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Abstract: Autonomous localization and navigation, as an essential research area in robotics, has a
broad scope of applications in various scenarios. To widen the utilization environment and augment
domain expertise, simultaneous localization and mapping (SLAM) in underwater environments has
recently become a popular topic for researchers. This paper examines the key SLAM technologies
for underwater vehicles and provides an in-depth discussion on the research background, existing
methods, challenges, application domains, and future trends of underwater SLAM. It is not only
a comprehensive literature review on underwater SLAM, but also a systematic introduction to the
theoretical framework of underwater SLAM. The aim of this paper is to assist researchers in gaining
a better understanding of the system structure and development status of underwater SLAM, and to
provide a feasible approach to tackle the underwater SLAM problem.

Keywords: underwater vehicles; SLAM; vision sensors; acoustic sensors; deep learning

1. Introduction

Since the beginning of the 21st century, the importance of applied research on au-
tonomous positioning technology for mobile robots has grown. A global navigation satellite
system (GNSS) is an effective and accurate solution for the robots’ own positioning and
movement trajectory [1]. However, in some environments where GPS is not available or
when a priori information is insufficient, other solutions must be found. Simultaneous
localization and mapping was introduced to the field of robotics, which entails the robot
obtaining environmental information through sensors carried by itself in an unknown envi-
ronment. During the process of navigation and localization, a structural consistency map of
the surrounding environment is built. Compared to traditional localization methods, SLAM
is a small-sized and cost-efficient instrumentation method [2,3]. Through the efforts of
researchers, SLAM has been implemented in drones, sweeping robots, unmanned vehicles,
smart wearable devices, and other devices [4]. Figure 1 below shows the application of
SLAM in some scenarios.

Figure 1. The application of SLAM technology in different scenarios.

Unmanned underwater vehicles (UUVs) have become a popular option for underwa-
ter exploration due to their safety, portability, and cost-effectiveness. UUVs can be divided
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into two categories: remotely operated vehicles (ROVs) and autonomous underwater ve-
hicles (AUVs) [5–7]. UUVs are mainly used for marine resource investigation, undersea
biology research, underwater structure detection, and marine data collection. The precise
positioning and navigation tasks of underwater vehicles are difficult because the underwa-
ter environment blocks radio signals such as GPS, and the inertial navigation approach is
prone to accumulate errors underwater [8]. Conventional underwater positioning methods
such as short baseline (SBL) and ultrashort baseline (USBL) require the installation of a base
array with a receiver device in the target area or require a periodic position correction by the
AUV [9]. Although these methods are useful, they are costly, and the range of exploration
is limited by the beacons. In addition, the vehicles need to surface frequently and often face
more exertion. To address these challenges, many researchers have started to investigate
how SLAM techniques can be applied to the underwater domain [10,11], thus bringing
new possibilities for autonomous positioning and navigation of underwater vehicles.

In 1986, SLAM was first introduced at the IEEE Robotics and Automation Confer-
ence to address the spatial uncertainty description and transformation representation.
Cheeseman [12] pioneered the use of probabilistic estimation methods for robot localiza-
tion and mapping, and subsequently, this field of research has been pursued by numerous
researchers. SLAM technology has likely gone through three stages of development. From
1986 to 2004, the classical era of SLAM development was mainly focused on the proposal
of probabilistic estimation methods, such as the extended Kalman filter (EKF) [13], the
particle filter (PF) [14], and the maximum likelihood estimation (MLE) [15]. From 2004 to
2015, SLAM entered the era of algorithm analysis, which included the study of algorithm
observability, convergence, sparsity, and consistency. Since 2016, the field has shifted to
address the robustness of SLAM [16]. This research includes algorithm robustness, scalabil-
ity, efficient algorithms under resource constraints, high-level perception, and algorithm
adaptiveness. More recently, with the emergence of computer vision and deep learning
methods, there has been a shift towards SLAM methods based on deep learning [17–19].

In recent years, the widespread deployment of vision sensors and the rapid advance-
ment of computer vision have led to the emergence of visual SLAM as an alternative to
traditional SLAM approaches [20]. Compared to sonar, laser, and infrared range sensors,
visual sensors have several advantages in terms of cost, use, and information acquisition
capability, and have demonstrated a high accuracy in scenarios with adequate lighting and
texture. Depending on the camera type, visual SLAM can be classified into monocular
SLAM [21,22], stereo SLAM [23,24], and RGB-D SLAM [25,26]. Additionally, depend-
ing on the implementation scheme, visual-based SLAM methods can be divided into
feature-based methods (e.g., ORB-SLAM [27–29]), direct methods (e.g., large-scale direct
monocular SLAM (LSD-SLAM) [30]), and semidirect methods (e.g., semidirect visual
ranging (SVO)) [31,32]. Of the existing systems, ORB-SLAM is a popular visual SLAM
solution which utilizes Oriented FAST and rotation BRIEF [33] key-point detectors to match
features across successive images. This key-frame-based approach was derived from prior
SLAM variants (PTAM [34], DT-SLAM [35]). ORB-SLAM has been tested with mobile
robots in various scenarios and has achieved promising results.

In 2000, Williams et al. [36] presented the results of applying a simultaneous localiza-
tion and map building (SLAM) algorithm to estimate the motion of a submersible vehicle.
Scans obtained from an on-board sonar were processed to extract stable point features in
the environment, thus constructing a map of the environment and estimating the vehicle’s
location. This work was the first instance of a deployable underwater implementation of
the SLAM algorithm. However, underwater scenes are typically unstructured and difficult
to navigate due to the presence of illumination, texture, turbidity, and hydrodynamics. This
makes it difficult for camera sensors to accurately extract features, and many land-based
algorithms cannot be applied to underwater scenes. To obtain reliable estimates, SLAM
for underwater scenes typically requires the use of specialized sensors such as inertial
measurement units (IMU), Doppler velocity log (DVL), and depth sensors [37]. Acoustic
and laser sensors are also widely used for sensing the underwater environment [38,39]. The
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fusion of different sensors has become an important approach in solving underwater SLAM.
Despite its relative maturity in traditional scenarios, its application in underwater robot
localization and navigation is still in its development stage and is a complex research area.
Figure 2 illustrates some SLAM algorithms that can be used in underwater environments.
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Figure 2. Partial list of SLAM algorithms that have been used in underwater environments in the
last decade.

