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Abstract: Deep network models rely on sufficient training samples to perform reasonably well, which
has inevitably constrained their application in classification of hyperspectral images (HSIs) due to
the limited availability of labeled data. To tackle this particular challenge, we propose a hybrid
relation network, H-RNet, by combining three-dimensional (3-D) convolution neural networks
(CNN) and two-dimensional (2-D) CNN to extract the spectral–spatial features whilst reducing the
complexity of the network. In an end-to-end relation learning module, the sample pairing approach
can effectively alleviate the problem of few labeled samples and learn correlations between samples
more accurately for more effective classification. Experimental results on three publicly available
datasets have fully demonstrated the superior performance of the proposed model in comparison to
a few state-of-the-art methods.

Keywords: HSI classification; few-shot learning; relation network; transfer learning

1. Introduction

With hundreds or even thousands of spectral bands, hyperspectral images (HSIs)
contain rich spectral and spatial information and have been successfully applied in a
wide range of remote sensing applications, such as environmental pollution control, fine
agriculture, land management, and mineral exploration [1–3]. Within these applications,
one of the major tasks is land-cover mapping, i.e., to assign a certain land-cover type for
each pixel in the HSI data according to the spectral characteristics and spatial relations [4].
Due to the challenges posed by the inherent characteristics of HSIs to the classification task,
two fundamental issues need to be addressed. The first is the lack of sufficiently labeled
samples, as the labelling process is both time-consuming and costly, which has motivated
the need for improved model training with a few labeled samples. The second is how to
make the full use of the spectral and spatial information for enhanced classification.

With the development of artificial intelligence (AI) technology and the continuous im-
provement of deep learning algorithms, deep learning has become one of the most widely
used technologies in the fields of image processing and computer vision [5,6]. In recent
years, deep learning has been widely applied in hyperspectral image (HSI) tasks [7]. Exam-
ples include stacked autoencoders (SAE) [8–10], recurrent neural networks (RNN) [11,12],
deep belief networks (DBN) [13] and convolutional neural networks (CNN) [14–16]. Con-
sidering the supplementary nature of the spectral and spatial information, networks for
extracting spectral–spatial features have received increasing attention [17]. Among them,
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2-D CNN [18,19] and 3-D CNN [20–22] have become two popular models in HSI classifica-
tion, but there are disadvantages such as lack of the spectral information in 2D-CNN and
increased model complexity 3D-CNN, respectively. In addition, deep learning approaches
heavily rely on a large number of labeled training samples for achieving satisfactory classi-
fication results.

To mitigate the problem of insufficiently labeled samples in HSI classification, many
approaches have been proposed. Li et al. [23] combined CNN with pixel pairs to learn
the discriminative features of HSIs along with majority voting for decision-level fusion.
Liu et al. [24] propose a Deep Contrast Learning Network (DCLN) approach, which trains
the network by constructing contrastive groups and learning by contrast. Liu et al. [25]
designed a Siamese CNN (S-CNN) to extract deep features of HSI whilst representing the
relations between a pair of input samples, followed by a support vector machine (SVM)
classifier for data classification. Li et al. [26] have shown that pairing or recombination
of samples is an effective way to increase the amount of input training data. However,
none of the methods above are trained end-to-end and thus will require an additional
classifier for classification. The network learns sample pair features directly and determines
whether two samples belong to the same class, which may lead to a more discriminative
network for HSI classification. In Ma et al. [27], the relation networks are employed for
HSI classification, which can directly learn the similarity between two samples and classify
them but cannot take full advantage of the spectral–spatial features of HSIs. Therefore,
under the condition of a few labeled samples, the deep learning-based HSI classification
method still needs to be further investigated.

To tackle these identified issues, a Hybrid Relation Network (H-RNet) model is pro-
posed in this article, which can fully extract spectral–spatial features for more accurate
classification of HSI with a limited number of labeled samples. Specifically, this arti-
cle proposes a new classification model based on the relation network, which includes
three modules: mixed 3D/2D CNN feature extraction, feature concatenation, and relation
learning. The feature extraction module can extract more refined deep features from hy-
perspectral images and reduce the complexity of the network to some extent. The feature
concatenation module concatenates the features extracted by the feature extraction module.
The relation learning module learns and classifies relationships by comparing the similarity
between different samples, and the relation score between samples belonging to the same
class is higher than that between samples of different classes. In addition, to improving the
training efficiency and classification performance of deep learning models under limited
labeled samples, we apply transfer learning to this method. The major contributions of this
article can be highlighted as follows:

(1) An H-RNet method is proposed for improved HSI classification that only requires a
few labeled samples. In hybrid 3-D/2-D CNNs, spectral–spatial features are first ob-
tained by 3D convolution, followed by further spatial information by 2D convolution,
resulting in more discriminative features. In the relation learning module, sample
pairing is used to efficiently obtain the relation scores under a small number of labeled
samples for classification.

(2) By innovatively combining the 3-D/2-D CNNs in a hybrid module with an end-to-end
relation learning module, the H-RNet can more effectively extract the spatial and
spectral features for improved classification of HSIs.

