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Abstract: Multiple-input multiple-output (MIMO) technology has recently attracted attention with
regard to improving the angular resolution of small antennas such as automotive radars. If appro-
priately placed, the co-located transmit and receive arrays can make a large virtual aperture. This
paper proposes a new method for designing arrays by adopting a structure with minimum redun-
dancy. The proposed structure can significantly increase the virtual array aperture while keeping
the transmit and receive antennas at the same size. We describe the application of the proposed
method to subarray-type antennas using multi-channel transceivers, which is essential for arranging
RF hardware in a small antenna operating at high frequency. Further, we present an analysis of the
final beam pattern and discuss its benefits and limitations.

Keywords: MIMO array; minimum redundancy array; virtual array antenna; subarray

1. Introduction

An essential requirement for a radar system is its angular resolution. As the angular
resolution depends on the aperture size, a small antenna system, such as an automo-
tive radar, is challenging to achieve. Subspace-based algorithms, such as multiple signal
classification (MUSIC) and estimation of signal parameters via rational invariance tech-
niques (ESPRIT), and parameter estimation algorithms based on the maximum likelihood
(ML) function have been used to achieve the high-resolution angle estimation [1,2]. How-
ever, the multiple-input multiple-output (MIMO) technology has recently attracted the
most attention.

A MIMO radar, which synthesizes a virtual antenna array (VAA) using co-located
transmit and receive antennas, is typically used in automotive systems [3–6]. If appro-
priately placed, co-located transmit and receive arrays can create a large virtual aperture
with a small number of arrays. The arrangement of the VAA is determined by the spatial
convolution of the transmit and receive array positions, and its aperture is the sum of
each antenna aperture [7]. In the case of a uniform linear array (ULA), if the receive array
has Mr elements and the transmit array has Mt elements, the VAA can become a filled
ULA with Mt ×Mr elements when the interelement spacing is d and Mr × d, respectively.
Furthermore, if the total number of arrays is 2K, the maximum aperture is obtained when
Mr = Mt = K. However, in this case, the sizes of the receive and transmit arrays are
considerably different, i.e., Mr × d and (Mt − 1) × Mr × d. For example, if K = 8, the
maximum VAA aperture can be 16d when Mr = Mt = 4. The apertures of receive and
transmit arrays are 4d and 12d, respectively. Thus, the two antennas have a three-fold
size difference, and the long antenna will ultimately determine the physical dimensions of
the entire antenna. Therefore, this arrangement is insufficient for the miniaturization of
the antenna when considering the physical dimensions and the VAA aperture. A simple
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design to make the size of the transmit and receive arrays the same is to use Mt = 2.
Then, although the aperture of the VAA is reduced to 12d in this example, the physical size
becomes half.

Most automotive radars employ this type of transmit-and-receive array spacing, and it
is difficult to find other arrangements. This paper suggests a new spacing method for VAA
that provides the largest VAA aperture and makes the physical size of the transmit and
receive array antennas the same by employing the co-array property of the non-uniform,
minimum redundancy array.

Another trend driving module size reduction is to move to higher operating frequen-
cies. A higher operating frequency in radar systems is preferred because of its increased
bandwidth, high range resolution, and accuracy. The unlicensed industrial, scientific, and
medical (ISM) frequency above 100 GHz is particularly interesting for mass-volume com-
mercial radar-sensor applications [8]. However, when the frequency increases, arranging
the RF hardware becomes challenging due to the compact antenna. Research on integrat-
ing antennas into packages or chips is ongoing to find a cost-effective solution without
requiring RF signals on the printed circuit board (PCB) [9]. Several studies on D band
(110~170 GHz) transceivers have been published [10–13]. The multi-channel transceiver is
a single-chip solution that integrates multiple transmit and receive channels. It includes
amplifiers and a phase shifter in each channel supporting analog beamforming in both
transmit and receive directions. Transmission beamforming can increase the power and
extend the detection range. Receive beamforming decreases the number of analog-to-digital
converters (ADCs) and all subsequent digital hardware, effectively reducing size and cost
of the system. However, this front-end beamforming, or subarray structure, is disadvan-
tageous for adaptive beamforming or multiple beamforming compared with full digital
arrays and affects the MIMO VAA configuration as well [14].