In recent years, underwater SLAM technology has developed rapidly, playing an
important role in underwater positioning and surveying. However, it still lacks a systematic
evaluation. Therefore, after carefully reviewing the relevant literature of underwater SLAM,
this paper summarizes the development of this field. We chose recent related research
papers in the underwater environment according to the basic framework, research focus,
and development direction of underwater SLAM. The main contributions of this paper
are as follows: 1. the development of underwater SLAM is introduced systematically;
2. from the framework of SLAM, the following parts of underwater visual SLAM are
mainly introduced: sensors, front-end visual odometry, back-end state optimization, loop
closure detection and mapping; 3. we collect the key points and difficult points that need
to be solved in the development of underwater SLAM; 4. from the perspective of the
application environment and technology development of underwater SLAM, the future
development direction of this field is studied. This paper provides a comprehensive review
of the key SLAM technologies for underwater robots. It is organized as shown in Figure 3.
In Section 1, the research background about underwater robots, SLAM, and underwater
SLAM is introduced. Section 2 compares recent underwater SLAM methods based on the
theoretical framework of SLAM systems. Section 3 analyzes the main problems of current
underwater SLAM. Section 4 makes an estimation of the future development trend and
applications of underwater SLAM, in addition to which relevant datasets are presented and
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relevant experiments are conducted. Finally, the conclusion is summarized in Section 5. This
paper provides a comprehensive review of the key technologies of underwater SLAM in
terms of research background, field applications, theoretical framework, existing methods,
problems, and future trends. It is hoped that this work can provide guidance and help to
researchers in related fields.

Overview of Key Technologies of 

Underwater Vehicle SLAM

Discussion

Introduction
Framework Of 

Underwater SLAM

Research 

Emphasis

Underwater 

Robot

SLAM

Sensor Noise

Feature 

Information

Scene Detection

Underwater 

Ground Truth

Computation 

Complexity

Sensors 

Information

Front-end

Odometry 

Estimation

Back-end 

Optimization

Loop Closure 
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Mapping

Extreme 

Environment

Dynamic 

Environment

Underwater 

Semantic SLAM

Multi-robot SLAM

Underwater 

SLAM

Section 1 Section 2

Section 3 Section 4

Section 2.1

Section 2.2

Section 2.3

Section 2.4

Section 2.5

Section 3.1

Section 3.2

Section 3.3

Section 3.4

Section 3.5

Section 4.1

Section 4.2

Section 4.3

Section 4.4

Figure 3. Structure diagram for underwater simultaneous localization and mapping of this paper.

2. Framework of Underwater SLAM

A simultaneous localization and mapping system consists of three processes: percep-
tion, localization, and mapping. Proprioception sensors and exteroception sensors are used
to obtain information about the environment, thus allowing the robot to estimate and locate
its own position and pose. Following this, a map of the environment is generated. The
SLAM problem is essentially a state estimation problem, which is mathematically expressed
in terms of equations of motion and equations of observation.{

xk = f (xk−1, uk, wk)

zk,j = h
(

yj, xk, vk,j

) (1)

where xk denotes the robot position at time k, uk denotes the robot input at time k, wk
denotes the noise at time k, zk,j is the observation data at time k for the jth waypoint, yj
denotes the jth waypoint, and vk,j is the noise at time k for the jth waypoint. Figure 4 is a
schematic of the visual slam process.

Visual SLAM is a commonly used sensing method for underwater robots and is one
of the main topics of this paper [40]. Figure 5 presents the basic theoretical framework of
visual SLAM, which consists of sensor data, front-end, back-end, loop-closure detection,
and mapping. Sensor data are collected and sent to the front end, which uses a visual
odometer for interframe motion estimation. Loop closure is used to reduce the cumulative
error and drift caused by the accumulation of sensor noise and model errors. The back
end processes the camera positional and loop-closure detection information measured by
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the visual odometer at different moments and optimizes it to obtain globally consistent
trajectories and maps.

1kx −

kx

1kx +

2kx +

jy

,k jz

1,k jz −

   Landmark Vector

Estimated Trajectory

Ground Truth
iy

1,k iz −

Figure 4. Schematic diagram of the SLAM process. The dashed line is the real trajectory. The solid line
is the estimated trajectory. The related description of individual variables are listed under Formula (1).

• Image Preprocessing

• Feature Detection And Tracking

• Pre-Integration

Odometry Estimation

Loop Closure   

& 

Relocalization

• Non-Linear Optimization

• Global Pose Graph Optimization  

• Topology Map

• Scale Map

• Semantic Map

• Hybrid Map

• Camera

• Sonar

• IMU

• Visual-Inertial Alignment 

• Vision-Only SfM

• Pose Estimation

Sensors Data Preprocessing Initialization

Back-endMapping

• Depth

• Compass

Figure 5. Process of underwater SLAM system.

However, due to the unstructured characteristics and complexity of the underwater
environment, conventional SLAM methods can cause various problems when directly
used in this domain. To address this problem, this section presents a schematic analysis
of the various aspects of underwater SLAM systems based on the framework process of
SLAM systems (Figure 5). Moreover, this section summarizes the existing approaches of
researchers. Specifically, Section 3.1 describes the improved underwater SLAM from the
sensor perspective for the specificity of the underwater environment; Section 3.2 analyzes
the front-end odometry estimation with a vision focus; Section 3.3 presents the back-
end optimization algorithm for underwater SLAM; Section 3.4 describes the principles
and related methods for loop-closure detection in underwater SLAM systems. Finally,
Section 3.5 summarizes the mapping approach of underwater SLAM.
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2.1. Sensor Information

SLAM systems are capable of deriving the current position, estimating the trajectory,
and constructing a map of the environment from the information acquired by their sensors.
In comparison to traditional GPS satellite navigation and landmark navigation, a SLAM
system relies solely on its sensor information for calculation. The accuracy of mapping is
contingent upon the abundance of sensor information regarding the sensed underwater en-
vironment. Since GPS and inertial measurement units are not viable options for underwater
navigation due to the environment’s rejection of them, research has shifted to the use of
underwater visual SLAM. Cameras can capture a vast amount of texture information in the
underwater environment and are less expensive than the alternatives, making vision-based
underwater SLAM a popular research topic [41].

However, underwater scenes are highly unstructured and uncertain. This presents a
challenge to underwater robots due to their own structure and the underwater environment,
which can lead to blurred imaging, shadowing, and distortion. Consequently, this results
in a low signal-to-noise ratio of images, leading to a difficulty in accurately extracting
underwater features, errors in matching accuracy, and even a potential tracking failure.
Thus, research into underwater SLAM is always challenging, and the selection of sensors
and the processing of information are of utmost importance [42].

2.1.1. Proprioceptive Sensors

Proprioceptive sensors are crucial components of underwater robots, enabling them
to obtain their own state and position information without external assistance. Commonly
used proprioceptive sensors include the depth sensor, Doppler velocity log (DVL), inertial
measurement unit (IMU), and compass. The DVL works by transmitting acoustic pulses
and receiving Doppler displacement echoes to calculate the vehicle’s velocity. The compass
provides a directional reference, while the IMU, composed of an accelerometer and a
gyroscope, is responsible for measuring acceleration and angular acceleration. The depth
sensor, meanwhile, calculates the depth of the vehicle based on the water pressure. With the
velocity, orientation, acceleration, and depth information provided by these proprioceptive
sensors, underwater robots can estimate their position and pose without external assistance,
thereby allowing for the realization of underwater SLAM.

2.1.2. Exteroceptive Sensors

(1) Vision Sensors
SLAM based on vision sensors is an important class of SLAM algorithms, which can be
classified into monocular, stereo, and RGB-D SLAM depending on the type of camera
used. Additionally, algorithms such as ORB-SLAM3 can also be employed for pinhole
and fisheye cameras.

