productivity value in this study was also at its lowest in February. According to our
findings, the primary productivity in the PRE increased significantly in March when
compared with February. The results revealed a downward trend from March to June,
implying that the average value for the entire spring was slightly lower than that of March,
which is consistent with previous research findings.

Table 3. Comparison of primary productivity averages retrieved in this article with other studies.

Date
Mean Values of PP in

This Study
(mg/m−2day−1)

Mean Values of PP in
Other Study

(mg/m−2day−1)
Period Citation

March 2004 301.9
266.4 Spring (2003 to 2011) Ye et al., 2015 [19]March 2008 358.2

March 2010 305.2

June 2011 95.3
302.9 Summer (2003 to 2011) Ye et al., 2015 [19]

198.7 ± 119.1 August 1997 Cai et al., 2002 [57]
<100~400 July 1999 Yin et al., 2004b [58]

September 2001 124.8

344.6 Autumn (2003 to 2011) Ye et al., 2015 [19]
October 2005 301.7
October 2009 268.8
October 2017 431.1

November 2006 267.2
February 2003 59.8 224.5 Winter (2003 to 2011) Ye et al., 2015 [19]

3.2.3. Validation of Water Depth Results

We consider the average water depth values of different GEBCO versions to be real
data. The 29 water depth values retrieved by the model were chosen at random by ArcGIS
software. We used a polynomial inversion model [51] (Equations (7) and (8)) to compare
with the water depth model used in this paper for accuracy verification. B1, B2, and B3
represent the blue band, green band, and near-infrared band, respectively. Table 4 shows
the fitted parameters between the real values of water depth and the retrieved values for the
two models. Figure 6 depicts the relationship between the real values and model retrieval
results for the two algorithms, respectively.

X =
B1

B2 + B4
(7)

Depth = −34.76 ∗ X3 + 44.24 ∗ X2 − 0.8303 (8)
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Figure 6. Correlation between actual water depth and model retrieved water depth (N = 29). The
solid line is the fitted trend line, and the dashed line is the y = x line. (a) The exponential model used
in this paper. The points in the red area are when the retrieval water depth data is within 16.5 m,
except an abnormal point. The fitting effect is better, with the R2 reaching 0.6317; (b) the polynomial
model.

From Table 4, the R2, p, and RMSE show that the index model used in the paper is
more suitable. The slope shows that the polynomial model is perfect. From Figure 6a,
It is discovered that when the estimated water depth value is within 16.5 m, only two
sample points deviate from the predicted line. After removing an abnormal point, it can
be found that the R2 of the model used in the paper reaches 0.6317, and the RMSE of the
model used in the paper is only 1.7894 when the estimated water depth value is within
16.5 m. At present, the applicable area for remote sensing water depth retrieval is a shallow
water area, and the water depth in most areas of the PRE does not exceed 16.5 m [51,59].
From Figure 6b, although the slope of the trendline matches the y = x line very well, many
points deviate from the trendline. As a result, the polynomial model is not stable enough in
shallow water areas.

In general, based on the above data and analysis, the estimated water depth data
meets the requirements of this work.

Table 4. Statistical evaluation between the in situ water depth and the estimation water depth value
of the two algorithms.

Model R2 p Slope RMSE

This paper 0.2812 0.0031 0.5245 3.0528
Polynomial model 0.1612 0.0308 1.0002 3.2978

3.2.4. BSF Result Verification

The closest year to the BSF field measured data is 2000. Thus, we compared the
satellite BSF retrieval results in 2000 with the BSF field data. The field data use the mean
value calculated by the constant activity (CA) model and the constant flux of supply (CF)
model [36]. To extract pixel values, we used the geographic coordinates of the place
where the field data is located. The average proportion of biosilica in surface sediments
is 1.42% [16]. The retrieved pixel values were converted to a sequence of BSF values, and
the accuracy was checked between them and the measured value sequence. If there is no
BSF value at the pixel point where the measured data is located, we referred to NASA’s
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Ocean Bioprocessing Group (OBPG) method for validating satellite data products using
field measurements [60] as ground truth. A 3 × 3 pixel window is established centered on
the measured data’s longitude and latitude; half of the pixels in the window are valid data,
and the variance is less than 10%.