(3) Experiments on three benchmark HSI datasets have demonstrated the superior per-
formance of our approach over a few existing models.

This remaining article is organized as follows: Section 2 summarizes related work on
CNNs and few-shot learning-based HSI classification. Section 3 details the proposed model.
Section 4 presents the experimental results and analysis, followed by some concluding
remarks in Section 5.



Remote Sens. 2023, 15, 2497 3 of 18

2. Related Work
2.1. HSI Classification Based on CNNs

CNNs have been extensively used in HSI classification in recent years; CNNs are
more suitable for HSI processing and feature extraction [28,29]. Existing CNN models here
include 1-D CNN, 2-D CNN and 3-D CNN, as detailed below. The 1-D CNN aims to extract
deep features in the spectral domain [30], leading to a noise-sensitive performance due to
the ignored spatial information. On the contrary, 2-D CNN extracts spatial information
from the spectral-band-based images, where the spectral information is not emphasized.
As a result, combining both 1D-CNN and 2D-CNN for extracting both spectral and spatial
features is used for improved classification, such as in Zhang et al. [31] and Meng et al. [32].
To further explore the spatial information of HSI, Zheng et al. [33] proposed a rotation-
invariant attention network (RIAN) for HSI classification, which is invariant to the spatial
rotation of HSI. Although these methods attempt to make full use of both spectral and
spatial features, they typically split the joint spectral–spatial features into two separate
learning components, ignoring the correlation between spectral and spatial features.

As HSIs are essentially 3-D cubes, 3-D CNN-based classification has been naturally
proposed to jointly extract the spectral–spatial information from HSIs. Chen et al. [34]
were the first to use 3-D CNNs for HSI classification, but it suffers from high structural
complexity and computational cost. Qing et al. [35] propose a 3D self-attention multi-
scale feature fusion network (3DSA-MFN) that integrates 3D multi-head self-attention.
3DSA-MFN first uses differently sized convolution kernels to extract multiscale features,
samples the different granularities of the feature map, and effectively fuses the spatial
and spectral features of the feature map. As a result, residual structures are proposed
to solve these problems, such as an end-to-end spectral–spatial residual network (SSRN)
in Zhong et al. [36] and a hierarchical residual network with an attention mechanism
(HResnetAM) in Xue et al. [37]. In addition, Ghaderizadeh et al. [38] propose a multiscale
dual-branch residual spectral–spatial network (MDBRSSN): the network extracts useful
features through a two-branch structure.

Existing 2-D CNN and 3-D CNN models suffer from lack of information on the close
correlation between the spectral and spatial information as well as network complexity.
It is our aim to enhance feature representation capabilities to overcome the limitations of
existing deep learning models and thus improve classification performance.

2.2. HSI Classification Based on Few-Shot Learning

Few-shot learning is a process where a model can effectively distinguish the categories
in a new data set with only a very few labeled samples in processing the set [39,40]. To
further reduce the reliance of the model on training samples, a number of few-shot learning
methods have been proposed for HSI classification. Xi et al. [41] proposed a new FSL
framework for the Class-Covariance Metric for HSIC (CMFSL); the CMFSL learns global
class representations for each training episode by interactively using training samples
from the base and novel classes. In Zhang et al. [42], a global prototype network (GPN)
is proposed to map HSI data to an embedding space to learn the Euclidean distance
between samples and complete the classification with a nearest neighbor classifier. In
Liu et al. [43] a deep few-shot learning (DFSL) method is introduced using a 3-D CNN
with residual blocks to learn the metric space and select the nearest neighbor (NN) or
SVM classifier for classification. In Cao et al. [44], a 3-D Convolutional Siamese Network
(3DCSN) is presented, which combines contrast information with label information for
improved classification. In Alkhatib et al. [45], a Traditional CNN (Tri-CNN) approach to
HSI classification was proposed, which is based on multi-scale 3D-CNN and three-branch
feature fusion. However, all these methods use artificially set measurement distances,
which may not be fully applicable to the features extracted by the neural network when
classifying them. The relation network, in contrast, introduces a learnable metric function
on the basis of the prototype network, where the relation module allows for a more accurate
description of the differences between the samples. Deng et al. [46] designed a Similarity-
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Based Deep Metric Module (S-DMM), which effectively reduces the dependence of the
model on samples and achieves improved HSI classification. Rao et al. [47] proposed a
3-D CNN-based spectral spatial relation network (SS-RN), which uses a relation network
architecture to capture the deep correlation between samples accurately. Gao et al. [48]
proposed a relation network model (RN-FSC) for few-shot HSI classification, which learns
relationships between samples via a 3-D CNN and fine-tunes the model using a few labeled
samples in the target dataset. Nevertheless, this method suffers from difficulties in training
and a high computational cost.

Moreover, transfer learning is also an effective method to solve the problem of insuffi-
cient training samples [49]. Yang et al. [50] proposed a two-branch CNN (TWO-CNN) to
learn the deep joint spectral–spatial features, and introduced a transfer learning strategy to
improve the robustness of the proposed method. Liu et al. [51] combined data augmenta-
tion and transfer learning to address the lack of training data to further improve the HSI
classification performance. Li et al. [52] proposed a transfer learning strategy for classifying
HSIs. In the article, three different transfer methods for classifying HSIs were compared
and analyzed. Zhang et al. [53] proposed a spectral-spatial self-attentive network (SSSAN)
for HSI classification. Fang et al. [54] propose a 3D asymmetric inception network (AINet)
to overcome the overfitting problem, The approach can use data-fusion transfer learning
strategies to improve model initialization and classification performance.