In this paper, we propose a design approach for MIMO VAA considering the transmit
and receive subarray structure using multi-channel transceivers. We herein present an
analysis of the final beam pattern using subarray structure and MIMO VAA and the
application of the proposed MIMO arrangement method. The benefits and limitations
are discussed.

The remainder of this paper is organized as follows. The next section derives the
fundamental formula of a MIMO antenna with subarrays. Section 3 describes the non-
uniform arrays, including the non-redundant array and minimum redundancy array
(MRA), and proposes a new MIMO configuration. Section 4 suggests a subarray-type
MIMO antenna using non-uniform spacing and, finally, Section 5 presents the conclusion.

2. MIMO with Subarrays
2.1. Basic Principle

A MIMO, in which the transmit arrays are configured using subarrays, is called phased
MIMO, and the beam pattern, SNR, and SINR are discussed in [15–17]. Based on this, the
following formula is derived for M transmission subarrays with L arrays shown in Figure 1.Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 14 
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Figure 1. Configuration of the transmit antenna with subarrays.
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We assume that each subarray transmits a different waveform φm(t), and the wave-
forms are orthogonal to one another.

φ(t) =
[
φ1(t) φ2(t) . . . φM(t)

]T (1)∫
T0

φ(t)φH(t)dt = IM (2)

where IM is the M×M identity matrix. If the beamforming weight of each subarray is wml ,
the transmission signal in the θ direction by the m-th subarray can be expressed as follows:

sm(t, θ) =
[
w∗m1 w∗m2, · · ·w∗mL

][
1 e−jkdt1 sin θ · · · e−jkdt(L−1) sin θ

]T
e−jkDt(m−1) sin θφm(t)

= wH
m a(θ)e−jkDt(m−1) sin θφm(t) (m = 1, 2, . . . M)

(3)

where wm = [wm1 wm2, · · ·wmL]
T ∈ CL×1, a(θ) =

[
1 e−jkdt1 sin θ · · · e−jkdt(L−1) sin θ

]T
, k is

the wave number, 2π/λ (λ : wavelength), and * and H stand for the complex conjugate
and conjugate transpose, respectively.

Then, the transmit signal becomes the sum of them.

s(t, θ) =
M
∑

m=1
sm(t, θ) =

M
∑

m=1
wH

m a(θ)e−jkDt(m−1) sin θφm(t)

=
[
wH

1 a(θ)wH
2 a(θ) · · · wH

M a(θ)
]
�
[
1e(−jkDt1 sin θ) · · · e−jkDt(M−1) sin θ

]


φ1(t)
φ2(t)

...
φM(t)


=

¯
a

T
(θ)� dT(θ)φ(t)

(4)

where
¯
a (θ) =

[
wH

1 a(θ) · · · wH
M a(θ)

]T ∈ CM×1, d(θ) =
[
1 e−jkDt1 sin θ · · · e−jkDt(M−1) sin θ

]T
,

and � stands for the Hadamard product. Moreover, if the weights for the subarrays are
identical, i.e., w1 = w2 = · · · = wM = w, it is simplified to

s(t, θ) = wTa(θ)dT(θ)φ(t) = gt(θ)dT(θ)φ(t), (5)

where gt(θ) = wTa(θ).
The target reflection signal in the θ direction can be expressed by

r(t, θ) = β
¯
a

T
(θ)� dT(θ)φ(t− τ) + n(t) = βgt(θ)dT(θ)φ(t− τ) + n(t) (6)

where β is the complex reflection coefficient, τ is the delay by the target distance, and n(t)
is the white Gaussian noise.