As shown in Figure 7, the R2 between the measured data and the model retrieval
data is 0.8787. Additionally, the p is 0.0018 which shows a significant linear correlation
between the two. The slope is 2.6666, which indicates there is a certain linear error between
the retrieved value and the measured value, which may need to be converted to be equal.
The RMSE (111.2374) shows that there is instability in the estimation method due to the
small number of sample points. When the in situ value is in the 150–400 mg/(m−2day−1)
range, three points are close to the fitted trend line (red zone), indicating that it is relatively
reliable in this range. Because of the limitation of sampling at the observation sites, only a
few data points are close to the 1:1 trend line. The reliability of the method is not sufficient
to certify by relying on the fitting effect of the site data alone. Therefore, it is necessary to
find other biodeposition data to assist in verification.
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Figure 7. Relationship between in situ BSF and BSF estimated by the model (N = 7). The solid
line is the fitted trend line, and the dashed line is the y = x line. The three points in the red area
are relatively close to the 1:1 trend line. It can be found that their in situ BSF values are between
150–400 mg/(m−2day−1).

To better demonstrate the accuracy of the BSF retrieval model in this paper, we
collected biosilica data in the PRE for nearly two decades (Table 5). In general, the data of
BSF are scarce. There is some information available on the biosilica content of sediments [61].
From Table 5, it is found that the BSF value estimated in the paper is in the same interval
as that estimated in other literature. Three of the four sites showed greater BSF values
estimated in this paper, while the biosilica content was higher in the other literature. In
summary, under the premise of a certain error, the satellite inversion of BSF is proved
feasible after the accuracy of the retrieval results is verified.
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Table 5. Comparison of data found in other literature with the retrieval results of the model in the
paper. The units of some original data in other literature are inconsistent with this paper and have
been converted.

The BSF Value
Retrieved in the Paper

(mg ×m−2d−1)

BSF Values Estimated
in Other Literature

(mg ×m−2d−1)

Average Content of
Biosiliceous in

Sediment
(µmol × g−1)

Coordinates or
Location

Estimation Methods in
Other Literature Citation

413.0~434.4 415.1~650.7 1 - The Northeast of Qi’ao
Island

210Pb dating Zhang et al., 2009 [15]

171.899673
204.402512
93.674751

277.018799

-
-
-
-

55.49
63.96
68.56

164.06

22.4167◦N, 113.7583◦E
22.25◦N, 113.8303◦E
22.31◦N, 113.7125◦E
22.438◦N, 113.894◦E

three-step extraction Qin, 2006 [61]

1 This is obtained by converting the data in the literature through the average proportion of biosilica in the
sediments of the PRE area.

3.3. Temporal and Spatial Variation of BSF

The EOF analysis was applied in this study to investigate the spatial patterns and
temporal variability of BSF in different years. Since the number of BSF distribution maps
in spring and summer were inadequate for EOF analysis, we performed EOF analysis
separately for BSF in the PRE region during the autumn and winter periods. The first mode
is chosen in both seasons; the mode chosen in autumn accounts for approximately 80.04%
of the total variance, and the mode chosen in winter accounts for approximately 87.78% of
the total variance.

Figure 8 depicts the principal components (PC) time series for the first EOF mode in
both seasons. The PC values has both positive and negative values, indicating that the
BSF fluctuates over time. The magnitude of the absolute value is related to the strength
of the fluctuation. We observed that the PC values in the autumn of 2003 and 2013–2020
are negative, and the PC values in the autumn of the other years are positive. During the
winter, PC values were positive for 2000–2010 and 2016, but negative for the other years.
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Figure 8. The principal component (PC)’s time coefficients of the first EOF modes in the PRE waters
during autumn and winter.

Figure 9 shows the spatial distribution of the first mode of EOF in autumn and winter,
which accounts for more than 80% of the total variance. The eastern coast of the PRE has
relatively high values in autumn, including the DDW, the eastern coast of Lantau Island
and the coastal waters of Da Chan Bay, Shenzhen Bay, and Hong Kong. The areas with
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mangroves in Shenzhen Bay have large negative values. The waters from Qi’ao Island to
Kyushu Island on the PRE’s west coast have lower values, while the shoals at the river
entrance have higher values.

In winter, the fluctuations in values were lower than in autumn, and the overall trend
was the opposite of autumn. The PRE’s west coast had high-value regions. Values were
also higher in the lower reaches of the Pearl River and its estuary, as well as in Hong
Kong’s coastal waters. The value was generally low from the DDW to the outer sea via the
Lingding Waterway.

Remote Sens. 2022, 14, x FOR PEER REVIEW 19 of 36 
 

 

Figure 8. The principal component (PC)’s time coefficients of the first EOF modes in the PRE waters 

during autumn and winter. 