• Monocular Camera
Monocular cameras use a single lens to generate images, offering advantages
such as a low cost, a simple structure, and usability. Mono SLAM was the first
implementation of real-time monocular vision SLAM. In underwater scenarios,
Hidalgo et al. conducted controlled experiments using ORB-SLAM under differ-
ent setup conditions, as reported in their paper [43]. The results demonstrated
that ORB-SLAM could be used effectively under the conditions of a sufficient
illumination, low flicker, and rich scene features. On the other hand, they also
indicated that monocular cameras were susceptible to light variations, object
motion, and texture blurring when used in underwater scenarios.
Ferrera et al. [44] presented a new monocular visual odometry method that
was robust to turbid and dynamic underwater environments. Results showed
that the optical flow method had better tracking performance than the classical
descriptor-based methods. The optical flow tracking was further enhanced by
adding a retracking mechanism, making it robust to short occlusions caused
by environmental dynamics. The algorithm was evaluated on both simulated
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and real underwater datasets and could be used in applications such as under-
water archaeology. Roznere et al. [45] proposed a real-time depth estimation
method for underwater monocular camera images by fusing measurements from
a single-beam echosounder. The proposed method matched the echosounder
measurements with the detected feature points of the monocular SLAM system
and then integrated them into the monocular SLAM system to adjust the visible
map points and scale. They implemented the proposed method in ORB-SLAM2
and evaluated its performance in a swimming pool and the ocean to verify the
improved effect of image depth estimation, which proved that the method had a
certain application value in underwater exploration and mapping.

• Stereo Camera
In monocular camera SLAM, the scale problem cannot be determined due to the
lack of depth information. In contrast, a stereo camera can acquire the distance
between the camera and the object using the parallax principle. Mei et al. [46]
presented a relative SLAM for the constant-time estimation of structure and
motion with a stereo camera system as the only sensor. This approach employed
a topological metric representation of relative position sequences based on a
heuristic quadtree approach, which allowed for real-time processing while not
strictly limiting the size of the maps that could be constructed. Moreover, Pi et
al. [47] proposed a visual SLAM method based on a stereo camera as a sensor,
leveraging the SURF algorithm for feature detection and matching and the EKF
to fuse the feature coordinates and AUV pose to enable motion estimation in real
time and feature map construction. Furthermore, Zhang et al. [48] suggested an
underwater stereo visual–inertial localization method (FBUS-EKF) based on an
open-source benchmark in the EKF framework. This method fused inertial and
visual information and eliminated severe noise in order to implement a SLAM
system. Experimental results indicated that the typical localization error of the
FBUS-EKF method was less than 3%. Thus, stereo cameras hold great promise
for the accurate proximity operation and localization of underwater robots.

• RGB-D Camera
RGB-D cameras can obtain RGB maps and depth maps directly by physical
ranging. According to their principles, they can be divided into structured light
methods (e.g., Kinect v1) and time-of-flight methods (e.g., Kinect v2). However,
existing RGB-D cameras typically use infrared light, which is severely attenuated
in underwater environments and has high measurement limitations. As a result,
it is difficult to use RGB-D cameras as vision sensors for underwater vision
SLAM. Therefore, monocular and stereo cameras remain the most popularly used
underwater vision sensors.

(2) Sonar Sensors
The lack of illumination in the underwater environment can significantly impact the
quality of the final images. To overcome this issue, sonar can be used to detect and
locate objects in the absence of light by exploiting their property of reflecting sound
waves. Compared to vision, sound waves demonstrate a smaller attenuation rate and
longer propagation distance than light in marine scenes and are not affected by light
and geomagnetic interference. Sonar sensors can be categorized into forward-looking
sonar (FLS), side-scan sonar (SSS), and acoustic lens sonar (ALS) according to the
scanning mode. FLS can be further divided into single-beam sonar and multibeam
sonar. The basic principles of sonar SLAM are shown in Figure 6.

• Single-beam Sonar
Sonar is an essential external detection sensor for simultaneous localization and
mapping in underwater vehicles. To this end, a variational Bayesian-based
simultaneous localization and mapping method for autonomous underwater
vehicle navigation (VB-AUFastSLAM) was proposed based on the Unscented-
FastSLAM (UFastSLAM) and the variational Bayesian (VB) approaches [49]. The
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proposed algorithm was validated in an open-source simulation environment,
and its effectiveness in the marine environment was subsequently verified by
constructing an underwater vehicle SLAM system based on an inertial navigation
system, a Doppler velocity log (DVL), and a single-beam mechanical scanning
imaging sonar (MSIS).

• Multibeam Sonar
Multibeam sonar (MBS), as sonar for underwater sounding, has become one of the
most dominant survey instruments employed in marine activities. The multibeam
echosounder (MBES) typically consists of a projector and a hydrophone, which are
responsible for transmitting and receiving echo soundings to measure topography.
An MBE can have several hundred beams, making it the most suitable sonar
sensor for deep water-terrain applications [50]. In [51], a filter-based multibeam
forward-looking sonar (MFLS) algorithm for underwater SLAM was presented.
Environmental features were extracted using an MFLS and the acquired sonar
images were converted to a sparse point-cloud format by threshold segmentation
and distance-constrained filtering to avoid a computational explosion problem.
Furthermore, the method also fused DVL, IMU, and sonar data of the underwater
vehicle to estimate the position of the vehicle and generate an occupancy grid map
using a SLAM method based on a Rao–Blackwellized particle filter (RBPF) [52].

• Side-scan Sonar.
Although MBS has a high resolution, it is a bathymetric tool rather than an imag-
ing system. Side-scan sonar (SSS), with a wider range of applications, is now a
commonly used tool for detecting submarine targets such as wrecks, mines, and
pipelines. SSS can visually provide acoustic imaging of the seafloor morphology
with a relatively high resolution. MBS and SSS have good complementarity in
detecting seafloor targets and can improve the accuracy of underwater SLAM.
Side et al. [53] described a side-scan sonar SLAM system for online drift com-
pensation for underwater robots. The processing chain consisted of an automatic
landmark detector, an automatic data association module, and the SLAM filter.
In order to improve the robustness of the whole system while satisfying real-time
performance, a batch processing method based on joint compatibility branch
and bound (JCBB) was used for data association [54]. The effectiveness of the
system was verified in sea trials. Furthermore, there are other sonar systems such
as synthetic aperture sonar (SAS) [55] and dual-frequency identification sonar
(DIDSON) [56]. A comprehensive survey of sonar SLAM can be found in [57–59].

IO Interface

Landmark 

Detector
Data Buffer EKF

Sonar Data Navigation Data Error Compensation

Figure 6. System structure of SLAM based on sonar.

