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Abstract: Floodplain wetlands are among the most dynamic ecosystems on Earth, featuring high
biodiversity and productivity. They are also sensitive to anthropogenic disturbances and are globally
threatened. Understanding how flow regime drives the spatiotemporal dynamics of wetland habitats
is fundamental to effective conservation practices. In this study, using Landsat imagery and the
random forest (RF) machine learning algorithm, we mapped the winter distribution of four wetland
habitats (i.e., Carex meadow, reedbed, mudflat, and shallow water) in East Dongting Lake, a Ramsar
wetland in the middle to lower Yangtze Basin of China, for 34 years (1988–2021). The dynamics
of wetland habitats were explored through pixel-by-pixel comparisons. Further, the response of
wetland habitats to flow regime variations was investigated using generalized additive mixed
models (GAMM). Our results demonstrated the constant expansion of reedbeds and shrinkage of
mudflats, and that there were three processes contributing to the reduction in mudflat: (1) permanent
replacement by reedbed; (2) irreversible loss to water; and (3) transitional swapping with Carex
meadow. These changes in the relative extent of wetland habitats may degrade the conservation
function of the Ramsar wetland. Moreover, the duration of the dry season and the date of water
level withdrawal were identified as the key flow regime parameters shaping the size of wetland
habitats. However, different wetland vegetation showed distinct responses to variations in flow
regime: while Carex meadow increased with earlier water withdrawal and a longer dry season,
reedbed continuously expanded independent of the flow regime corresponding to the increase in
winter rainfall. Our findings suggested that flow regime acts in concert with other factors, such as
climate change and sand mining in river channels, driving wetland habitat transition in a floodplain
landscape. Therefore, effective conservation can only be achieved through diverse restoration
strategies addressing all drivers.

Keywords: wetland transition; random forest; singular spectrum analysis; generalized additive
mixed models; time series; Phragmites encroachment

1. Introduction

Floodplain wetlands of large rivers are among the most productive ecosystems, with
rich biodiversity, and are of high ecological and socioeconomic importance [1–3]. Flood-
plains are also highly dynamic fluvial systems of great ecological complexity driven by
periodic inundations associated with the high and low flows of the parent rivers (flood
pulses) [4]. In a floodplain with natural hydrological regimes, wetlands are characterized
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by their transience, being either vegetated (marshes and forest swamps), bare (mudflats),
lentic (shallow lakes and lagoons) or lotic (channels) waters. The diverse hydrogeomorphic
features of wetlands provide heterogenous habitats for a range of flora and fauna [5,6],
and are fundamentally linked to regional biodiversity, having very high conservation
value [7,8].

The ecological services and values of floodplain wetlands, particularly as wildlife
habitats that support regional biodiversity, depend on their spatial and temporal environ-
mental heterogeneity [2,9]. Floodplain biotas exhibit many adaptative mechanisms to take
advantage of this heterogeneity [10–12]. Even relatively short episodes of wet and dry
(days to weeks) can profoundly affect a floodplain plant community [13], which may have
cascadic effects on many animals that inhabit a floodplain [14,15]. For example, in the
middle to lower Yangtze floodplains, lush Carex meadows can develop in a newly exposed
lakebed days after water level withdrawal [16]; and a study found that the wintering
waterfowls changed foraging behaviors to trace newly geminated grass for maximum food
intake [17].

Floodplain wetlands have long been recognized as sensitive to anthroponotic distur-
bances such as land reclamation and river regulation [18–20], and are globally threatened
ecosystems [21,22]. For example, 80–90% of the floodplains in Europe are lost to agricul-
ture and urban development [23]. In North America, nearly 90% of the floodplains are
‘cultivated’ and non-functional according to Erwin [24]. Most rivers in Australia’s Murry–
Darling Basin are regulated by dams and weirs, resulting in extensive wetland decline and
degradation [25,26]. The loss of floodplain wetlands in large Asian river basins, such as the
Yangtze [27], the Mekong [28], and the Ganges [29], is also alarming and still proceeds at a
high rate. In the context of accelerating global warming, continuously shrinking floodplains
will be inevitable without effective management strategies [30].