Figure 9 shows the spatial distribution of the first mode of EOF in autumn and win-

ter, which accounts for more than 80% of the total variance. The eastern coast of the PRE 

has relatively high values in autumn, including the DDW, the eastern coast of Lantau Is-

land and the coastal waters of Da Chan Bay, Shenzhen Bay, and Hong Kong. The areas 

with mangroves in Shenzhen Bay have large negative values. The waters from Qi’ao Is-

land to Kyushu Island on the PRE’s west coast have lower values, while the shoals at the 

river entrance have higher values. 

In winter, the fluctuations in values were lower than in autumn, and the overall trend 

was the opposite of autumn. The PRE’s west coast had high-value regions. Values were 

also higher in the lower reaches of the Pearl River and its estuary, as well as in Hong 

Kong’s coastal waters. The value was generally low from the DDW to the outer sea via 

the Lingding Waterway. 

  

Figure 9. The principal component (PC)’s spatial distribution of the first EOF modes in the PRE 

waters during autumn and winter. 

3.4. Results of Water Constituents Affecting BSF 

The optical properties of water are determined by the absorption or backscattering 

of different water constituents. This paper investigated the relationship between BSF and 

the two major water constituents. Figure 10 shows the distribution of spatial results ob-

tained by calculating the GRG of the four seasons. In summer, only 2011 has high-quality 

remote sensing imagery, so we choose this. There are data from 2004, 2008, and 2010 avail-

able in spring. To better compare with the summer of 2011, the spring of 2010, which is 

closest in time to the summer of 2011, was chosen for analysis. In winter, the year 2000 

was chosen because it is closest to the time of in situ verification data. In autumn, since 

Figure 9. The principal component (PC)’s spatial distribution of the first EOF modes in the PRE
waters during autumn and winter.

3.4. Results of Water Constituents Affecting BSF

The optical properties of water are determined by the absorption or backscattering of
different water constituents. This paper investigated the relationship between BSF and the
two major water constituents. Figure 10 shows the distribution of spatial results obtained
by calculating the GRG of the four seasons. In summer, only 2011 has high-quality remote
sensing imagery, so we choose this. There are data from 2004, 2008, and 2010 available in
spring. To better compare with the summer of 2011, the spring of 2010, which is closest
in time to the summer of 2011, was chosen for analysis. In winter, the year 2000 was
chosen because it is closest to the time of in situ verification data. In autumn, since the
POC deposition data are based on 2006, the data in the autumn of 2006 were selected for
calculating the GRG.

Total suspended solids (TSS) and chromophoric dissolved organic matter (CDOM)
concentrations were retrieved concurrently with BSF using the same Landsat reflectance
datasets. We calculated the TSS concentration with the TSS algorithm in the PRE developed
by Guo et al. [62], and the CDOM concentration was calculated using the CDOM retrieval
model proposed by Chen et al. [63,64]. The GRA was used to measure the relationship
between BSF, CDOM and TSS for the four seasons, pixel by pixel (Figure 10).



Remote Sens. 2023, 15, 58 19 of 33

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 36 
 

 

the POC deposition data are based on 2006, the data in the autumn of 2006 were selected 

for calculating the GRG. 

Total suspended solids (TSS) and chromophoric dissolved organic matter (CDOM) 

concentrations were retrieved concurrently with BSF using the same Landsat reflectance 

datasets. We calculated the TSS concentration with the TSS algorithm in the PRE devel-

oped by Guo et al. [62], and the CDOM concentration was calculated using the CDOM 

retrieval model proposed by Chen et al. [63,64]. The GRA was used to measure the rela-

tionship between BSF, CDOM and TSS for the four seasons, pixel by pixel (Figure 10). 

   

   

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 36 
 

 

   

   

Figure 10. The distribution of gray correlation between BSF and TSS or CDOM and between TSS 

and CDOM in the PRE region. The gray correlation grade between BSF and CDOM in the same 

season is roughly the same as that between BSF and TSS, but there are great differences in different 

seasons. 