Although the aforementioned methods have made great progress in HSI classification,
the performance is severely degraded when only a limited number of labeled samples are
available. This has led to a big challenge in deep learning models, as tackled in this article.

3. The Proposed Methodology

The problem of using only a few labeled samples to train deep learning models suffers
from poor accuracy due to the imbalance between the huge parameter space and the small
number of labeled samples. By increasing the amount of input training data through a
sample pairing strategy, relation networks (RN) have been demonstrated to be an effective
method for tackling training with limited training samples. The proposed hybrid relation
network model (H-RNet) within a few-shot learning setting for HSI classification is detailed
as follows.

3.1. Overall Structure

The overall flowchart of the proposed H-RNet for HSI classification is shown in
Figure 1, which consists of three key modules, i.e., feature extraction, feature concatenation,
and relation learning. Firstly, the principal component analysis (PCA) is applied to the
HSI data for dimension reduction. Then, the data are randomly sampled and sent to the
feature extraction module in order to obtain a feature map of the training: the pre-trained
module. In the pre-processing section, the parameters are set to ensure that a fixed number
of labeled samples can be taken at random for each class. This is achieved by randomly
sorting the samples in each class, then selecting a fixed number of samples from each class
and adding them to the training set in turn. Finally, the feature map of any two samples
is combined to obtain the similarity scores of them through the relation learning module
before being classified using the sigmoid function. A detailed summary of the proposed
model in terms of the layer types, output map dimensions, and number of parameters is
given in Table 1.
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Figure 1. General framework of H-RNet.

Table 1. H-RNet network parameters.

Layer Name Filter Size Output Size BN + Relu Parameters (M)

Feature Extraction Module

Input_1 N/A (1, 30, 7, 7) N 0
Conv3D_1 (8, 7, 1, 1) (8, 24, 7, 7) Y 80
Conv3D_2 (16, 5, 1, 1) (16, 20, 7, 7) Y 688
Conv3D_3 (32, 3, 1, 1) (32, 18, 7, 7) Y 1632
Reshape N/A (576, 7, 7) N 0

Conv2D_1 (64, 1, 1) (64, 7, 7) Y 37,636
Total trainable params: 40,036

Relation Learning Module

Input_1 (128, 7, 7) (128, 7, 7) N 0
Conv2D_1 (64, 1, 1) (64, 7, 7) Y 8384
Conv2D_2 (64, 1, 1) (64, 7, 7) Y 4288
Conv2D_3 (1, 7, 7) (1, 1, 1) N 3137

Total trainable params: 15,809

3.2. Hybrid 3D-CNN and 2D-CNN Feature Extraction Module

H-RNet aims to extract more discriminative features from the input data. Inspired by
the literature of [55], we use a hybrid 3D-2D CNN module for feature extraction, which
will obtain more effective spectral–spatial feature extraction for HSI classification while
reducing the complexity of the model. The spectral–spatial features are first obtained by
3D convolution, followed by further spatial information by 2D convolution, resulting in
more discriminative features and lower network complexity compared to 3D convolutional
neural networks. As shown in Figure 2, the proposed feature extraction module consists
mainly of three 3-D CNN blocks and one 2-D CNN block. Each block consists of a convo-
lutional layer, a batch normalisation layer (BN), and a Relu activation function. Adding
a BN after each convolutional layer mitigates the gradient disappearance problem and
enhances the generalization ability. The Relu activation function is widely used in deep
learning to improve the non-linearity of the model and speed up the convergence rate. The
overall convolution kernel is chosen to be 1 × 1 in size to significantly reduce the number
of parameters and facilitate training with only a few samples.

After completing feature extraction, the next step is feature concatenation. In this
process, the training set is first divided into support set and query set. Specifically, one
labeled sample is randomly selected from each class as the support set, and half of the total
samples from each class are randomly selected as the query set (samples in the query set
are different from those in the support set). The feature concatenation operation involves
pairing each query sample with each support sample to form sample pairs, which are then
input into the relation network to complete the classification task.
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Convolution is implemented as follows: The training samples are fed into the 3-D
convolutional network, and 3-D convolutional operations are applied to the spatial-spectral
domain to obtain the correlation between multiple spectral bands. When calculating the
3-D convolution, the activation value at the (x, y, z) position on the jth feature map at layer
i is given by

vx,y,z
i,j = f

(
∑µ ∑Wi−1

w=0 ∑Li−1
l=0

Di−1

∑
d=0

θw,l,d
i,j,µ v(x+w),(y+l),(z+d)