Suppose the receiver, like the transmit arrays, has a structure that performs analog
beamforming in subarray units and then performs digital beamforming, as shown in
Figure 2. Then the output of the nth subarray can be written as follows:

rn(t, θ) = cH
n b(θ)e−jkDr(n−1) sin θ r(t, θ) (n = 1, . . . N) (7)

where cn = [cn1 cn2 . . . cnP]
T are the analog beamforming weights within each subarray,

and b(θ) =
[
1 e−jkdr1 sin θ . . . e−jkdr(P−1) sin θ

]T
is the phase difference in the θ direction.
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Again, if c1 = c2 = · · · = cN = c, then we can simplify to cH
1 b(θ) = cH

2 b(θ) = · · · cH
Nb(θ) =

gr(θ) and the receive signal vector from all subarray is expressed by

r(r, θ) = [r1(t, θ) r2(t, θ) . . . rN(t, θ)]T

= gr(θ)
[
1 e−jkDr1 sin θ . . . e−jkDr(N−1) sin θ

]T
r(t, θ) = gr(θ)h(θ)r(t, θ)

(8)

where h(θ) =
[
1 e−jkDr1 sin θ . . . e−jkDr(N−1) sin θ

]T
.
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Each transmit waveform is recovered by matched filtering with {φ(t)}M
m=1. The m-th

signal after matched filtering is

xm(θ) =
∫

T0

r(t, θ)φ∗m(t)dt = βgt(θ)gr(θ)dmh(θ) + ñm(t), m = 1 . . . , M (9)

where dm is the m-th element of the vector d(θ) in (4). Thus, the final MIMO received signal
of NM× 1 is represented as follows:

y =
[
xT

1 (θ) xT
2 (θ) . . . xT

M(θ)
]T

= βgt(θ)gr(θ) d(θ)⊗ h(θ) + Ñ (10)

The above equation is the same as the typical MIMO formula except for the subarray
gains of gt(θ) and gr(θ). After MIMO VAA beamforming with the weight vector wMIMO ∈
CNM×1, the final beam pattern is expressed by

G(θ) =
∣∣∣wHa(θ)

∣∣∣2∣∣∣cHb(θ)
∣∣∣2∣∣∣wH

MIMO[d(θ)⊗ h(θ)]
∣∣∣2 = |gt(θ)|2|gr(θ)|2|gMIMO(θ)|2 (11)

The final pattern revealed is the multiplication of the transmitter subarray pattern, the
receiver subarray pattern, and the MIMO VAA beampattern.

Here, we can summarize three design factors of the subarray MIMO antenna:

• the orthogonal waveforms {φm}, which are not a subject of this manuscript, but are an
important issue. Conventionally, the orthogonality is obtained by time-domain multi-
plexing (TDM), frequency domain multiplexing (FDM), or code domain multiplexing
(CDM) [18–21]. Beat-frequency multiplexing or Doppler-domain multiplexing (DDM)
is also proposed in automotive radars [3,5];

• the antenna structure, including the subarrays and MIMO configuration; and
• the beamforming weights.

The antenna structure is represented by a(θ), b(θ), and d(θ), while h(θ). a(θ) and
b(θ) are the subarray configuration, and d(θ) and h(θ) are the MIMO configuration which
results from the structure among subarrays. The beamforming weights are w and c, and
wMIMO. w and c are the transmit and receive subarray weights, respectively, designed for
suppressing the sidelobe level as well as steering the subarray beam direction. wMIMO is
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the beamforming weight of MIMO VAA for multiple beamforming, adaptive beamforming,
or any purpose.

2.2. MIMO Configuration

A MIMO antenna is typically defined as having transmit arrays with L = 1 in Figure 1
and receive arrays with p = 1 in Figure 2, implying that it does not have subarrays. The
VAA beam pattern is determined in this case by the array spacing Dt, Dr and the MIMO
beamforming weight. From Equation (10), the input is written as follows:

y =
[
xT

1 (θ) xT
1 (θ) . . . xT

1 (θ)
]T

= βd(θ)⊗ h(θ) + Ñ = β v(θ) + Ñ (12)

where v(θ) = d(θ)⊗ h(θ) = [v1(θ), v2(θ), · · · , vNM(θ)]T and the element is

v[n+(m−1)N](θ) = e−jk sin θ[Dt(m−1)+Dr(n−1) ], m = 1, . . . M and n = 1, . . . , N (13)