In the PRE, GRGs between BSF and CDOM concentration (Ccdom) or TSS concentration 

(Ctss) are all higher on the west bank than on the east. The same holds for GRGs between 

Ccdom and Ctss. The magnitudes of the values of GRGs between BSF and either Ccdom or Ctss 

are not significantly different. Compared with GRGs between Ccdom and Ctss, GRGs be-

tween BSF and Ccdom or Ctss increased significantly in Shenzhen Bay and around Lantau 

Island. Seasonally, the GRG was higher in spring and summer than in autumn and winter 

between BSF and Ccdom or Ctss, with most pixels having values greater than 0.9. Equal situ-

ations were noticed in the GRGs between Ccdom and Ctss; although, the average value was 

lower than that between BSF and Ccdom or Ctss. 

  

Figure 10. The distribution of gray correlation between BSF and TSS or CDOM and between TSS and
CDOM in the PRE region. The gray correlation grade between BSF and CDOM in the same season is
roughly the same as that between BSF and TSS, but there are great differences in different seasons.
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In the PRE, GRGs between BSF and CDOM concentration (Ccdom) or TSS concentration
(Ctss) are all higher on the west bank than on the east. The same holds for GRGs between
Ccdom and Ctss. The magnitudes of the values of GRGs between BSF and either Ccdom or
Ctss are not significantly different. Compared with GRGs between Ccdom and Ctss, GRGs
between BSF and Ccdom or Ctss increased significantly in Shenzhen Bay and around Lantau
Island. Seasonally, the GRG was higher in spring and summer than in autumn and winter
between BSF and Ccdom or Ctss, with most pixels having values greater than 0.9. Equal
situations were noticed in the GRGs between Ccdom and Ctss; although, the average value
was lower than that between BSF and Ccdom or Ctss.

4. Discussion
4.1. Evaluation of BSF Results

Referring to the deposition process of organic matter in water proposed by Cai [4],
Figure 11 shows the deposition pattern of the PRE. The biosiliceous sedimentation model
demonstrates that biogenic sedimentation in water is extremely complicated, involving
numerous physical, chemical and biological processes. The parameters used in the method-
ology for estimating BSF in the paper are the summary of these processes. For example,
primary productivity in the calculation represents the primary producer in the pattern,
which is the source of the BSF. In addition, the parameter of POC sedimentation rate re-
flects the sedimentation of biodeposition particles in the form of POC in water. Moreover,
regardless of the flocculation process or the sedimentation of particles with the fluid, the
water depth will affect the size of the sedimentation flux. As has been said, according to
the deposition pattern in Figure 11, the BSF remote sensing retrieval method used in the
paper has theoretical support.
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Figure 11. The schematic diagram of estuarine deposition process. The BSF retrieval method used in
the paper is theoretically supported by the complicated deposition patterns in the figure. The parts of
primary productivity, POC and flocculating constituent are the main reflections of the calculation
process. These parts also link remote sensing to the BSF.

From Table 6, we find that even though there is a certain error, at the same position, if
the BSF value calculated by other papers is higher, the BSF estimated in this paper is also
higher. Likewise, if the BSF values calculated in other literature are lower, the BSF values
estimated in this paper are also lower. Therefore, spatially, the distribution prediction
of BSF in this paper is relatively reliable. Meanwhile, more in situ data are required to
improve the model’s accuracy. In brief, satellite remote sensing technology has the same
application value as the current method of calculating BSF.
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Table 6. Comparison of the in situ BSF values of the station points in the literature with the BSF
values estimated in this paper [36]. The BSF values of the stations are converted by the average
proportion of biosilica in the sediments of the PRE.

Coordinates BSF in the Literature
(mg/(m−2day−1))

BSF in the Paper
(mg/(m−2day−1))

22.898◦N, 113.578◦E 70.03 149.57
22.454◦N, 113.928◦E 178.96 169.56
23.109◦N, 113.348◦E 182.85 198.74
22.990◦N, 113.519◦E 330.69 274.42
22.581◦N, 113.660◦E 462.96 349.79
22.286◦N, 113.578◦E 591.34 370.35
22.388◦N, 113.631◦E 910.36 400.26

The parameter calculation in the model is one aspect of errors in estimating BSF
in this paper. There may be an error in retrieving the Chla, SST, and Zeu during the
primary productivity calculation process. For example, the single-band model used in
the Chla retrieval of the PRE is relatively stable, but it cannot accurately reflect micro-
region anomalies. Since the SST was retrieved using the thermal infrared band, there was
a tendency to overestimate in areas close to land. The POC deposition rate data used is
simulated numerically, which may differ from the actual situation. Furthermore, calculating
the 21-year BSF results with only the fall 2006 POC sedimentation rate would introduce an
error. In addition, the accuracy of the water depth retrieval also needs to be improved.