Human disruptions to hydrological regimes, such as dam operations on the river
channel and embankments within the floodplain, can substantially affect floodplain vegeta-
tion succession and the distribution pattern of vegetation patches [31–33]. In most cases,
the flow regulation reduces the hydrological variation in floodplain wetlands, which can
lead to vegetation encroachment on the floodplain, enabling the expansion of invasive
vegetation communities with low species diversity, such as Phragmites monoculture [34–36].
Changes in the spatial pattern of vegetation communities aggravate the decline of the
ecosystem functions of floodplains through habitat fragmentation and degradation [37],
ultimately leading to the loss of regional biodiversity. To mitigate the detrimental im-
pacts of anthropogenic activities, restoration measures are practiced worldwide, aiming
to re-establish fundamental hydrological parameters, such as the magnitude, frequency,
duration, timing, and rate of change in river flows, that drive ecosystem functions [38].
Quantitative analyses of the relationships between flow regime and distribution dynamics
of a vegetation community are necessary to understand the interaction between physical
and biological processes for effective ecological restoration [39]. However, these interactive
mechanisms are difficult to quantify due to the inherent complexity of vegetation dynamics
and of the numerous interactions and feedbacks among different processes, such as erosion
and sedimentation, vegetation recruitment and colonization [40].

Extensive floodplains occur in the middle to lower Yangtze River [41,42], supporting
regional and global biodiversity [43]. Recently, many studies have provided multiple lines
of evidence to suggest that the accelerating loss of floodplain functions in the region are due
to economic development and climatic change [44–46], prompting enormous conservation
efforts to improve or restore floodplains and their associated aquatic habitats [47]. One
priority is to re-establish the key elements of the flow regime that sustains the diverse
wetland types [18] which support the variety of biota depending on floodplains in their life
cycles [10–12], including fish [48], waterbirds [16] and others (e.g., mammals, reptiles and
amphibians) [43,49]. In this context, knowledge of the quantitative relationships between
flow regime and vegetation dynamics, such as how inundation timing and duration shape
the pattern and condition of vegetation mosaic [33], is pressingly needed.
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Spatiotemporal analysis of floodplain vegetation cover using a time series of satellite
images is approved as cost-effective for wetland monitoring [50], especially for assessing the
impacts of flow regulation on floodplain ecosystems [51,52], evaluating restoration projects,
and inferring future changes [53–55]. Together with flow regime variables calculated from
in situ hydrological gauge records and climate observations, it is possible to determine the
driving factors of observed changes [56], providing scientific insights to design effective
restoration strategies [38].

Many previous studies have mapped wetland vegetation cover changes in Dongting
Lake [57–60]. However, these maps have only limited usability in quantifying the relation-
ship between flow regime and wetland habitat dynamics due to the constraints of either
spatial and/or temporal resolution, or insufficient number of years of data. In this study,
we aimed to identify the key flow regime parameters that drive the temporal variation of
the four major wetland types (i.e., Carex meadows, reed marshes, mudflats, and shallow
waters) in East Dongting Lake, a Ramsar site and one the most prominent floodplains in the
Yangtze Basin (Figure 1). Our approach involved creating a 34-year time series (1988–2021)
of wetland maps using 383 Landsat images. With the time series of yearly habitat types,
we then investigated how flow regime parameters affected the interannual variations of
habitat using generalized addition modelling (GAM) [61]. Finally, the loss and gain of each
wetland habitat during the study period was calculated at the pixel level by comparing
the habitat distribution in 1988 and 2021, and the dominant signals of change for each
class were identified [62,63]. This transition matrix analysis is of particular interest to
restoration planning and practice as different habitats provide distinct ecological functions,
for example, Carex meadows and mudflats are the main foraging ground for wintering
geese [17], shallow waters are a key habitat of wintering swans and storks [41], and reed
swamps provide roosting and nesting sites for colonial herons, glebes and egrets [64,65],
but are avoided by many migratory waterbirds. Our specific research hypotheses were:
(i) hydrological regime parameters act on habitat types differentially with less effect on
perennial reed beds due to their persistence; and (ii) the long-term expansion of reedbed
causes the variation of other habitats, especially Carex meadows.
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Figure 1. Landsat images show the extent of East Dongting Lake in wet ((A), 3 August 2022) and dry
((B), 29 April 2022) seasons. The stratified random samples of four major habitats were drawn from
the overlaps of two habitat maps (1993 and 2010). (C) Map showing the location of Dongting Lake in
China and its spatial relation with the Yangtze and the Three Gorges Dam (TGD). (D) Map showing
the study area (shaded East Dongting Lake) situated in the lower section of Dongting Lake, and the
thick blue line is the Yangtze River.
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2. Materials and Methods
2.1. Study Site