This equation is more commonly referred to as the spatial convolution of transmit and
receive array positions. If the transmit and receive antenna has a uniform interval, then
we can write that Dt(m−1) = (m− 1)Dt and Dr(n−1) = (n− 1)Dr. The maximum length of
the VAA that can be implemented with (M + N) arrays is MN × Dr, when Dt = NDr (or
Dr = MDt). In addition, the maximum length is achieved when the number of transmit
arrays is the same as the number of receive arrays, i.e., M = N = K if M + N = 2K.
However, in this case, the physical lengths of the antennas are (M− 1)× NDr, and NDr,
respectively, so the transmit antenna is (M− 1) times longer than the receive antenna.
For example, if M + N = 8, the maximum length of the VAA is 16Dr when M = N = 4.
The length of the transmit antenna is 12Dr, which is three times longer than that of the
receive antenna, 4Dr. A similar physical size of the two antennas can be obtained using
two transmit arrays and six receive arrays, but the length of the virtual antenna is reduced
to 12Dr. Figure 3 shows VAAs for two cases.
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Figure 3. VAA configuration with eight arrays: (a) four Tx and four Rx (left) (b) two Tx and six
Rx (right).

Although the beam pattern of the VAA varies depending on the selection of weights,
if we choose wMIMO = d(θs)⊗ h(θs), which is the conventional beamforming weight for a
uniform array, the resulting beam pattern becomes the product of the transmit pattern and
the receive pattern is as follows:

(θ) =
∣∣wH

MIMO[d(θ)⊗ h(θ)]
∣∣2 =

∣∣∣[d(θs)⊗ h(θs)]
H [d(θ)⊗ h(θ)]

∣∣∣2
=
∣∣∣dH(θs)d(θ)

∣∣∣2∣∣∣hH(θs)h(θ)
∣∣∣2 = |gtx(θ)|2|grx(θ)|2

(14)

where θs is the steering direction. If the beam direction is fixed to only one angle, it is
theoretically the same pattern as performing transmit beamforming by d(θ) and receive
beamforming by h(θ) separately. However, in the MIMO approach, the beamforming is
performed only in the receiver, and the number of weights increases MN. Thus, it has more
degree of freedom to make multiple beams simultaneously in several directions or perform
adaptive beamforming, which is usually performed digitally.
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2.3. Transmit and Receive Subarray

In the case of a MIMO antenna with transmit and receive subarrays, the final pattern is
the product of the subarray pattern and the MIMO pattern, as written in Equation (11). If w
or c steers the subarray pattern at a specific angle, MIMO beamforming to a different angle
is bound by the subarray pattern and suffers a loss. The loss increases as the beamwidth of
the subarray gets smaller, i.e., as the size of the subarray becomes larger. The idea is the
same as how a single array pattern constrains the array antenna pattern.

Figure 4 shows a case where each transmit array of Figure 3b is replaced by subarrays
with four arrays. The space of all the arrays is set to 0.5 wavelengths. The resulting
beam patterns are shown in Figure 5. The MIMO pattern is obtained by the Figure 3b
configuration, and four arrays make the subarray pattern. The final pattern becomes a
product of these two patterns, which has the good effect of suppressing the sidelobe but
shows a loss of gain when steering at 10◦ compared with the gain at 0◦.
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Figure 4. The final beampattern with TX subarrays and RX arrays shown on the left is the product of
the beampattern of a TX subarray, and that of MIMO made by a single TX array is shown on the right.
One TX subarray transmits the identical waveform.
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Figure 5. The final beampattern with TX subarrays in the case of steering to 0◦ (upper) and
15◦ (lower).