We employed Landsat satellite images with a low temporal resolution. Using the
imagery of a moment to calculate the BSF for the entire year will also result in errors. An
error may happen when using the same retrieval algorithm on data from a different Landsat
series of satellites. To solve the errors raised above, a unified conversion relationship can be
established for the reflectance of the various images. Likewise, retrieval models of Chla and
biological deposition can be developed for the TM, ETM+, and OLI images, respectively. It
is possible that using spatiotemporal fusion methods to obtain monthly average images
would reduce the errors in the following work.

Atmospheric correction is another step in the error source. The PRE region is classified
as Case 2 waters, and precise atmospheric correction is a critical step in ocean color remote
sensing [65]. Highly turbid coastal waters are more reflective, and TM/ETM+ images are
better with the ACOLITE atmospheric correction algorithm [66]. The measured spectral
data reveals that the atmospheric correction algorithm in the SeaDAS software is better
suited for offshore OLI images [67–69]. In ocean color remote sensing, the Dark Spectral
Fitting (DSF) atmospheric correction method is more appropriate for Landsat images than
the Exponential Extrapolation (EXP) method [70]. Ye thought that the MUMM algorithm
was the better atmospheric correction algorithm for high turbidity water at present [71].
Although employing the MUMM algorithm of SeaDAS and the DSF method of ACOLITE
has certain errors, it is currently the better option.

Figure 12 shows the historical data on BSF changes according to the sampling of
summer at a station in the PRE, which can roughly predict the BSF value of this station in
the summer of 2011. Comparing the predicted value with the BSF values retrieved in this
paper from Table 7, the ratio of uncertainty is about 35.99%. From the estimation model
in this paper, the Si:C value for BSF calculation is 0.3, which is the average level of the
ocean. The Si:C at the continental margin is generally smaller than 0.6 [61]. If the in situ
BSF value is relatively large, the uncertainty error may be close to 50%. According to the
accuracy verification results of Figure 7 in Section 3.2.4, in situ values were twice as high as
estimated when the in situ BSF exceeded 600 mg/m−2day−1. This is most likely because
the Si:C parameter is set too small. When the in situ BSF value is in 150–400 mg/m−2day−1

range, the error caused by Si:C is less noticeable. To reduce this error, it is necessary to use
a mass of field data to obtain the optimum range of Si:C in the PRE.
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Table 7. According to the historical data, the predicted value at the same sampling point is compared
with the retrieved value in this paper. The unit of BSF is mg/(m−2day−1).

Time (Year) 1920 1950 1980 1997 2011 Uncertainty Ratio

In situ BSF value
Predicted BSF value

122.1918
-

313.6986
-

503.5616
-

557.5342
-

-
659.6209 35.99%

Retrieved BSF value - - - - 422.1965
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Figure 12. The change trend of BSF at a station in the PRE over the past 100 years [29]. The sampling
time is April of 1997. The value of BSF is obtained by conversion of deposition flux.

Additionally, because of the different optical properties of water bodies, more pa-
rameters may need to be considered to refine the calculation model. The particle size of
sedimentary particles and the concentration of POC are the two key elements influencing
the sedimentation process. Flow rate and nutrient concentration are two factors that affect
the flocculation process. These parameters may be considered for introduction into the
model in the next stage of work.

4.2. Relationship between BSF and Water Constituents

In addition to the parameters used in the BSF retrieval model, the water constituents
include CDOM and TSS. Spectral absorption by CDOM is challenging for accurate Chla
retrieval of turbid coastal waters [72]. TSS is crucial in the process of estuarine deposi-
tion [62]. The contribution of the two constituents varies across seasons for the same body
of water. As a result, we explored the correlation between BSF and either Ccdom or Ctss in
different seasons.

The GRA analysis results revealed that the BSF was closely related to TSS and CDOM.
Figure 13 shows the subtraction of the two GRGs. Our results were credible according to
Yang’s analysis method [44]. Displaying the subtracted positive values in red indicates
that the GRGs of Ctss are higher than the GRGs of Ccdom, implying that the TSS plays a
dominant role in the BSF. Negative values after subtraction are shown in blue, indicating
that the GRGs of Ccdom are greater than the GRGs of Ctss, which means that CDOM plays a
dominant role in BSF.