(i−1),µ + bi,j

)
(1)

where f () and bi,j denote the non-linear activation function and the bias, respectively. Wi,
Li, and Di are the width, height, and spectral dimension of the 3-D convolution kernel,
respectively. θw,l,d

i,j,µ denotes the weight parameter at the jth feature map location (l, w, d) in

layer i. v(x+w),(y+l),(z+d)
(i−1),µ denotes the value at (x + w, y + l, z + d) in the th feature map of

the previous layer.
For 2-D convolution, it further learns more abstract spatial features from the outcomes

of the 3-D convolutions, resulting in more discriminative spectral–spatial features. In the
2D-CNN, the spatial dimension of the feature map is convolved using a 2-D convolution
kernel, and the results in different channels are then summed with pixels to obtain a 3-D
tensor. The jth feature map vx,y

i,j at (x, y) of the ith layer is given by

vx,y
i,j = f

(
∑µ ∑Wi−1

w=0 ∑Li−1
l=0 θw,l

i,j v(x+w),(y+l)
(i−1),µ + bi,j

)
(2)

3.3. Relation Learning Module

The relation learning module is one of the core components of the relation network
and is mainly used to learn the similarity between different samples and to perform
classification. The purpose of the relation learning module is to obtain the similarity
between any pair of training samples. In the relation learning module, the feature map
obtained from the feature concatenation operation is fed into the neural network, and
the relation score between different samples is calculated by comparing their similarities.
Samples within the same category are assigned higher relation scores, while samples
between different categories are assigned lower relation scores. In this way, the relation
learning module can better capture the relation information between samples, thereby
improving the classification accuracy and robustness of the model. The relational learning
module is shown in Figure 3:



Remote Sens. 2023, 15, 2497 7 of 18

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 

 

 

classification accuracy and robustness of the model. The relational learning module is 
shown in Figure 3: 

 
Figure 3. Relation learning model. 

As can be seen in Figure 3, the relation learning module of H-RNet is centered on 
three two-dimensional CNN blocks. The feature extraction module obtains two features 
concatenated together as a 128 × 7 × 7 tensor (7 × 7 is the neighbor window size). The tensor 
is then fed into a two layer 2-D CNN, which uses a 1 × 1 convolution kernel to effectively 
reduce the dimensionality while extracting features, considering that the number of chan-
nels is much larger than the spatial dimensionality. To thoroughly train the network, a BN 
layer and a Relu activation function are also applied after each convolution. It then enters 
a 7 × 7 2-D convolution layer that converts the feature map into a relation score. Finally, a 
sigmoid function is used to generate the output to describe the similarity between samples 
at a specified scale, with the function taking values in the range [0, 1]. The relation learning 
module can be expressed as the following equation: 𝑟, = 𝐺థ(𝐶(𝐸ఝ(𝑥), 𝐸ఝ(𝑥))) (3) 

where the symbol C() is the operator for deep stitching, 𝐸ఝ() is the deep feature map 
obtained by the feature extraction module, and 𝐺థ() is the function to obtain the relation 
score. 

H-RNet is trained on the model using the mean square error (MSE), which is simple 
to calculate and train, and the loss function is given by 

𝜑, 𝜙 ← argminఝ,థ   ቀ𝑟, െ 1 ∙ ൫𝑦 == 𝑦൯ቁ×ே
ୀଵ

×
ୀଵ  (4) 

By optimizing Equation (4), the model can learn to measure the similarity between 
two samples and compare whether they belong to the same class. 

In this article, training is performed using an episode-based strategy. To be specific, 
the classification task is denoted as a C-way K-shot N-query task, where C denotes the 
total number of classes in each task, K denotes the number of training samples per class, 
and N denotes the number of query samples per class. Our experiments are conducted in 
a few-shot setting with 10 labeled samples per class. In each iteration, the C classes are 
randomly selected from the training samples, and K labeled samples from each class are 
used as input to the support set. The support set is represented as 𝑆 = ሼ(𝑥, 𝑦)ሽୀଵ×. Mean-
while, we randomly select N samples from each of the same C categories as the support 
set as the query set, and the query set is denoted as 𝑄 = ൛൫𝑥, 𝑦൯ൟୀଵ×ே. The query set has 

Figure 3. Relation learning model.

As can be seen in Figure 3, the relation learning module of H-RNet is centered on
three two-dimensional CNN blocks. The feature extraction module obtains two features
concatenated together as a 128 × 7 × 7 tensor (7 × 7 is the neighbor window size). The
tensor is then fed into a two layer 2-D CNN, which uses a 1 × 1 convolution kernel to
effectively reduce the dimensionality while extracting features, considering that the number
of channels is much larger than the spatial dimensionality. To thoroughly train the network,
a BN layer and a Relu activation function are also applied after each convolution. It then
enters a 7 × 7 2-D convolution layer that converts the feature map into a relation score.
Finally, a sigmoid function is used to generate the output to describe the similarity between
samples at a specified scale, with the function taking values in the range [0, 1]. The relation
learning module can be expressed as the following equation:

ri,j = Gφ(C(Eϕ(xi), Eϕ(xj))) (3)

where the symbol C() is the operator for deep stitching, Eϕ() is the deep feature map obtained
by the feature extraction module, and Gφ() is the function to obtain the relation score.