Dongting Lake (28◦30′N–30◦20′N, 111◦40′E–113◦10′E, Figure 1) is one of most promi-
nent freshwater lakes in the middle to lower Yangtze Basin, and is renowned for its impor-
tance for regional biodiversity [43]. The lake is divided geographically and administratively
into three sections: East Dongting Lake, South Dongting Lake, and West Dongting Lake,
which are connected by main river channels. This study focused on the largest section, East
Dongting Lake (hereafter referred to as EDT).

Influenced by the prevailing subtropic monsoon climate, EDT has distinct wet and
dry seasons with an annual water level fluctuation of 12–14 m [57]. During the wet season
(April to September), the water level at Chenglingji hydrological station (Figure 1) reaches
a maximum level of up to 36 m, and the entire lake virtually becomes a single water body.
During the dry season of October to March, the lake water level decreases to a minimum
of ~19 m. With water levels receded, a vast lakebed is exposed, and Carex wet meadows
develop rapidly, colonizing a large part of the lake [27]. The lake landscape is dominated by
connected and disconnected vegetated mosaics separated by mudflats and shallow waters,
providing wintering grounds for hundreds and thousands of migratory waterbirds [16].
However, this spatial heterogeneity that maintains the conservation function is at risk
due to the de-coupling of the river–lake relationship [18], calling for effective restoration
strategies.

2.2. Data Sources and Preparation

Wetland habitat mapping involves four major steps (Figure 2): extracting Landsat
images and computing surface reflectance-derived spectral indices; preparing sampling
points; building and verifying random forest models; and prediction.

2.3. Habitat Type

To confirm that the samples could be used to model habitat extent and distribution
under all hydrological conditions, we selected two maps: the 1993 map representing the
dry condition (mean January water level at Chenglingji was 20.05 m), and the 2013 map
representing the wet condition (mean January water level at Chenglingji was 22.18 m).
With these two maps, we produced a new map where the habitat was the same in both
years, through raster overlaying. Using stratified random sampling of the new map, we
produced a total of 4090 samples, representing Carex meadow (628), mudflat (336), reedbed
(1567), and open water (1559).

2.4. Predictor Variables and Pre-Processing

As the study area is located in a humid subtropic zone with a monsoon climate, cloud
contamination is an issue limiting the availability of quality space-borne optical imagery
for land cover mapping [66], especially for investigating habitat dynamics using time series
data [67]. Using a benign 15% cloud cover threshold, there were only 241 images for
the study period, and there were large gaps for many years. However, as cloud cover is
calculated for the entire scene in the USGS system, applying a threshold could exclude
many quality images of the study area, which covered only a proportion of the theme. For
example, the image for 1 April 2004 had 60% cloud cover, but the percentage for the study
area was only a negligible 1.22, and of good quality for habitat mapping (Figure A1).

To minimize the gaps in the time series, we downloaded all Landsat images (Level 2,
Collection 2, Tier 1, a total of 722) for the study period (January 1988 to March 2022) using
the Google Earth Engine platform. Using the pixel quality band (i.e., band 18, USGS, 2021
and 2022), we masked out all cloud and cloud shadow pixels, and recalculated the cloud
cover for the study area. Images with cloud cover of less than 15% were selected for further
processing (Figure 2).
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VI = vegetation index, VIF = variable inflation factor; and RF = random forest.