The effects of TSS and CDOM on BSF showed a certain seasonality. In winter, TSS has
a greater impact on BSF in most PRE waters. This may be due to less precipitation in winter
and generally higher Ctss in the PRE [73]. In autumn, CDOM mainly affects BSF. This may
be attributed to the influence of the monsoon on the PRE in autumn. The downwelling
caused by the northeasterly wind appears to reduce the amount of resuspension, causing



Remote Sens. 2023, 15, 58 23 of 33

the surface Ctss slightly decreasing [44]. In spring, the impact of the two is relatively
balanced. During summer, the waters where TSS affects BSF are concentrated along the
eastern coast. This condition appears to contradict the phenomenon of smaller Ctss in PRE’s
southeastern region. We need to study the reasons for this result further. Ccdom correlates
with the ebb and flow, and Ccdom has almost no seasonal variation [74]. Ctss and Ccdom are
both influenced by tides, winds, circulation and river flow, but TSS may also be linked to
climate change [62,72]. Therefore, seasonal variation in Ctss may be one of the reasons for
seasonal variation in BSF, and previous studies have strongly supported the above findings.
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Figure 13. Spatial distribution of the main water constituents affecting BSF in different seasons. The
red area is larger than the blue in winter; the blue area is larger in autumn; in spring, the white area
(the value is zero) is wider than in the other three seasons; and in summer, the red area is concentrated
on the eastern coast of the PRE.
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Furthermore, upon analysis with Figure 10, it was discovered that in areas where the
correlation between TSS and CDOM was low, the correlation between TSS and BSF was
higher, particularly in summer and autumn. In above area, the Ccdom in the PRE region was
greater in summer and autumn than in spring and winter, while the Ctss was the opposite.
When the effect of Ccdom on the optical properties of water is much greater than that of Ctss,
the intuitive expression is that the decrease of Ctss is more dramatic than the increase of
Ccdom. At this point, the contribution of Ccdom to BSF has been saturated, and a small change
in Ctss will cause a violent fluctuation in BSF.

4.3. Influence of Environmental Factors on BSF

The interannual variation trend of BSF is generally increasing with fluctuations in
individual years, as the PRE region’s economic development and population grows. The
spatial distribution of annual mean BSF and the EOF data can be employed to determine
the temporal and spatial distribution rules of BSF. Further analysis of these rules reveals
four major environmental factors influencing BSF.

4.3.1. Ecosystem

According to the BSF distribution from Figure 14 and EOF findings from Figure 9,
the BSF values are often greater and more stable in Shenzhen Bay’s mangrove forests [75]
and Tangjia Bay’s seagrass beds [76]. Some researchers revealed that different ecological
environments, such as vegetation density, affect the deposition rate of biogenic sediment
particles [77,78]. When there is a flow field in a mangrove ecosystem, mangrove roots
enhance particle deposition. Meanwhile, they can prevent the resuspension of bottom
sediment particles [78]. The more densely distributed mangroves there are, the more
obvious this trend is [77]. Seagrass beds are not only highly productive ecosystems in
coastal waters but also capture particulate matter [79]. Consequently, various ecosystems
could influence BSF, such as mangroves and seagrass beds, which encourage biogenic
sedimentation.
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Figure 14. Spatial distribution of annual mean BSF in the PRE region. (a) Using Landsat-5 as the
original image inversion to get the average of BSF results, including the results of four seasons;
(b) Using Landsat-8 as the original image inversion to get the average of BSF results, all in autumn
and winter. Numbers represent different regions: (1) Mangrove area in Shenzhen Bay; (2) Flow field
area of DDW; (3) Inlet shoal; (4) Waters around Qi’ao Island and Lantau Island; (5) Seagrass area in
Tangjia Bay; (6) Upwelling waters to the southwest of Hong Kong. On the right are two mangrove
distribution maps of Shenzhen Bay in representative years [75].

4.3.2. Flow Field

Figure 14 shows that the average BSF of the region where the flow field exists in DDW
is different from the surrounding region. In spring and summer, the PRE is in a period of
the rainy season, and nutrients from land sources enter the water body of the PRE along
with the flow field [80]. As the water temperature gradually increases, nutrients cause the
rapid reproduction and growth of phytoplankton, so the BSF of the flow field in spring and
summer is relatively high. The growth of algae in the flow field in autumn and winter was
inhibited by the disturbance of water flow [81]; therefore, the BSF value in the flow field
was lower than that in the surrounding waters.

There is an upwelling in the southwestern waters of Hong Kong [82]; Figure 14
shows that there is a lower mean BSF relative to the surrounding waters. In the region
with upwelling, the sedimentation rate is slowed down. Additionally, the resuspension
phenomenon in the water body is exacerbated. This process may result in a decrease in the
BSF value.