(3) LiDAR Sensors
LiDAR sensors are capable of providing high-frequency range measurements that
can operate consistently in complex lighting conditions and optically featureless
scenarios [60]. Compared to camera or sonar imaging, laser-scanning imaging can
provide higher-resolution 3D measurements of the seafloor in scenes lacking texture
underwater. These point cloud data, generated by LiDAR, can provide easy access to
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the SLAM system. Moreover, the data generated by LiDAR can be used to accurately
map the seafloor and create detailed 3D models. Additionally, LiDAR sensors can be
used to detect objects in the environment, allowing for the creation of more accurate
navigational maps. Therefore, LiDAR has become a popular choice for seafloor
mapping and navigation.
Collings et al. [61] deployed an underwater LiDAR system in parallel with an MBES
to survey Kingston Reef of Rottnest Island, Western Australia. In that paper, the
relative accuracy and characteristics of underwater LiDAR and multibeam sonar
were compared and summarized to map the habitat. Massot et al. [62] proposed a
bathymetric SLAM solution for underwater vehicles. The alignment problem of point
clouds collected from a single-line-laser structured-light system was solved. In that
work, the relative uncertainty in the vehicle localization was reduced by using time-
constrained subgraphs. Three translational degrees of freedom and one localization
degree of freedom were also used for positional estimation. However, the system
could not utilize traditional SLAM image features. Palomer et al. [63] used a 3D
underwater laser-scanning system to achieve underwater pipeline structure mapping
on a Girona 500 AUV, which can be used for SLAM framework construction.
However, the data quality of LiDAR measurements is susceptible to extreme envi-
ronments and the point cloud alignment errors caused by the smoothness of the
motion. Therefore, the use of single-laser sensors in underwater SLAM environments
is more restrictive. Debeunne et al. [64] provides a comprehensive survey on visual–
LiDAR SLAM. Solutions using vision, LiDAR, and sensor fusion of both modalities
are highlighted.

2.1.3. Multiple Sensors

Single types of sensors often have certain drawbacks when used in underwater SLAM
systems. To improve the accuracy and robustness of underwater SLAM, some scholars have
integrated multiple sensors into the system. The resulting sensor fusion enables underwater
SLAM with a higher accuracy and robustness [39]. Common fusion methods include vision–
inertial SLAM (composed of vision and IMU), laser–vision SLAM (composed of laser and
vision), and multisensor SLAM (combining sonar, IMU, vision, etc.). Multisensor fusion
can be further divided into data layer fusion, feature layer fusion, and decision layer fusion,
according to the level of fusion. Coupling complexity can be categorized into loosely
coupled, tightly coupled, and ultratightly coupled. Additionally, fusion methods can
further be divided into weighted average method, Kalman filter, Bayesian estimation, D-S
evidence theory, fuzzy logic, neural network, and so on (as shown in Figure 7).

Level of fusion

Data layer 

Feature layer 

Decision layer 

Coupling complexity

Method of fusion

Loose couple

Tight couple

Ultra-tight couple

Weighted 

average method
Kalman filter

Bayesian 

estimation

D-S evidence 

theory

Fuzzy logicNeural network

Figure 7. Multiple sensors fusion methods classification.
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The two sensing modalities, visual and inertial measurement, provide complementary
characteristics that can effectively improve the accuracy of visual–inertial odometry or
SLAM. Generally, the main visual–inertial localization methods can be divided into two cat-
egories: a class of Kalman filter based methods, such as MSCKF [65] and ROVIO [66]; and a
class of graph-based optimization methods, for instance, OKVIS [67] and VINS-Mono [68].

OKVIS was the first relatively complete visual–inertial fusion scheme and has become
the basis for many multisensor SLAM algorithms. This method was built with a tightly
coupled fusion to best utilize all measurements. Cost functions (combining visual and
inertial terms in a fully probabilistic manner) were used for the nonlinear optimization.
At the algorithmic level, that paper provided a rigorous probabilistic derivation of the
IMU error terms and the respective information matrix, as well as the association of con-
tiguous image frames. At the system level, hardware and algorithms were developed for
accurate real-time SLAM. Compared to the filter-based method, a higher accuracy was
achieved, although the computational effort was increased. In 2022, Leutenegger proposed
OKVIS2 [69], which featured the creation of pose-graph edges through the marginaliza-
tion of common observations, which could be fluidly turned back into landmarks and
observations upon loop closure.

VINS-Mono is a visual–inertial system consisting of a monocular camera and a low-
cost inertial measurement unit. In that paper, a robust and versatile monocular visual–
inertial state estimator was proposed. A tightly coupled, nonlinear optimization method
was used to fuse pre-integrated the IMU measurements and feature observations to obtain
a highly accurate visual inertial odometer. The global consistency was enhanced by a
four-degree-of-freedom pose map optimization. In addition, the system could save and
load maps efficiently for map reuse and map combination.

SVIn2 [70] presented a tightly coupled key-frame-based simultaneous localization
and mapping system. The method fused visual sensors, IMU, depth meters, and sonar to
address the problem of localization drift and tracking loss, which is particularly relevant
for underwater environments. Moreover, a loop-closure detection and relocalization func-
tion based on the bag-of-words (BoW) library was implemented to further improve the
performance of the system. The structure of SVIn2 is shown in Figure 8.

Stereo 

camera

IMU

Depth

Sonar
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& tracking

Pose & speed

/bias propagation

Reprojection 

error

Position 

estimation (z)

IMU error

Position 

estimation 
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Depth error

Sonar range error

Pose 

optimization 

Keyframe 

marginalization

Loop closing & 

relocalization

Local optimizationSensors

Figure 8. System structure of SVIn2: an underwater SLAM system using sonar, visual, inertial, and
depth sensors.
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Remark: In addition to improving the accuracy of sensor-acquired information, pre-
processing the acquired information (e.g., underwater image enhancement) is another way
to improve the effectiveness of SLAM. Commonly used underwater image enhancement
algorithms include adaptive histogram equalization (AHE [71]), median filtering (MF [72]),
and dark channel prior (DCP [73,74]) algorithms. An extensive review of underwater image
enhancement can be found in [75,76].

2.2. Front-End Odometry Estimation

As the front end of the system, the odometer estimate calculates the relative poses by
continuously tracking the egomotion of the camera and provides better initial values for
the back end. Global trajectories are reconstructed by integrating relative poses for a given
initial state. This paper aims to investigate the use of visual data for odometry estimation as
they are a common way of perceiving underwater. By exploring this phenomenon, we aim
to provide insights into the development of more effective odometry estimation methods
for underwater applications.

Visual odometry is a method of camera motion estimation that utilizes the adjacent
image information acquired from the camera to determine the relative displacement of
static feature points on consecutive frames, thereby calculating relative translation and
rotation increments. Furthermore, the final camera motion can be determined by connecting
them to a trajectory on a global reference coordinate system. In terms of implementation
methods, visual odometry can be divided into two distinct categories: geometry-based
methods and deep-learning-based methods.

The geometry-based methods can be further divided into feature-based method and
direct method. Among them, the feature method extracts feature points (FAST, SIFT, SURF,
ORB etc.) in the image by an algorithm that computes matching feature points in adjacent
frames and uses geometric relationships to obtain the rotation matrix and translation matrix
of the camera. The goal of the feature point method is to minimize the reprojection error,
which is typically achieved by computing the difference between the coordinate values of
the pixels. The structure diagram of feature-based visual odometry is shown in Figure 9.