The adoption of the transmit subarray can improve the SNR by increasing the output
power and has the effect of suppressing the sidelobe. However, because it restricts the
angle of multi-beams, it is recommended to use a window to increase the beamwidth.
Figure 6 shows the beampattern created by applying a Taylor window to the transmit
subarray. It demonstrates that the sidelobe is still suppressed while the loss in the 10◦ beam
is decreased.
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Figure 6. The final beampattern when a Taylor window is applied to subarray beamforming.

On the other hand, when the receive array is composed of an analog beamforming
subarray without overlap, another consequence appears in addition to the pattern con-
straint. Figure 7 shows the receive antenna configured in the form of a subarray. In this
case, the spacing of the MIMO receiver is no longer half a wavelength and thus results in
the grating lobe of the MIMO pattern, as shown in Figure 8. The final pattern is the same
as the uniform array pattern if both the subarray beamforming on an analog receiver and
the MIMO beamforming are performed in the same direction. However, if the angle of the
MIMO beamforming is changed in a different direction, the grating lobe and the subarray
pattern modify the final pattern at the same time.
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Figure 7. The final beampattern with TX arrays and RX subarrays shown on the left is the product of
the beampattern of the RX subarray, and that of MIMO made by a single RX array is shown on the
right. Two TX arrays transmit different waveforms.
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Figure 8. The final beampattern with RX subarrays in the case of steering to 0◦ (upper) and
15◦ (lower).
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Although the receiver subarray is unavoidable due to the space constraint of hardware
as frequency increases, the performance is somewhat limited compared with the full
digital array.

3. Design of MIMO Array
3.1. Minimum Redundancy Array

The MRA is a class of non-uniform linear array designed to minimize the number of
sensor pairs with the same spatial correlation lag. If this number of sensor pairs is 1, it is
called a perfect array. If we assume that the arrays are located on an underlying grid with
unit spacing and that w is a vector having 1 at the array position and 0 at the other location,
then the number of times each spatial correlation lag is computed by the autocorrelation of
the position vector with itself, which is called the co-array [22].

c(γ) =
Ne

∑
k=1

w(k)w(k− γ) (15)

where Ne is the size of w, w(k) is k-th element of w, and w(k) = 0 if k < 1 or k > Ne. For
example, a vector w = [1 1 0 0 1 0 1] has 4 arrays (N) and the size (Ne) is 7. As illustrated
in Figure 9, in this case, all co-arrays have one except when γ = 0, indicating that the
sensor pair with the same spatial correlation lag is 1. This type of co-array is called a perfect
array. However, because there is no perfect array for N > 4, it should be chosen between
non-redundant arrays that partially permit holes and MRA with no holes. A hole is a
position where the co-array value is 0, and redundancy is a position where the co-array
value is greater than 1, where γ is not 0. The following equation determines the final size:

Ne =
N(N − 1)

2
− NR + NH + 1 (16)

where NR is the number of redundancies and NH is the number of holes.
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Figure 9. Co-array for the MRA when N = 4.

The MRA is designed to make the largest possible aperture without holes. There has
been a significant amount of research on element spacing to achieve as low a redundancy
as possible for arrays of up to 30 elements [23–25].

3.2. Non-Uniform MIMO Array Configuration

The co-array property is applied to a bistatic MIMO VAA. Because the location of the
MIMO virtual arrays consists of the spatial convolution of the transmit and receive arrays,
if we choose the receive array as the reverse of the transmit arrays, the resulting VAA is the
co-array structure with a length approximately twice that of the transmit array. When the
size of a single antenna is Ne, the size of the resulting VAA is as follows:

NVAA = 2Ne − 1 (17)

In other words, a VAA composed of an MRA generates uniform arrays, and one made
up of non-redundant arrays results in sparse arrays. For example, suppose the transmit
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arrays and receive arrays are configured with a perfect array of N = 4 and Ne = 7 in the
previous section. In that case, the VAA can have the same beam pattern as that of uniform
arrays with 13 elements, as shown in Figure 10.
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Figure 10. TX and RX antenna with an MRA structure and the resulting VAA.