4.3.3. Islands and Reefs

Along the coasts of Qi’ao Island and Lantau Island, high BSF values are observed from
Figure 14. When the flow field traverses islands and reefs, Von Karman vortices commonly
form. The impact of eddying on nutrient distribution can increase the amount of small
phytoplankton in the area [83]. This can explain why the nearby islands and reefs with flow
fields have higher primary productivity. Therefore, the BSF value may rise in some coastal
areas of Qi’ao Island and Lantau Island due to an increase in sedimentary organisms like
diatoms.
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4.3.4. Flocculation

It is observed from Figure 14 that the average BSF of the Inlet shoal is higher than that
of the surrounding sea area. Additionally, this phenomenon is more noticeable in the flood
season during summer and autumn than in the dry season during winter. These areas
have higher algal productivity due to the Pearl River’s nutrient input, as well as being the
confluence of fresh and brackish water. There are zones prone to flocculation because of
variations in the salt content [84], and flocculation encourages biological deposition [4].
Furthermore, the sedimentation velocity of floc particle size in the PRE during the flood
season is greater than that during the dry season [85], which is consistent with the retrieval
BSF distribution in this paper in the estuarine and shallow watershed areas.

4.4. Prospect

There are two directions for future research on satellite retrieval of BSF. One is to
enhance the retrieval model’s accuracy, taking into account the additional parameters, such
as particle size and the gathering of more measured data to enhance the coefficient of
determination’s accuracy. Moreover, it is possible to account for more precise information
on POC settlement and water depth. The other is to improve the temporal and spatial
resolution of the results. A daily BSF distribution map can be acquired using a multi-
source spatiotemporal fusion model. Alternatively, we consider employing the Sentinel
and GaoFen series with higher spatial resolution to assess the mechanism and process of
biodeposition more precisely.

It is feasible to calculate the biosiliceous deposition in all estuaries around the world
using the same remote sensing techniques as in the paper. The changing laws of biogenic
sediment may differ for various types of estuaries.

5. Conclusions

In the paper, we used Landsat satellite imagery combined with MODIS products to
estimate the BSF in the PRE. For the first time, the BSF distribution map in the PRE region
during the past two decades was obtained, and the spatiotemporal characteristics and
formation mechanism were explored based on this. We examined the interannual and
seasonal variations of BSF in the PRE region, as well as the impact of TSS and CDOM
on BSF. Ecosystems, islands and reefs, flow fields and flocculation are the four primary
factors that influence biogenic sediment. Additionally, this study demonstrates that the
multi-source remote sensing fusion model can be successfully applied to the estuary’s
nearshore ocean color inversion.

Eventually, we discovered that retrieving biodeposition fluxes using high-resolution
satellites like Landsat has application prospects. The results of this paper provide a possible
remote sensing method for BSF monitoring in estuarine and coastal complex waters.
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Appendix A

Table A1. The information of remote sensing data used in this paper.

Year Remote Sensing Image ID Remote Sensing Product ID

2000 LE71220442000002SGS00 sw_par_1d_2018_0_1baa_6f01_82fa

2001 LE71220442001260SGS00 sw_par_1d_2018_0_111d_563f_d732

2002 LE71220442002311EDC00 aqua_par_1d_2018_0_928a_f116_5fc4

2003 LE71220442003058SGS00 A2003059052000.L2_LAC_OC

2004 LT51220442004069BJC00 A2004069052500.L2_LAC_OC

2005 LT51220442005295BJC00 A2005295052500.L2_LAC_OC

2006 LT51220442006314BJC00 A2006314052500.L2_LAC_OC

2007 LT51220442007029BJC00 A2007029052500.L2_LAC_OC

2008 LT51220442008064BKT00 A2008064052500.L2_LAC_OC

2009 LT51220442009290BJC00 A2009290053000.L2_LAC_OC

2010 LT51220442010085BKT00 A2010085053000.L2_LAC_OC

2011 LT51220442011152BKT00 A2011152052500.L2_LAC_OC

2012 LE71220442012307EDC00 A2012308052000.L2_LAC_OC

2013 LC81220442013365LGN01 A2013365052500.L2_LAC_OC

2014 LC81220442014320LGN01 A2014320052500.L2_LAC_OC

2015 LC81220442015003LGN01 A2015003052500.L2_LAC_OC

2016

LC81220442016038LGN01
LC81220442016086LGN01
LC81220452016038LGN01
LC81220452016086LGN01

MYD02HKM.A2016038.0525.061.2018055133234
MOD02HKM.A2016059.0235.061.2017325012149
MOD02HKM.A2016060.0320.061.2017325013357
MYD02HKM.A2016086.0530.061.2018057053639
MYD02HKM.A2016086.0525.061.2018057053740