Feature 

detection

Image 

sequence

Feature 

mapping

Motion 

estimation

Bundle 

adjustment

Scale 

estimation

Outlier

rejection

Camera 

calibration

pose

Figure 9. Structure diagram of feature-based visual odometry.

In contrast to the feature-based method, direct methods [77] such as SVO [32] and
DSO [78] minimize the photometric error, and the function takes the form of subtracting
the grayscale values of the pixels. Direct methods usually match two consecutive images
based on the assumption of constant grayscale. The feature point method relies on a
more repetitive feature extractor, and correct feature matching. The direct method is
more applicable compared to the feature method when there are many repetitive textures
in the environment and there is a lack of corner points. However, the direct method is
relatively more computationally intensive and usually requires GPU-based computational
acceleration. The comparison results between the feature-based method and the direct
method are shown in the Table 1.

Unlike geometry-based methods, deep learning methods extract high-level feature
representations from images without traditional feature extractors. In underwater scenar-
ios, deep learning methods are often an excellent underwater visual odometry solution.
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Early deep learning visual odometry generally consisted in a method of replacing some
of the work in the system with deep learning, and such methods were generally referred
to as hybrid visual odometry [79]. Subsequently, some end-to-end visual odometry based
purely on neural networks were gradually proposed by scholars [80,81]. Based on the
availability of ground-truth labels in the training phase, end-to-end visual odometry sys-
tems can be further classified into supervised visual odometry and unsupervised visual
odometry [82,83]. The visual odometry structure diagram based on deep learning methods
is shown in Figure 10.

Table 1. Comparison of feature-based method and direct method of visual odometry.

Classification Feature-Based Method Direct Method

Concept Based on feature point matching;
minimize the reprojection error

Based on gray invariant; minimize
the luminosity error

Advantage Strong robustness and high precision Can be used in scenes with repetitive
textures and missing corners

Disadvantage Both quantity and quality of feature
points are required

Sensitive to illumination changes;
difficult to realize loop-closure

detection and relocation

Characteristic

Data association and pose estimation
are decoupled; builds sparse maps;

loop-closure detection and relocation
are required

Data association and pose estimation
are coupled; builds semidense or

dense maps; suitable for
multisensor fusion

Feature extraction

Trained  model

Camera pose 

regression
Camera pose

Multi-sensor data

Image

Figure 10. Visual odometry structure diagram based on deep learning methods.

Remark: for a more detailed overview of the VO section, please refer to [84–86].

2.3. Back-End Optimization

SLAM is essentially an estimation of the uncertainty in the robot itself and the sur-
rounding space. As time accumulates, front-end odometry estimates accumulate errors in
the estimation of camera poses. Based on the front-end odometry, the back end can perform
the state optimization of the entire system at a larger scale and over a longer period of
time. For underwater vision SLAM, the mainstream state optimization algorithms include
the extended Kalman filter, based on filtering theory, and graph optimization, based on
nonlinear optimization theory. To date, the research into the application of these algorithms
to the underwater environment has been limited, and further study is needed to determine
their effectiveness.

In the SLAM solution process, the linear optimization utilizes a filter model, which
is based on Bayesian probability theory. This filter model allows for the conversion of the
SLAM problem into the determination of the joint probability of the camera subject pose
and the spatial features of the surrounding environment.

The goal of graph-optimization SLAM is to estimate the maximum a posteriori (MAP)
of the pose of the mobile robot based on the environmental observations, namely,

X∗ = argmax(P(X|U)) (2)
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where X represents the pose of the robot, and U represents the constraint condition.
Through the Bayes theorem, we can get:

P(X|U) ∝ ∏
i

P(xi+1|xi, ui) ∗∏
ij

P
(
xj|xi, uij

)
(3)

The key to graph-optimization SLAM is to compute the maximum posterior opti-
mization result when the probability distribution is maximized. That is, solving for the
maximum posterior probability of the variable to be estimated is transformed into solving
for the maximum likelihood estimate.

Loop-closure detection is the commonly used back-end optimization approach (refer
to Section 2.4 for details), in addition to BA [87] (minimizing the reprojection error of the
map by jointly optimizing the map and the poses) or pose–map optimization (representing
the pose–map relationship as a computational map to be optimized) strategies to obtain a
more global composition map and pose estimation.

2.4. Loop-Closure Detection

Loop-closure detection is a method for the global optimization of maps, which is used
to suppress the error accumulation between the estimated and real values of the camera
poses. During the camera movement, the algorithm calculates the similarity between
maps to determine whether the camera has reached a visited scene. Upon detection, the
information is transmitted to the back end for optimization, ensuring that the estimated
trajectory is geometrically consistent and the accumulated error is eliminated. The flow
chart of the loop-closure detection is shown in Figure 11.

The underwater scene is highly dynamic and lacks texture and structural features,
making feature information from underwater sensors problematic when applied to loop-
closure detection compared to structured ground environment information. These factors
increase the difficulty of loop-closure detection, likely leading to false or missed detection
events. The cumulative error resulting from missed detection events significantly affects
the accuracy of positioning and framing. Moreover, the wrong loop-closure results inputted
to the back end for optimization can even cause a failure of the entire SLAM system.
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Figure 11. Flow chart of the loop-closure detection.

Traditional loop-closure detection is based on a bag-of-words (BoW) model to store
and use the visual features of the detector. Scene recognition is achieved by matching
manually designed sparse features or pixel-level dense features [88]. Common methods
include DBoW2 [89], FBoW [90], and iBoW-LCD [91].

Bonin et al. [92] presented an experimental evaluation of a hash-based loop-closure
detection method for underwater autonomous vehicles utilizing a new global image de-
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scriptor called network-hash-based loop closure (NetHALOC). The conversion from images
to hashes resulted in significantly fewer data to process, share, compare, and transfer in
global navigation, localization, or mapping tasks. To demonstrate the performance of the
proposed closed-loop detection method, a comprehensive test was conducted using many
real underwater images, which were compared by three different high-quality global image
descriptors. The results showed that the proposed method was suitable for underwater
visual SLAM applications.

However, the problem was complicated by light, visual range, distortion, and the
motion of camera in underwater scenes. Because deep neural networks extract high-
level features, these methods are more robust to viewpoint and scene changes. Memon
et al. [93] proposed a new hyperdictionary deep learning method. Unlike the traditional
BoW dictionary, it made use of more advanced and abstract features. The proposed method
did not require the generation of a vocabulary list, which made it memory efficient. Instead,
it stored the exact features, which were few and had a small memory usage.

Loop-closure detection based on deep learning has been demonstrated to provide
more robust and effective visual features, with better results for position recognition. In
the context of underwater scenes, deep learning methods have been shown to exhibit a
higher accuracy and stronger robustness than traditional methods. As such, loop-closure
detection based on deep learning is an important future research direction for underwater
SLAM, offering the potential to achieve an improved accuracy and robustness [94–97].