H-RNet is trained on the model using the mean square error (MSE), which is simple
to calculate and train, and the loss function is given by

ϕ, φ← argmin
ϕ,φ

C×K

∑
i=1

C×N

∑
j=1

(
ri,j − 1·

(
yi == yj

))
(4)

By optimizing Equation (4), the model can learn to measure the similarity between
two samples and compare whether they belong to the same class.

In this article, training is performed using an episode-based strategy. To be specific,
the classification task is denoted as a C-way K-shot N-query task, where C denotes the
total number of classes in each task, K denotes the number of training samples per class,
and N denotes the number of query samples per class. Our experiments are conducted
in a few-shot setting with 10 labeled samples per class. In each iteration, the C classes
are randomly selected from the training samples, and K labeled samples from each class
are used as input to the support set. The support set is represented as S = {(xi, yi)}C×K

i=1 .
Meanwhile, we randomly select N samples from each of the same C categories as the
support set as the query set, and the query set is denoted as Q =

{(
xj, yj

)}C×N
j=1 . The query

set has no intersection with the support set. The H-RNet model training process is given in
Algorithm 1.
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Algorithm 1 H-RNet model training process

Input: Support set S = {(xi, yi)}C×K
i=1 and Query set Q =

{(
xj, yj

)}C×N

j=1
for each iteration.

Initializing feature extraction module Eϕ and relation learning module Gφ.
Output: Update the parameters of module

(
Eϕ, Gφ

)
.

1. for (x′, y′) in Q do
2: for (x, y) in S do
3: The feature extraction module obtains the features Eϕ(x) and Eϕ(x′) from x and x′;
4: Update the relation score by Equation (3);
5: pdate the loss by Equation (4);
6: end for
7: end for
8: Update the parameters of Eϕ and Gϕ by L back propagation.
9: Repeat iterations until the completion of the training process.

4. Experiment and Discussion
4.1. Dataset Description

For performance assessment, three publicly available datasets, namely the Pavia Univer-
sity dataset, the Salinas dataset, and the Pavia Centre dataset, are used, as detailed below.

Pavia University (PU) dataset: This dataset was collected by the ROSIS sensor in Italy’s
University of Pavia campus. It consists of 610 × 340 pixels covering nine types of ground
truth samples. Specifically, excluding the 12 bands affected by noise, it contains 103 spectral
bands with a wavelength range of 430–860 nm and a spatial resolution of 1.3 m. Figure 4
shows the false-color image and the labeled image of the PU dataset.
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Figure 4. Pavia University dataset. (a) False-color; (b) ground truth.

Salinas (SA) dataset: acquired by the AVIRIS imaging spectrometer in the region over
the Salinas Valley, California, and the image consists of 512 × 217 pixels. Concretely, the
20 bands affected by noise are removed, leaving 204 spectral bands, and the resulting image
has a spatial resolution of 3.7 m. These data are non-urban area data and contain 16 classes
of features. Figure 5 shows the false-color image and the labeled image of the SA dataset.

Pavia Centre (PA) dataset: also taken by the ROSIS sensor and contains nine classes
with an image size of 1096 × 715 pixels. In particular, excluding the 13 bands affected by
noise, it includes 102 spectral bands, and the resulting image has a spatial resolution of
1.3 m. Figure 6 shows the false-color image and the labeled image of the PA dataset.
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Figure 6. Pavia Centre dataset. (a) False-color; (b) ground truth.

4.2. Experimental Settings

The proposed method is implemented using the PyTorch framework in the python
language. All experiments were conducted on a desktop computer with an NVIDIA
GeForce GTX 1080 graphics processor (GPU) with 16 GB RAM. An Adam iterator was
used for training on the three datasets with an initial learning rate of 0.001. To ensure
convergence, the training iterations were 1000, and after half the number of iterations,
the learning rate was divided by 10. A C-way K-shot N-Query episode represented each
iteration. For the PU and PA datasets, C was set to 9, and on the SA dataset, it was set to 16.
K and N are set to 1 and 5, respectively, based on experience from previous studies.

For consistency, we use the overall accuracy (OA), the average accuracy (AA), and
the kappa coefficient (κ) to quantitatively assess the classification performance of different
methods [56,57]. OA is used to measure the accuracy of all classification results, i.e., the
ratio of correctly classified samples to the total number of samples. AA is the average
classification accuracy for each class, reflecting the model’s adaptability to different classes.
The kappa coefficient measures the overall classification results and better reflects the
classification performance on unbalanced data sets, with values usually ranging from 0 to 1.
In addition, to comprehensively evaluate the accuracy of the experiment, we also analyzed
the F1-score. F1-score is a comprehensive evaluation index of the model, which takes
into account both precision and recall, and is an important indicator for evaluating the
performance of classifiers.
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4.3. Classification Results

For performance evaluation, the proposed method is compared with a few main-
stream supervised deep learning and few-shot learning methods. The former include
2-D CNN models [18], 3-D CNN models [20], hierarchical residual models with atten-
tion mechanisms (HResNetAM) [37], and two-stream convolutional networks based on
transfer learning (TWO-CNN) [50]. The latter include 2-D CNN-based relation networks
(S-DMM) [46], metric-based learning classification (DFSL-NN) [43], 3-D Siamese network-
based 3DCSN [44], and 3D-CNN-based relation network (RN-FSC) [48] models. Again,
10 labeled samples per class were randomly selected for training the models. Tables 2–4
showed the mean and standard deviation (std) of the classification accuracy obtained in
10 runs on the PU, SA, and PA datasets, respectively.