A2016038052500.L2_LAC_OC

2017 LC81220442017296LGN00 A2017296052500.L2_LAC_OC

2018 LC81220442018043LGN00 A2018043052500.L2_LAC_OC

2019 LC81220442019318LGN00 A2019318052500.L2_LAC_OC

2020 LC81220442020337LGN00 A2020337052500.L2_LAC_OC
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Figure A1. The distribution map of POC sinking flux in the Pearl River Estuary.

Appendix C

Remote sensing images must be preprocessed and resampled to the same size and
resolution before using the ESTARFM algorithm. In the fusion process, the model uses
the weight function to perform the convolution operation to obtain the central pixel value.
First, the high-resolution and low-resolution images of the two phases are used to generate
the high-resolution image of the predicted phase. The weighted combination of the two
high-resolution prediction results produces a more accurate high-resolution image at the
required moment [86].
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The Landsat and MODIS images of the corresponding period of the measured chloro-
phyll were used in this paper, and the fusion result with the ESTARFM model is shown in
Figure A3. The spatial resolution of the reflectance images obtained after fusion has signifi-
cantly improved, which can be very useful for the selection and verification of chlorophyll
inversion models. However, the reflectivity of the fused blue band differs significantly
from that of the original MODIS image in some areas (the dark green area in Figure A3b),
so pixels in this area should not be used when selecting models.

Appendix D

There are many algorithms for satellite retrieval of Chla, but few are applied to Landsat
series satellites, especially in the turbid waters of the Pearl River Estuary. In order to select
a suitable retrieval model, Pearson correlation analysis was performed on the reflectance of
each band of the image obtained by fusion and the corresponding measured Chla data. This
result is almost consistent with the results of the Pearson correlation analysis in previous
studies (Figure A4). They analyzed the measured spectra equivalent to the Landsat spectral
reflectance with the in situ Chla data [80,87]. Finally, the Landsat single-band spectral
chlorophyll remote sensing retrieval model was selected. The model has not undergone
multiple regressions and has good stability. The Chla inversion formulas for the four
seasons from spring to winter are as follows:

Chla = 81.33 × b4 + 0.00639 (A1)

Chla = 18.039 × b3 + 0.28906 (A2)

Chla = 102.7 × b3 + 0.10184 (A3)

Chla = 20.71 × b2 + 0.495 (A4)

where b2–b4 are the reflectance values of the second to fourth bands after Landsat image
preprocessing, respectively. After spatiotemporal fusion, they can be regarded as the
reflectance values of the three bands of visible light.
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Appendix E

In the VGPM model, the accuracy of different parameters in the Case2 waters will
have a great impact on the estimated results [88]. Therefore, the model must be updated
to account for different sea areas. This paper employed the simplified depth-integrated
primary productivity calculation equation [19], which is as follows:

PPeu = 0.66125× PB
opt ×

[
E0

E0 + 4.1

]
× Zeu × Copt × Dirr (A5)
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where PPeu is the primary productivity from the sea surface to the euphotic depth (mg C
m−2 day−1); PB

opt denotes the estimated maximum photosynthesis rate (mg C mg Chl-a−1 h−1);
E0 is the daily PAR at the sea surface (mol quanta m−2); Zeu is the estimated euphotic depth;
Copt is the chlorophyll-a concentration at the location of PB

opt, replaced with the sea surface
chlorophyll-a concentration; Dirr is the illumination time (h), and the Dirr in the PRE is 11.25 h.

In addition, the PB
opt is pivotal for determining primary productivity. Recent research

had shown that it is affected by both sea surface temperature (T) and chlorophyll-a concen-
tration [89]. To control the errors caused by Chla in primary productivity results, PB

opt was
estimated using only sea surface temperature:

PB
opt =


4, T > 28.5
1.13, T < −1
f (T), −1 < T < 28.5

(A6)

f (T) = −3.27× 10−8T7 + 3.4132× 10−6T6 − 1.348× 10−4T5 + 2.462× 10−3T4 − 0.0205T3

+0.0617T2 + 0.2749T + 1.2956 (A7)
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