Many Landsat-based spectral indices have been developed [68], and the list is increas-
ing [69]. Considering the distinct seasonal dynamics of the habitats (Figure 1), we selected
vegetation indices that are more sensitive to vegetation phenology (Table 1). Further, the
bare soil index (BSI) and normalized difference water index (NDWI) were included to
maximize the differentiation of mudflat and water from vegetated areas.
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Table 1. Spectral indices for random forest classifier and their respective characteristics.

Name Relevance Formula Reference

NDVI (normalized difference
vegetation index)

NDVI measures photosynthetically active
biomass in plants. It is the most highly
used index to monitor plant
development dynamics.

NIR−Red
NIR+RED [70]

NDWI (normalized difference
water index) NDWI detects open water features. Green−NIR

Green+NIR [71]

PSRI (plant senescence
reflectance index)

PSRI is sensitive to the ratio of carotenoids
to chlorophyll in plants, indicating the
process of vegetation senescence.

Red−Green
NIR [72]

SAVI (soil adjusted
vegetation index)

SAVI is used to mitigate the impact of soil
brightness to correct NDVI in areas where
vegetative cover is low.

NIR−Red
(NIR+RED+0.5)×1.5 [73]

GNDVI (green normalized
difference vegetation index)

GNDVI is a modification of NDVI to detect
wilted or aging plants and to measure
nitrogen content in leaves. It is suitable to
monitor vegetation with dense canopies or
at different maturity stages.

NIR−Green
NIR+Green [74]

BSI (bare soil index)

BSI is used to differentiate bare soil and
other land cover types. Due to the high
contrast between bare soil and vegetation,
BSI provides a continuum ranging from
high vegetation cover to exposed soil.

(Red+SWIR2)−(NIR+Blue)
(Red+SWIR2)+(NIR+Blue

[75]

NDPI (normalized difference
phenology index)

NDPI improves the spring greening-up
phenology monitoring capacity in
snow-contaminated or low vegetation
cover areas.

NIR−(0.74×Red+0.26×SWIR1)
NIR+(0.74×Red+0.26×SWIR1)

[76]

We used the spline function in R (R Development Core Team 2019) to impute the
permanent gaps in the time series of the above mentioned seven indices. The method by
Fritsch and Carlson (1980) [77] was adopted to fit a piecewise monotonic cubic function for
each index, which was then used to predict the missing data in the time series.

Six yearly statistics were derived from the filled raster time series: mean, range (max–
min), and trend for both wet and dry season. The wet season included the calendar months
of April to October (seven months) and the dry season from November to March next year
(five months). For computing convenience, i.e., the calculations of yearly statistics of VI in
wet and dry phases, we shifted the time series back by three months, so that the wet season
was January to May, and the dry season was June to December. The trend was computed
as the slope of the linear regression between the index value (y) and day of the year (x).

2.5. Random Forest Models for Wetland Habitat Classification

We used the random forest (RF) approach [78] to map the yearly distribution of the
four habitat types. RF is a robust supervised machine learning classifier widely used in
land cover and land use mapping [79,80]. It is among the top machine learning algorithms
to discriminate both inland [81] and coastal wetlands [82,83]. The main advantages of RF
include: (1) the classifier can effectively handle high data dimensionality and multicollinear-
ity [80], which is a common issue in environmental data; (2) its algorithm is insensitive to
overfitting; and (3) the computing cost is relatively low while performing comparably to the
more computational demanding approaches such as convolutional neural networks [84,85].

Although RF and machine learning techniques in general are relatively robust to
multicollinearity of predictor variables [86], highly correlated predictors could render
lower model accuracy [87]. Therefore, we performed a VIF (variable inflation factor) test,
and a VIF greater than 10 was excluded from model fitting [88].