For each N, the size of non-redundant arrays, Ne,nr, and the size of the MRA, Ne,mr, are
summarized in Table 1. The size of the MIMO VAA for each is also listed. In addition, the
VAA size for the case of using two transmit arrays and (2N − 2) receive arrays is written,
in which the transmit antenna and the receive antenna have the same size. Table 1 shows
that when N is greater than 3, VAA apertures using non-uniform arrays are longer than
the aperture using conventional two-transmit array structures. The VAA aperture ratio
increases with N; when N = 8, the ratio is up to 2.46 and 1.68, respectively.

Table 1. List of VAA sizes for the non-uniform array configurations and number.

N
Non-Redundant Array Minimum Redundancy

Array 2-Transmit Arrays

Ne,nr NVAA Ne,mr NVAA Nrx NVAA

3 4 7 4 7 6 4
4 7 13 7 13 6 12
5 12 23 10 19 8 16
6 18 35 14 27 10 20
7 26 51 18 35 12 24
8 35 69 24 47 14 28

When using five transmit and receive arrays, it is possible to make a VAA with 23
sizes using non-redundant arrays with an interval of (1,3,5,2) and a VAA with 19 sizes
using an MRA with an interval of (1,3,3,2). Both are larger than a VAA with 16 sizes,
which is composed of 10 arrays of two transmit arrays and eight receive arrays as shown in
Figure 11.
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Figure 11. Non-redundant array with an interval of (1,3,5,2) can make a 23-sized VAA (up) and the
MRA with an interval of (1,3,3,2) can make a 19-sized VAA (down).

Figure 12 shows the beampattern for each case. The beamforming is performed by
adjusting the weight to make it the same as for uniform arrays, although the hole cannot
be filled out. The non-redundant array has less beamwidth than the MRA because of the
larger aperture size. However, due to the two holes, it has different positions and higher
sidelobe than 23 uniform arrays. Both the MRA and non-redundant arrays have small
beamwidth compared with 16 uniform arrays with two transmit arrays.



Remote Sens. 2023, 15, 78 10 of 13Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 14 
 

 

 

Figure 12. Comparison of beam patterns at N = 5. VAA’s beampattern by the non-redundant array 

shows the smallest beamwidth, but the sidelobe is similar to that by the MRA. 

4. Proposed MRA MIMO with Subarrays 

The minimum redundancy configuration can be applied to 𝐷𝑡 in Figure 1 and 𝐷𝑟 in 

Figure 2 to build a subarray MIMO structure using a multi-channel transceiver. The num-

ber of arrays that comprise the subarray, L and P, depends on the hardware structure of 

the transceiver, which are four in this paper. 

Assume five transmission waveforms and five receive antennas, as shown in Figure 

13. The spacing of the arrays is 0.5 wavelength and the minimum spacing of the subarrays 

is 2 wavelengths. The ratio of the spacing between subarrays is 1:3:3:2. The aperture of the 

transmit and the receive antenna is 20 wavelengths, and the final aperture is doubled to 

40 wavelengths. 

 

Figure 13. MRA MIMO Configuration. The ratios of the spacing among subarrays are 1:3:3:2 and 

2:3:3:1. Each TX and RX subarray is comprised of 4 uniform arrays. 

According to Equation (11), the final beam pattern is the product of the transmit 

subarray beampattern, the receive subarray beampattern, and the MIMO beampattern. 

Again, MIMO beamforming is performed by adjusting the weight to make it the same as 

for uniform arrays. 

When the transmit subarray beamforming, the receive subarray beamforming, and 

the MIMO beamforming are performed at the same boresight angle, say 0°, we can get the 

same result as the uniform array, as shown in the upper graph of Figure 14. However, if 

we control the MIMO digital beam at 5°, it suffers a loss by the subarray beampattern, and 

the grating lobe also occurs, as shown in the lower graph of Figure 14. In other words, the 

subarray beamwidth limits the MIMO beamforming angle. The transmit subarray pattern 

in the figure employs the Taylor window to broaden the beamwidth, whereas the receive 

subarray pattern does not. 