Remark: Robots are subject to rapid motion or other factors that may lead to image
matching and trajectory tracking failure. Consequently, loop-closure detection may not
be suitable for such applications [98,99]. As an alternative, relocalization recalculates
the camera pose by leveraging the map or repositioning based on map stitching, which
provides a more versatile and robust system.

2.5. Mapping

Mapping is an essential component of mobile robotics, as it allows the robot to build
a model that accurately reflects the environment. Underwater maps, in particular, have
become increasingly important for marine scientific research. These maps typically serve
several functions, such as localization, navigation, obstacle avoidance, reconstruction, and
interaction. The representation of the final map generated by an underwater SLAM system
can vary depending on the method and the implemented functionalities. Generally, these
maps can be divided into several categories.

(1) Topology Map
Topological maps possess a high degree of abstraction and are well-suited to en-
vironments with large areas and simple structures. This approach represents the
environment as a graph in a topological sense, with nodes in the graph corresponding
to a feature state or location in the environment. Key frames are utilized as nodes
of the map, and common data associations between them are used as edges of the
map. By abstracting the map into nodes and edges in line with graph theory, the maps’
compatibility with human thinking is improved [100]. Choset et al. proposed a novel
approach to simultaneous localization and mapping (SLAM) that utilized the topology
of free space to localize the robot on a partially constructed map [101].
Topological maps can be used for path planning, due to their relatively small stor-
age and search space, making them computationally efficient. Furthermore, they
enable the utilization of numerous sophisticated and efficient search and inference
algorithms [102]. However, topological maps typically lack metric information and are
therefore unsuitable for navigation. The use of such maps relies on the identification
and matching of topological nodes. If the environment is too similar, topological map
methods may have difficulty distinguishing between two points.
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(2) Scale Map

• Raster Map
The raster map divides the 3D environment space into cubes of equal size, each
representing an area of 3D space in the real environment. The value of each cube
reflects the probability of an obstacle existing in the corresponding 3D space.
The raster map preserves as much information as possible about the entire envi-
ronment, enabling self-positioning, path planning, localization, navigation, and
obstacle avoidance. Furthermore, it has great advantages for fusing multisensor
information, such as weighted average methods and D-S evidence inference meth-
ods. However, as the size of the environment increases, more computation and
storage space are required. When the number of rasters increases, for instance in
large-scale environments or when the environment is divided in greater detail,
the maintenance behavior of the map becomes more difficult. The search space in
the localization process is large and, without a better simplification algorithm,
real-time performance is poor [103].

• Landmark Map
Geometric features of the environment are represented using parametric features
(e.g., points, lines, and planes). Based on the feature point density, these can
be further classified into sparse, semidense, and dense maps. Notably, sparse
road maps can only be used for localization, whereas dense maps can be used for
navigation and obstacle avoidance functions [104].

• Point Cloud Map
The environment is described by a large number of three-dimensional spatial
points, discretizing all objects in the environment into a dense point cloud [105].
Such point cloud maps are suitable for localization, navigation, obstacle avoid-
ance, and 3D reconstruction. Meanwhile, large-scale environments necessitate a
greater amount of computation and more storage space.

(3) Semantic Map
Semantic maps are composed of several distinguishable semantic elements, which can
be either scene types or object types. The emphasis is placed on associating semantic
concepts with objects in the map, giving them a more abstract meaning. Furthermore,
these maps enable mobile robots to act more intelligently and perform more complex
interaction tasks [106]. However, the types of objects in different environments often
differ. On the one hand, it is not possible to assign semantic concepts to all objects
when constructing semantic classes. On the other hand, objects of the same type may
differ significantly, while objects of different classes may be more similar, making it
difficult to create cognitive maps for complex environments. Furthermore, the complex
cognitive map creation algorithm also necessitates a greater computational effort.

(4) Hybrid Map
Currently, no single map representation is capable of adequately meeting all task
requirements (localization, navigation, obstacle avoidance, path planning, 3D re-
construction, interaction, etc.) and performance criteria (high accuracy, speed, low
computational effort, small storage space, etc.). Consequently, it would be more ad-
vantageous to describe the underwater environment using multiple different map
representations, thereby harnessing the advantages of each and ultimately achieving
different objectives.

3. Research Emphasis and Difficulties

According to the above, we have summarized some selected works on underwater
SLAM in Table 2. However, considering the special characteristics of the underwater envi-
ronment, traditional SLAM algorithms have encountered many problems when expanding
to this domain. Thus, there are still many unsolved issues concerning underwater SLAM
that require attention.
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Table 2. Summary of selected works on underwater SLAM.

Sensors Method Optimization Loop Closure Scenario

LSD-SLAM [30] Mono Direct Pose graph Yes Large-scale,
consistent maps

DSO [78] Camera Direct and sparse Nonlinear joint No -

SVO [31] Mono Semidirect Minimize
reprojection error No -

ORB-SLAM2 [28] Mono, stereo, RGB-D Indirect BA Yes Textured environment

ORB-SLAM3 [29] Mono, stereo, RGB-D,
pinhole, fisheye, IMU Indirect BA Yes Textured environment

ROVIO [66] IMU, camera Direct EKF No Employed in UAV

OKVIS [67] Camera, IMU Indirect Marginalization
of key frames No Hand-held indoor

motion, bicycle riding

OKVIS2 [69] Stereo, IMU Indirect
Marginalization of

common
observations

Yes -

SVIn2 [70] Stereo, IMU,
Depth, Sonar Indirect Tightly coupled Yes Underwater

environments

VINS-Mono [68] Mono, IMU Indirect Tightly coupled and
pose graph Yes Employed in UAV

MSCKF [65] Mono, stereo, IMU Indirect EKF No Real-World
environment trajectory

DeepVIO [107] Stereo, IMU Self-supervised
learning method - No -

SelfVIO [108] Mono, IMU Self-supervised
learning method - No -

Dolphin SLAM [109] Sonar, camera, DVL, IMU Indirect Bioinspired Yes Underwater
environments

AEKF-SLAM [110] Sonar (mainly) Indirect AEKF Yes Underwater
environments

[63] Laser, AHRS, DVL,
pressure sensor Indirect EKF No Underwater

pipe structure

[111] Mono Indirect BA Yes
Autonomous

underwater ship
hull inspection

3.1. Sensor Noise

Sensors usually have a limited operating depth, making applications costlier. The
working depth and cost of underwater sensors vary depending on the type of sensor and
the application scenario [112]. For instance, the operational depth of an underwater IMU
is typically limited to a few hundred meters and comes at a low cost. Conversely, sonar
systems can operate at depths reaching several thousand meters but are comparatively
expensive. Cameras and laser radars generally have shallow operational depths in the
tens of meters range, yet their costs remain high. In general, underwater sensors such
as visualization sonar (imaging sonar), profiling sonar, DVL, IMU, camera, and depth
gauge have distinct characteristics that make it difficult to obtain the same high quality
of environmental sensing data as that of land-based LIDAR/cameras. Moreover, the
accuracy of sensor data from cameras and other sensors is limited underwater, particularly
in environments affected by low light, turbidity, and currents [113,114]. Consequently, the
positional estimation and mapping tasks often result in a significant bias due to sensor
noise, which varies depending on the situation, especially in large-scale environments
where a new calibration is required to achieve better system estimates. Therefore, the
modeling of sensor noise is a challenging yet critical task.