The dataset was split into training (75%) and testing (25%) subsets using stratified ran-
dom sampling. With the training dataset, the repeated (five times) 10-fold cross-validation
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procedure was used to fine tune the model to optimize its performance. To avoid overfit
and increase prediction power, we used the train function in the R package “Caret” [89]
to find the best model parameters. We defined a search grid with the two most important
parameters (mtry—the number of variables that is randomly selected at each split; and
ntree—the number of branches that will grow after each split) [90]. All other parameters
such as the sampling theme and the minimal node size were kept as default. Using the
testing dataset, we calculated the overall, producer, and user accuracy (OA, PA, and UA,
respectively) of wetland classifications. We also evaluated the model performance with the
Cohen’s kappa statistic, which considers the expected error rate. While kappa = 1 indicates
prefect model prediction, kappa = 0 is interpreted as no agreement between observations
and predictions.

2.6. Wetland Habitat Dynamics during 1989–2021

To explore the change in the extent and distribution of wetland habitats, we conducted
a grid-by-grid comparison between habitat maps of the first (1988) and the last (2021)
years: the two habitat maps were overlaid to produce a transition matrix of the four
habitat types. The changes in habitat types were quantified in terms of gross gains, gross
losses, and persistence, as well as net and swap changes. The swap change refers to gross
loss of type in one area with a gross gain of the same type in another location, or vice
versa [63]. With the class transition matrix, we further computed the loss-to-persistence
ratio (i.e., loss/persistence) and gain-to-persistence ratio (i.e., gain/persistence) to assess
the tendency of each wetland type to lose to, and gain from, other types, which was an
approach developed by Braimoh (2006) [62].

2.7. Drivers of Wetland Vegetation Dynamics

The hydrological regimes were quantified with nine variables: date of rising (DOYR,
day of year—DOY), rate of water level rising (ROR, m/day), date of withdrawal (DOYW,
DOY), duration of low water season (DOD, days), rate of water level withdrawal (ROW,
m/day), mean water level during high water season (MHH, m), mean water level during
low water season (MHL, m), peak water level (m), and lowest water level (m). These
hydrological metrics characterize the magnitude, timing, duration, and rate of change
constituting the key flow components that regulate riverine ecosystems [91]. The raw daily
water level records series (1988–2021) at Chenglingji was first smoothed using singular
spectrum analysis (SSA) [92]. The hydrological regime variables were then derived from
the smoothed water level curve. Total rainfall and mean temperature during dry season
were calculated from climate records from the weather station at Yueyang.

We investigated the effects of hydrological regime and climate on habitat dynamics
using generalized additive mixed models (GAMM) implemented in the R (http://cran.
r-project.org; last visited 16 June 2022) package ‘mgcv’ [93], which accounts for complex
nonlinear patterns [61]. To reduce the confounding effects of human activities, such
as plantation and winter cropping, we restricted the investigation to the “natural area”
(Figure 2), which is relatively free of levees and weirs, by manually inspecting the aerial
photos. For each year, the predicted distributions of the habitats within this area were
extracted. The GAMM modelled the proportions of meadow, mudflat and reed in response
to hydrological regimes and climatic variables.

Instead of fitting three separate GAM, we included habitat type (Type) as a random
effect in the model formula to investigate the habitat-specific effect of predictor variables:

gam (Y = Type + Year + X1 + X2 + s(Year, by = Type)+ s(X1, by = Type) + s(X2, by = Type)

where Y is the area percentage of each habitat type, Type is factor variable of the three
habitat types, Year is the sampling year, and X1 and X2 are independent variables (i.e.,
hydrology or climate). We included Year in the model to account for overall trends of
habitat and the autocorrelation of the time series data.

http://cran.r-project.org
http://cran.r-project.org
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As the response variables are proportions (i.e., bounded by 0 and 1), we specified
a beta distribution with a logit-link function. This link function also takes into account
the observed and unobserved heterogeneity in the data [94]. Due to the small sample
size (i.e., 34 years of data), we limited the number of covariates to three to keep the risk
of overfitting low. Covariate selection was based on the generalized likelihood ratio test
(GLRT) [61]. However, in cases of non-significant test (p > 0.05, models are not significantly
different), both models were selected and reported on. Moreover, when fitting the GAMM,
we added an additional penalty (i.e., the double penalty approach) to remove redundant
covariates [95]. The additional penalty affects the functions in the null space of the original
penalty. Thus, if all the smoothing parameters for a variable tended to infinity, this variable
would be excluded from the final model [95]. Finally, we checked the model residuals for
normality by visually inspecting the residual plots and autocorrelation using the Durbin–
Watson test [96].