TX

RX

Figure 12. Comparison of beam patterns at N = 5. VAA’s beampattern by the non-redundant array
shows the smallest beamwidth, but the sidelobe is similar to that by the MRA.

4. Proposed MRA MIMO with Subarrays

The minimum redundancy configuration can be applied to Dt in Figure 1 and Dr
in Figure 2 to build a subarray MIMO structure using a multi-channel transceiver. The
number of arrays that comprise the subarray, L and P, depends on the hardware structure
of the transceiver, which are four in this paper.

Assume five transmission waveforms and five receive antennas, as shown in Figure 13.
The spacing of the arrays is 0.5 wavelength and the minimum spacing of the subarrays is
2 wavelengths. The ratio of the spacing between subarrays is 1:3:3:2. The aperture of the
transmit and the receive antenna is 20 wavelengths, and the final aperture is doubled to
40 wavelengths.
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Figure 13. MRA MIMO Configuration. The ratios of the spacing among subarrays are 1:3:3:2 and
2:3:3:1. Each TX and RX subarray is comprised of 4 uniform arrays.

According to Equation (11), the final beam pattern is the product of the transmit
subarray beampattern, the receive subarray beampattern, and the MIMO beampattern.
Again, MIMO beamforming is performed by adjusting the weight to make it the same as
for uniform arrays.

When the transmit subarray beamforming, the receive subarray beamforming, and
the MIMO beamforming are performed at the same boresight angle, say 0◦, we can get the
same result as the uniform array, as shown in the upper graph of Figure 14. However, if
we control the MIMO digital beam at 5◦, it suffers a loss by the subarray beampattern, and
the grating lobe also occurs, as shown in the lower graph of Figure 14. In other words, the
subarray beamwidth limits the MIMO beamforming angle. The transmit subarray pattern
in the figure employs the Taylor window to broaden the beamwidth, whereas the receive
subarray pattern does not.

Next, Figure 15 shows the configuration in which the non-redundant structure is
applied to MIMO. Likewise, the spacing of the arrays is 0.5 wavelengths, the spacing of the
subarrays has two wavelengths as the minimum spacing, and the spacing ratio is 1:3:5:2.
The total aperture is 48 wavelengths longer than the minimum redundancy configuration,
so the beam width is improved. However, the sidelobe characteristics deteriorate due to
holes in the MIMO structure. The upper graph in Figure 16 shows the beampattern formed
when the steering angle of the subarrays and the steering angle of the MIMO beam are
equal to 0◦, and the lower graph shows the beampattern when only the MIMO steering
angle is changed to 5◦.
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Finally, if two transmitters and eight receivers with about 18 wavelengths are config-
ured as shown in Figure 17, the final aperture becomes a uniform array of 36 wavelengths.
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Figure 17. Two transmit waveforms and eight receive subarrays.

Figure 18 compares beampatterns for three configurations steered to 5◦. As expected
from the aperture length, the non-redundant array has the smallest beamwidth and the
worst sidelobe characteristic. Grating lobes due to the minimum interval of the subarray
are common.
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Figure 18. Comparison of beampatterns steered to 5◦. The non-redundant MIMO has the smallest
beamwidth but the worst sidelobe characteristic. Grating lobes are common.

5. Conclusions

We devised a new method for placing transmit and receive arrays for MIMO VAA
with non-redundant or minimum redundant structures. In contrast to the conventional
arrangement, wherein one of the antennas has a relatively long physical size, the proposed
design can increase the VAA aperture while keeping the transmit and receive antennas at
the same size.

In addition, we applied the proposed method to the MIMO antenna with subarrays
and analyzed the beampatterns. Subarrays restrict the direction of multiple beamforming,
and produce grating lobes if the subarrays do not overlap and the interval is substantially
greater than a half waveform. However, the subarray structure is expected to be essential
for small antennas with multi-channel transceivers, which are necessary for moving to a
high operating frequency to improve the range resolution and miniaturize antennas. The
goal of this study was to develop a D-band radar; the results will be implemented using
multi-channel transceivers currently under development.
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