3.2. Feature Limitation

Landmark recognition is essential for maintaining the estimated position of a robot,
reducing uncertainty in the system, and identifying the position prior to movement. The
unstructured nature of underwater environments, however, presents a challenge for feature
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extraction and matching, as there are few obvious objects or features in most scenes [115].
Additionally, optical sensors, such as cameras, are prone to interference from light and
turbidity, while also experiencing decreased imaging results due to the limited field of view
in deep-water environments [116,117]. While sonar sensors may provide a larger field of
view and improved feature extraction compared to optical sensors, they are still subject to
interference from a variety of external factors during actual measurements, including an
uneven distribution of the seawater medium, fluctuations generated by the robot’s own
motion underwater, and noise from marine animals and reverberation interference.

3.3. Scene Detection

Loop-closure detection refers to the ability of a mobile robot to determine when it has
reached a location for which a map has been previously constructed, and then to update
and correct the originally constructed map, with the main purpose of eliminating the
long-term accumulated error of the SLAM system. As previously stated, the underwater
environment does not have many structural features, and it undergoes large dynamic
changes, making it difficult to perform closed-loop detection, and likely leading to false
or missed detection events [118]. Moreover, compared to structured ground environment
information, the feature information of underwater vision and acoustics presents additional
challenges when used for closed-loop detection [119,120]. These false or missed detection
events can lead to cumulative errors, which significantly affect the accuracy of positioning
and composition.

3.4. Underwater Ground Truth

Given the GPS-denied nature of underwater scenarios, obtaining the true value of a
robot’s position and trajectory is a difficult task due to the errors of underwater sensors.
Acoustic positioning systems such as LBL [121], SBL, and USBL require extensive base-array
installation work and tend to have a greater position uncertainty than the modern resolution
of multibeam or interferometric side scan sonar, making them costly. Furthermore, true
underwater values are especially difficult to obtain in deep-sea and cave scenarios, resulting
in a relatively small number of reliable datasets specific to underwater SLAM. (We have
collected some publicly available underwater datasets for use [122–127], as detailed in
Appendix A).

3.5. Computational Complexity

The computational complexity of SLAM systems is influenced by the size of the explo-
ration environment and is closely related to the methods used for feature extraction, track-
ing, data association [128], and filtering. The location landmarks, map elements, and other
such features generated by the robot as it moves through the underwater environment are
identified and monitored, increasing the uncertainty of the associated computation [129].
Compared to surface environments, underwater environments such as oceans, lakes, and
reservoirs have a huge space and complex underwater robot activities, making it difficult
to achieve a balance between accuracy and speed for SLAM systems. To date, improv-
ing the accuracy in large-scale environments has remained a challenge for underwater
SLAM applications.

4. Discussion

In the previous section, we discussed the system framework of underwater SLAM and
the current research difficulties. In this section, we study the future development direction
of underwater SLAM from the perspective of application environment and technological
development, so as to open up new ideas for the research of underwater SLAM.

4.1. Underwater SLAM in Extreme Environments

In complex or confined underwater environments, such as underwater energy storage
facilities, docks, flooded tunnels, and sewers, human inspection is often dangerous or
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impractical, necessitating remote inspection using unmanned underwater vehicles. Imple-
menting such systems, however, becomes more difficult when the size and motion of the
robot must be considered [130]. Furthermore, underwater SLAM systems are hindered by
the low illumination, turbidity, and lack of features in these environments, severely limiting
the capabilities of underwater inspection robots to manually controlled, low-quality visual
inspections. This is a key research direction for scholars to explore [131,132].

4.2. Underwater SLAM in Dynamic Environments

Considering the pose calculation principle of SLAM systems, dynamic objects in a
SLAM process will seriously affect feature matching and calculation results. On land,
SLAM in dynamic environments is a hot research topic [133–135]. However, underwater
dynamic phenomena are very common, such as sea creatures, water flow caused by robot
motion, bubbles, etc. Maps generated in dynamic environments are more flawed than
those generated in static environments. Aiming at underwater SLAM problems in dynamic
environments is also more difficult. As an end-to-end feature learning method, deep
learning technology provides a new idea for dynamic feature extraction and processing.
Unlike direct and feature-based methods that use physical models or geometric theory, deep
learning methods provide an alternative to solve problems in a data-driven way. Benefiting
from the ever-increasing quantity of data and computational power, these methods can
generate accurate and robust systems for tracking motion and estimating the structure of
real-world scenes. They are rapidly evolving into a new field of research [136]. However,
considering that an underwater dataset is not enough, and the algorithm is facing the
problem of scene applicability, the work of underwater dynamic SLAM based on deep
learning is slow yet still destined to be an important method to solve dynamic problems in
the future (as shown in Figure 12).

Figure 12. Effect of dynamic, weakly textured objects on underwater SLAM (green squares with
crosses inside mean feature points).

4.3. Underwater Semantic SLAM

Most current SLAM systems are based on geometric features and ignore the semantic
information of objects in the environment, resulting in a relatively homogeneous system
function. With the continuous development of deep learning in the field of computer imag-
ing, researchers have started to incorporate target recognition and semantic segmentation
into SLAM to achieve more complex functions. Semantic SLAM refers to a SLAM system
that obtains semantic information while acquiring the geometric structure information
in the environment during the mapping process, and at the same time recognizing the
independent individuals in the environment [137]. This semantic information includes
information about the position, pose, and functional attributes of the individuals. With
this semantic information, robots can more effectively cope with complex scenarios and
refine and improve service tasks. Semantic extraction is currently a deep learning approach
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that uses deep neural networks to process images, such as segmentation and recognition,
and add labels, and the training results determine the final effect of semantic SLAM. In
specific underwater environment tasks, such as underwater salvage, underwater defect
detection, marine biological analysis, and other underwater tasks, the semantic recognition
of captured objects during SLAM is required [138]. However, the accurate generation of
image-based obstacle maps in cluttered underwater environments is extremely demanding
for the robustness of underwater robotic SLAM systems. Moreover, such recognition can
be affected by lighting conditions and moving objects (e.g., schools of fish), which can lead
to misjudgments. The presence of a large number of dynamic objects is also detrimental
to the final composition. Therefore, there are still many challenges for the application of
semantic SLAM in underwater environments [139]. The schematic diagram of underwater
semantic segmentation is shown in Figure 13.

Pooling indices

Input Output

Convolutional encoder-decoder

Figure 13. Schematic diagram of underwater semantic segmentation.

4.4. Multirobot Underwater SLAM

Different from SLAM in indoor scenes, underwater scenes have a large area and a
single structure, thus relying on a single robot will result in low efficiency [140]. To address
this, multirobot SLAM requires technical elements such as a system to build multiple SLAM
systems and to collect information from each robot. Moreover, map fusion, an important
process in multirobot SLAM, combines multiple local maps estimated by the robot team
into a global map [141].