3. Results
3.1. Model Accuracy Assessment

All RF models had high overall accuracy and could be considered as “almost perfect”
based on the kappa statistics [97] as the kappa coefficient of agreement was greater than
0.90 for all models. The lowest kappa (0.93) belonged to the 2002 model, and the model for
2014 had the highest kappa of 0.98 (Figure 3). Moreover, as the overall accuracy and kappa
coefficient of agreement were comparable for training and testing, there was little evidence
of overfitting.
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Figure 3. Testing overall accuracy (mean = 0.98) and kappa (mean = 0.97) of the 34 wetland habitat
classification models.

At the class level, accuracies were also high (Figure 4). Overall, mudflat had the lowest
producer’s and user’s accuracy. The variance for mudflat was also the highest (i.e., the
largest standard deviation, Figure 4), and RF had a tendency to underestimate mudflats.
The misclassification mainly came from two sources. The first was the confusion between
water and mudflat, and to a lesser degree, between mudflat and meadow (Table 1). Reed
and water had comparably high accuracy for both PA and UA (Figure 4), and PA and UA
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were 100% in many cases. The discrimination capacity for meadow was in the middle
(Figure 4), and most of the errors were from the confusion between meadow and mudflat
(Table 2). The high accuracy ensured the trustworthy habitat mapping of further analyses.
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Table 2. The testing confusion matrix of the worst model for mudflat (year 1989), with producer’s
accuracy (PA) and user’s accuracy (UA).

Class Meadow Mudflat Reed Water Sum PA (%)

Meadow 147 8 0 0 155 94.8
Mudflat 8 55 0 0 63 87.3
Reed 0 0 299 0 299 100
Water 2 14 0 203 219 92.7
Sum 157 77 299 203 736

UA (%) 93.6 71.4 100 100 95.7 (OA)

3.2. Spatial Extent of Habitat Transitions

The spatial extent of habitat loss, gain, and persistence during the study period of 34
years is presented in Figure 5. Overall, nearly 70% of the habitats mapped in 1988 remained
the same in 2021 (Figure 5). However, the expansion of reed was extensive in some places,
and localized erosion and lakebed build-up was also identified.
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Figure 5. Maps of habitat transition showing that most of the habitat (nearly 70%) remained the same
during the study period of 1988–2022. Map (A) shows the locations of reed and meadow expansion,
as well as the places of erosion (i.e., becoming water). Map (B) shows that a large part of the original
mudflat was lost, and the places of lakebed build-up (i.e., water replaced by other habitats).
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Transitions of habitat from one type to other types over the 34 year study period,
including gains, losses, persistence, total changes, and swaps, are summarized in Table 3.
The spatial extent of habitat loss, gain, and persistence during the study period of 34 years
is presented in Figure 5. At lake scale, the total changes were dominated by mudflat (TC
was 22.38%, 15.88%, 13.68% and 5.74%, for mudflat, meadow, water, and reed, respectively,
Table 3). Mudflat, meadow and water had comparable swamp change, but reed had the
lowest swamp change. While reed and meadow had similarly high relative persistence
(84% of the land occupied by reed or meadow in 1988 remained as the same in 2021,
Table 3), mudflat had the lowest relative persistence and 57% of the 15,320 ha mudflat
area mapped in 1988 transferred to Carex meadow (4381 ha), water (3594 ha), or reedbed
(748 ha) (Table 3). While reed had the least potential to change to other habitats, it also had
the largest potential to gain.

Table 3. Summary of habitat transition (percentage of the total lake area) in East Dongting Lake
during the period of 1988–2021. The shaded part is the transition matrix with year 1988 in columns
and year 2021 in rows.