Table 2. Classification results of different methods on the PU dataset with 10 samples per class
for training.

Class 2D-CNN TWO-CNN 3D-CNN DFSL-NN S-DMM 3DCSN RN-FSC HResNetAM H-RNet
(Ours)

1 83.13 71.80 67.68 84.15 94.34 66.57 87.14 98.37 94.07
2 73.84 88.27 77.93 80.13 73.13 87.49 90.90 96.29 82.69
3 77.32 47.58 73.25 76.71 86.85 86.60 66.84 70.64 90.31
4 90.45 96.29 84.23 89.60 95.04 98.95 85.02 98.74 96.42
5 99.28 94.99 98.79 90.11 99.98 100.0 100.0 99.81 100.0
6 76.25 49.75 46.16 85.43 85.58 99.48 58.04 60.08 94.30
7 91.92 58.65 89.66 89.42 98.55 99.84 83.23 75.17 98.48
8 88.01 66.95 84.88 86.17 86.47 69.06 89.81 77.36 83.74
9 99.65 97.15 98.68 93.24 99.81 81.00 89.81 98.33 99.89

OA (%) 80.06
±4.25

78.61
±1.23

74.89
±2.78

83.35
±2.92

84.55
±3.26

85.22
±3.54

83.99
±2.18

86.80
±2.09

88.97
±3.23

AA (%) 86.65
±2.35

74.60
±3.41

80.14
±2.23

86.10
±2.82

91.08
±2.64

87.66
±3.27

82.51
±0.84

86.08
±3.05

93.32
±1.29

κ × 100 75.31
±0.50

74.41
±2.17

67.00
±0.30

80.07
±3.34

83.89
±2.86

82.45
±2.98

79.00
±2.79

82.95
±1.51

85.51
±3.98

F1-score 0.862
±0.014 - 0.830

±0.016 - 0.877
±0.022

0.842
±0.004

0.795
0.041

0.893
±0.015

0.902
±0.007

Table 2 shows the classification results of different methods on the PU dataset, where
our algorithm achieved the highest classification accuracy on all three evaluation metrics.
Compared to the state-of-the-art few-shot learning methods DFSL-NN, S-DMM, 3DCSN,
and RN-FSC, our approach surpassed them by 3.81%, 4.12%, 3.45%, and 5.88% in OA, by
5.07%, 2.24%, 5.66%, and 10.67% in AA, and by 5.24%, 1.62%, 3.06%, and 9.26% in the kappa,
respectively, as well as exceeding by 0.025, 0.06, and 0.006 in terms of F1-score. This is
mainly because the hand-crafted distance functions in both DFSL-NN and the 3DCSN may
be unsuitable for the extracted features for classification. In addition, the 2-D CNN-based
S-DMM has limitations in only extracting spatial information but ignoring the spectral
one. The RN-FSC framework is a 3-D relation network, yet it fails to extract more effective
spectral–spatial features than our approach and has a much more complicated architecture
than our hybrid 3-D/2-D networks.

Generally, with only 10 samples per class, the few-shot learning algorithms achieve
better results than other supervised deep learning methods. It is worth noting that the
HResNetAM method has also produced quite good results due mainly to the multi-scale
spectral–spatial information extracted from its hierarchical residual structure. Here the 2-D
CNN model outperformed the 3-D CNN, due to the data augmentation adopted. Overall,
the results above have fully demonstrated the effectiveness of our approach in classifying
the HSI in the few-shot learning setting.
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Table 3. Classification results of different methods on the SA dataset with 10 samples per class
for training.

Class 2D-CNN TWO-CNN 3D-CNN DFSL-NN S-DMM 3DCSN RN-FSC HResNetAM H-RNet
(Ours)

1 98.80 88.22 96.99 98.54 99.45 100.0 96.35 99.67 99.89
2 98.77 78.09 99.25 98.12 99.21 98.97 100.0 99.60 99.76
3 95.48 74.80 92.60 96.08 96.70 99.49 100.0 96.76 99.99
4 98.36 98.19 97.21 99.56 99.56 100.0 86.88 95.37 99.37
5 92.55 96.54 92.99 97.01 97.12 91.07 99.88 99.79 98.42
6 99.96 96.89 98.54 99.54 89.64 98.55 100.0 99.93 99.88
7 99.61 92.52 97.65 99.33 99.82 99.49 100.0 98.92 99.92
8 77.51 54.32 70.21 78.62 70.53 70.74 89.44 86.71 81.48
9 97.19 81.22 95.00 97.23 99.02 99.90 99.93 98.84 99.97
10 89.23 75.18 84.54 92.38 91.13 96.51 99.19 93.41 95.12
11 95.45 92.26 92.83 99.10 97.56 100.0 97.34 94.21 99.61
12 99.96 86.40 98.09 99.34 99.87 89.77 90.61 99.26 99.75
13 99.22 98.18 95.62 97.84 99.25 99.01 84.09 99.45 99.67
14 96.80 96.10 93.50 96.17 96.30 98.11 88.57 95.20 99.03
15 72.03 55.60 65.37 72.69 72.28 94.11 70.06 71.20 85.61
16 94.07 92.39 93.61 98.59 95.29 93.87 89.98 99.94 98.14