The fusion of multiple local maps is usually done using a loopback detection method
that identifies whether multiple robots have visited the same scene. Additionally, a robot
federation approach can be employed, allowing another member of a robot team to be
observed in the images of that member. However, when multiple robots operate in en-
vironments with multiple similar scenes, they are likely to identify different points with
similar scenes as the same location, leading to erroneous results from the loopback detec-
tion. Furthermore, the viewpoint positions of the cameras mounted on each robot are not
guaranteed to be identical, making it difficult to observe the same place. Moreover, the
descriptors of each scene differ, thus making it impossible to detect loopback even when
the same place is observed. Establishing an effective fusion process of multiple maps is the
focus of multirobot underwater SLAM research [142,143].

5. Conclusions

This paper systematically discussed the key technologies of SLAM in underwater
scenes, including theoretical background, system framework, existing methods, problems,
applications and development trends.

In this paper, the methods of sensor information, front-end odometry estimation,
back-end optimization, loop-closure detection, and mapping in the underwater SLAM
system framework were summarized. The sensor information part involved propri-
oceptive sensors, exteroceptive sensors (visual, acoustic, and LiDAR), and multiple
sensors; the front-end odometry estimation part involved geometry-based methods
(feature methods and direct methods) and deep-learning-based methods. The back-end
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optimization part involved the extended Kalman Filter based on filtering theory and
graph optimization based on nonlinear optimization theory. The loop-closure detection
part involved bag-of-words methods and deep-learning-based methods. The mapping
part analyzed different types and characteristics of maps. Furthermore, this paper also
outlined the specific research difficulties of underwater SLAM, including sensor noise,
feature information, scene detection, ground truth, and computational complexity. From
the perspectives of extreme environment, dynamic environment, underwater semantic
SLAM, and underwater multirobot SLAM, the future research directions and focuses of
underwater SLAM were presented.

Our research results link the latest research results in the fields of underwater robotics,
computer vision, and machine learning, and provide guidance to future researchers for
understanding feasible approaches to apply emerging technologies to solve underwater
robot localization and composition problems.
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Abbreviations
The explanations of some abbreviations in the text are shown as follows:

SLAM Simultaneous localization and mapping SSS Side-scan sonar
GNSS Global navigation satellite system ALS Acoustic lens sonar
GPS Global Positioning System VB Variational Bayesian
UUV Unmanned underwater vehicles UFast Unscented-fast
ROV Remotely operated vehicles MSIS Mechanical scanning imaging sonar
AUV Autonomous underwater vehicles MBS Multibeam sonar
SBL Short baseline MBES Multibeam echosounder
USBL Ultrashort baseline MFLS Multibeam forward looking sonar
EKF Extended Kalman filter RBPF Rao–Blackwellized particle filter
PF Particle filter JCBB Joint compatibility branch and bound
MLE Maximum likelihood estimation SAS Synthetic aperture sonar
ORB Oriented FAST and Rotation BRIEF DIDSON Dual-frequency identification sonar
LSD Large-scale direct MSCKF Multistate constraint Kalman filter
SVO Semidirect visual odometry FBUS Fiducial-based, underwater stereo
PTAM Parallel tracking and mapping BoW Bag-of-words
DT Deferred triangulation AHE Adaptive histogram equalization
IMU Inertial measurement units MF Median filtering
DVL Doppler velocity log DCP Dark channel prior
6-DOF Six-degree-of-freedom SIFT Scale-invariant feature transform
LBL Lone baseline SURF Speed up robust feature
ROVIO Robust visual inertial odometry SVO Semidirect visual odometry
VIO Visual inertial odometry DSO Direct sparse odometry
SVIn Sonar, visual, inertial MAP Maximum a posteriori
VINS Visual–inertial state BA Bundle adjustment
CNN Convolutional neural networks NetHALOC Network hash-based loop closure
SfM Structure from motion AHRS Attitude and heading reference system
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Appendix A

One of the difficulties of underwater SLAM is the acquisition of underwater truth
values, which indirectly leads to a scarcity of datasets dedicated to underwater localization
and composition. In this paper, we present several publicly available underwater SLAM
datasets that can be used by researchers for experimental comparisons. Refer to Table A1
for details.

The Aqualoc dataset is dedicated to the development of simultaneous positioning
and map construction methods for underwater vehicles navigating near the seafloor. Data
sequences were recorded in three different environments: a harbor at a few meters depth,
and two sites at depths of 270 and 380 m. The data acquisition was performed by ROVs
equipped with a monocular monochrome camera, a low-cost inertial measurement unit, a
pressure sensor, and a computational unit. The collected data consisted of 17 sequences,
provided as ROS packages and used as raw data. The sequence images of the dataset are
shown in Figures A1 and A2.

Table A1. Description of underwater SLAM datasets in recent years.

Simulated datasets produced
using UWSim (2016) [122]

This paper provides an open collection of seven different simulated datasets produced using an
underwater simulation. Those datasets present three trajectories and two simulated seafloor

visual data based on real coral reef mosaics.

Underwater caves sonar and
vision dataset (2017) [123]

The dataset was collected with an autonomous underwater vehicle test bed in the unstructured
environment of an underwater cave. The vehicle was equipped with two mechanically scanned

imaging sonar sensors to simultaneously map the cave’s horizontal and vertical surfaces, a
Doppler velocity log, two inertial measurement units, a depth sensor, and a vertically mounted

camera imaging the sea floor for ground-truth validation at specific points.

Datasets collected by an
underwater sensor suite

(2018) [124]

The proposed sensor suite was used to collect sonar, visual, inertial, and depth data in a variety
of environments. More specifically, shipwreck and coral reef data were collected during field
trials in Barbados. More data were collected at Fantasy Lake, NC, and at different locales near

High Springs, FL.

Aqualoc (2019) [125]

The data sequences composing this dataset were recorded at three different depths: a few
meters, 270 m, and 380 m. Seventeen sequences were made available in the form of ROS bags

and as raw data. For each sequence, a trajectory was also computed offline using a
structure-from-motion library in order to allow the comparison with real-time

localization methods.

VAROS synthetic underwater
dataset (2021) [126]

Pose sequences were created by first defining waypoints for the simulated underwater vehicle.
The scenes were rendered using the ray-tracing method, which generates realistic images by

integrating direct light and indirect volumetric scattering. The VAROS dataset
version 1 provides images, inertial measurement unit (IMU), and depth gauge data, as well as

ground-truth poses, depth images, and surface normal images.

A bathymetric mapping and
SLAM dataset with

high-precision ground truth for
marine robotics (2022) [127]

This paper presents a dataset with four separate surveys designed to test bathymetric SLAM
algorithms using two modern sonar sensors, typical underwater vehicle navigation sensors, and
a high-precision (2 cm horizontal, 10 cm vertical) real-time kinematic (RTK) GPS ground truth.
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Figure A1. Port sequence of the Aqualoc dataset.

Figure A2. Archaeological sequence of the Aqualoc dataset.
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