OA (%) 91.31
±0.53

77.54
±2.15

85.93
±1.48

89.86
±0.84

89.69
±2.98

91.59
±1.39

91.45
±1.72

91.56
±0.84

93.67
±0.72

AA (%) 94.06
±0.39

84.94
±1.72

90.56
±1.02

95.01
±0.63

93.92
±0.92

95.60
±0.85

93.27
±1.04

95.54
±0.66

97.23
±0.26

κ × 100 90.12
±0.20

76.17
±2.69

82.68
±0.25

89.51
±0.31

88.69
±3.26

90.68
±0.94

90.52
±0.74

90.62
±0.23

92.96
±0.79

F1-score 0.951
±0.064 - 0.901

±0.062 - 0.937
±0.034

0.946
±0.017

0.910
±0.040

0.954
±0.021

0.963
±0.057

Table 3 compares the classification results on the SA dataset, where the similar ob-
servations and conclusions can be found to further validate the efficacy of our proposed
approach. Among the top-five highly performed approaches, our method significantly
outperformed the other four. The improvements are 3.81%, 3.98%, 2.08%, and 5.88% in
OA, 2.22%, 3.31%, 2.28%, and 3.31% in AA, and 3.45%, 4.27%, 2.28%, and 6.72% in Kappa,
respectively. For the F1-score, our method improved over S-DMM, 3DCSN, and RN-FSC
by 0.026, 0.017, and 0.012, respectively. The analysis of this parameter gives a fuller picture
of the effectiveness of our proposed method.

Table 4 shows the classification results on the PA dataset; again, our approach has
produced the best results with an OA of 98.40%. Compared to other few-shot learning
methods of DFSL-NN, S-DMM, and 3DCSN, the improvements are 0.44%, 1.25%, and
1.69% in OA, 2.60%, 0.92%, and 2.47% in AA, and 0.47%, 1.24%, and 2.35% in the Kappa,
respectively. For the F1-score, our method improved over S-DMM, 3DCSN, and RN-FSC
by 0.044, 0.018, and 0.040, respectively. For classes that cannot be accurately classified by
other methods, such as Asphalt and Bare Soil, our approach can still produce very accurate
classification results. This has further demonstrated the effectiveness of our proposed
model in classifying HSIs even within a quite small number of labeled samples.

In Figures 7–9, the classification maps from different approaches for the three datasets
are given for visual comparison. As seen in Figure 7, of all the classification maps for
the PU dataset, some pixels in the purple ‘Grass’ and blue ‘Bare Soil’ boxes in the yellow
box are easily misclassified because these two land cover areas have very similar spectral
spatial characteristics. It can be observed that our method has reduced misclassification on
these two features compared to the other methods. Overall, the classification map obtained
by our H-RNet seem to be the smoothest and most accurate in comparison to the ground
truth. Similar and consistent observations can be also found in Figures 8 and 9, which have
further demonstrated the efficacy of the proposed approach.
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Table 4. Classification results of different methods on the PA dataset with 10 samples per class
for training.

Class TWO-CNN 3D-CNN DFSL-NN S-DMM 3DCSN HResNetAM H-RNet
(Ours)

1 98.72 98.97 97.28 99.95 96.42 99.98 99.87
2 95.82 97.88 95.46 94.56 92.64 98.51 92.19
3 80.29 84.58 85.46 88.31 84.57 81.02 95.71
4 61.95 62.59 84.69 92.67 99.47 73.85 96.32
5 95.67 94.86 94.10 95.22 98.53 96.26 93.39
6 90.58 92.47 93.46 92.03 91.14 89.72 99.02
7 93.20 91.38 96.61 97.50 97.84 98.54 90.73
8 98.27 95.45 99.98 99.84 99.56 99.89 99.37
9 97.75 86.97 96.07 98.16 84.08 96.42 99.81

OA (%) 95.47
±1.06

95.07
±0.38

97.79
±0.51

96.98
±1.21

96.54
±1.78

97.74
±0.63

98.23
±0.45

AA (%) 90.25
±1.79

89.32
±2.24

93.68
±0.87

95.36
±0.94

93.81
±1.28

92.69
±0.47

96.28
±1.36

κ × 100 93.69
±0.97

92.45
±1.94

97.02
±0.14

96.25
±0.81

95.14
±1.02

96.81
±0.89

97.49
±0.63

F1-score - - - 0.900
±0.018

0.926
±0.054

0.904
±0.053

0.944
±0.049
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4.4. Ablation Study
4.4.1. Impact of the Number of Principal Components

The number of principal components (PC) has a significant impact on the performance
of our H-RNet model in terms of accuracy and efficiency. Experiments were conducted on
three datasets with different PC values, where PC values were chosen as 20, 30, 40, and 50,
the results of which are shown in Table 5.
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Table 5. Classification accuracy under different PC values on three datasets.

Dataset Accuracy Metric 20 30 40 50

PU
OA (%) 86.49 86.78 84.46 82.41
κ × 100 83.99 84.25 80.45 77.85
AA (%) 92.36 92.40 90.29 88.44

SA
OA (%) 91.48 91.68 86.98 85.79
κ × 100 90.53 90.67 85.59 84.24
AA (%) 96.16 96.15 92.22 92.62

PA
OA (%) 98.12 98.22 98.15 98.29
κ × 100 97.15 97.49 97.39 97.58
AA (%) 95.97 95.99 96.14 96.28

As seen in Table 5, the best classification accuracy is achieved when the PC value is
30 on both the PU and SA datasets. For the PA dataset, there is not much difference in the
classification results for different PC values. Therefore, we set the PC value to 30 in our
experiments for simplicity.

4.4.2. Impact of the Patch Size

As we take the entire neighbor of a pixel as input, the neighbor window size P × P
will affect the classification performance; its effect is shown in Figure 7 when varying the
window size from 3 × 3 to 9 × 9.

As seen in Figure 10, when the patch size increases from 3 × 3 to 7 × 7, the accuracy
gradually increases, due to the fact that larger samples may contain more spatial infor-
mation. However, when the patch size reaches 9 × 9, the accuracy of all three datasets
starts to decrease, due possibly to the increasing number of interfering pixels degrading
the classification performance. Therefore, we set the patch size as 7 × 7 in this article.
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4.4.3. Impact of the Number of Labeled Samples per Class

To further validate the advantages of the H-RNet in the few-shot learning setting, a
comparison was performed with different numbers of labeled samples per class. For each
class, 5, 10, 15, 20, and 25 labeled samples were randomly selected for training the models
with the results compared in Figure 11.
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dataset, (b) SA dataset, and (c) PA dataset.

As seen in Figure 11, the classification results gradually improve with the increasing
number of training samples on all three datasets. Our method consistently achieves better
classification accuracy on all three datasets. On the PA dataset, when the number of training
samples per class is five, the classification accuracy of our method is only lower than that
of RN-FSC. On the PA dataset, ours is comparable to that of DFSL-NN when the number
of training samples per class is 15. This advantage is even more apparent when there are
only 10 labeled samples per class. Therefore, to make the contrast more obvious, we set the
number of training samples per class to 10.

4.5. Computational Complexity Analysis

In this section, the number of model parameters and FLOPs for different methods
are given in Table 6, which mainly include two types of deep network methods based
on supervised learning and few-shot learning. The deep learning methods based on
supervised learning include 2D-CNN, TWO-CNN, and HResNetAM, and the methods
based on few-shot learning include DFSL-NN, 3DCSN, S-DMM, and RN-FSC. Compared
with the three methods in the first category, our method simply has a higher number of
parameters than 2D-CNN; this is because 2D-CNN only utilizes spatial information and
has a simpler model, while our method uses 3D-CNN to obtain spectral–space information,
and thus the number of our parameters will be higher. In comparison to HResNetAM
and TWO-CNN, HResNetAM is a 3D-CNN residual-based network while TWO-CNN
is a two-branch-based network structure, both of which can obtain both spectral and
spatial information. Our approach has lower network complexity and achieves higher
classification results than both networks.

Compared to the four few-shot learning methods, DFSL-NN is a metric-based method,
3DCSN is a Siamese network-based method, and S-DMM and RN-FSC are based on 2D
and 3D relation networks respectively. Our method has the highest classification accuracy
compared to these methods, but its parameter count is higher than S-DMM because S-
DMM has a simpler model structure based on 2D-CNN. However, compared to the RN-FSC
method based on 3D relation networks, our method has fewer network parameters due to
the combination of 3D/2D convolutions, which can extract more discriminative features
and therefore be more advantageous for classification. In summary, through parameter
analysis, we have verified that our method has lower network complexity and can achieve
higher classification accuracy.
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Table 6. Comparison of model parameters on the PU dataset.

Model FLOPs (M) Params (M)

2D-CNN 1.77 35,536
TWO-CNN 239.02 1,574,506

HResNetAM 803.05 343,587
DFSL-NN 416.48 56,848

3DCSN 1967.95 1,537,256
S-DMM 82.29 28,929
RN-FSC 816.44 402,465

H-RNet (Ours) 72.98 55,845

5. Conclusions

In this article, we propose a new deep learning network, H-RNet, based on few-shot
learning for effective feature extraction and data classification in HSIs. Firstly, our method
can better extract spatial and spectral information from high-dimensional data while
maintaining a relatively simple model structure and fewer parameters by using a mixed
3D/2D CNN, even with limited labeled samples. Secondly, experiments were conducted
on three public datasets, and our method was compared with several other methods.
The experimental results demonstrate that the H-RNet method has higher accuracy and
robustness in high-dimensional image classification tasks than other methods. Finally,
because the transfer learning method proposed in this article is limited to the same domain,
future research will also consider the study of few-shot learning-based transfer learning for
HSI classification across different datasets.
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