Meadow Mudflat Reed Water Persistence Gain Loss NC SC TC P/T G/P L/P

Meadow 29.64 8.17 0.98 0.96 29.64 10.11 5.76 4.35 11.53 15.88 0.84 0.34 0.19
Mudflat 1.56 12.30 0.24 4.31 12.30 6.12 16.27 −10.15 12.23 22.38 0.43 0.50 1.32

Reed 2.81 1.39 7.10 0.23 7.10 4.43 1.31 3.12 2.62 5.74 0.84 0.62 0.18
Water 1.39 6.70 0.09 22.12 22.12 8.18 5.50 2.68 11.00 13.68 0.80 0.37 0.25

NC = net change, SC = swap change, TC = total change, P/T = persistence/total area in 1988,
G/P = gain/persistence, L/P = loss/persistence. Lake area = 53,632 ha.

Over the 34 years, mudflat was the only habitat that suffered net loss (5444 ha). A
total of 8723 ha of the original mudflat was lost to meadow (4381 ha), water (3594 ha),
and reed (748 ha). Although reed was the smallest habitat type in Dongting Lake, it had
the most relative gain (the total area increased 53% from 4157 ha to 6187 ha, Table 3).
Most of this gain resulted from expansion into meadow and mudflat. More than three
thousand hectares of the original meadow was lost, mostly due to the encroachment of reed
(1507 ha). However, this loss was overly compensated by expansion into mudflat (4381 ha).

3.3. Drivers of Vegetation Development in East Dongting Lake

Two models fitted the data equally well (p = 0.49, GLRT test): one had DOD (duration
of dry season, hereafter referred to as duration model), and the other had DOYD (dates of
water level withdrawal, hereafter referred to as date model) as covariate (Table 4). Although
the date model had slightly lower AIC (Akaike information criterion) than the duration
model, both models explained the majority of the deviance (98.6%) in the data and had
a high adjusted R2 of 0.984. The two models produced similar response curves for year
and rainfall (Table 4, Figures 6 and 7). Note that the two flow regime variables (DOD and
DOYD) were significantly negatively correlated (Pearson’s correlation coefficient = −0.69).

Despite the overall effects of year and rainfall not being significant, the response curves
were distinct for the three habitat types. The meadow area did not vary significantly over
the study period (i.e., both models estimated that the effect of year was zero). The reed
area increased almost linearly over the period of 1988–2021, while the mudflat area was
relatively constant before year 1998, after which it decreased almost linearly (Figure 6).

Both duration of dry season and date of water level withdrawal had no effect on the
reed area (p = 0.465 and 0.302 for the DOS and DOYD, respectively, Table 4 and Figure 7).
While the meadow area was positively related to the duration of dry season, it decreased
with the date of water level withdrawal, and the effects were significant and more or
less constant (i.e., straight response curves, Figure 7). The effect of the two hydrological
regime variables on the mudflat area was highly nonlinear. The mudflat area decreased
significantly with the day of the year when the water level started to decline. However,
if the water level withdrawal began after late September (i.e., DOY > 270), the effect was
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positive but small (Figure 8). Mudflat had a similar nonlinear response curve to the duration
of dry season (Figure 8), but the effect was insignificant (p = 0.068, Table 4).

Table 4. Summary of the two fitted GAMM for wetland habitat variation in East Dongting Lake
during 1988–2021.

Duration Model Date Model

Parametric
Term Est. SE z-Value p * Est. SE z-Value p

Intercept −1.264 0.453 −2.793 0.005 Intercept −2.005 0.491 −4.088 0.000

DOD −0.001 0.001 −2.185 0.029 DOYD 0.002 0.001 2.464 0.014

Smooth
term edf Ref.df Chi.sq p edf Ref.df Chi.sq p

s(Year):
Meadow

#
0.000 9 0.000 0.690 s(Year):

Meadow 0.000 9 0.000 0.730

s(Year):
Mudflat 2.140 9 58.778 0.000 s(Year):

Mudflat 2.110 9 55.954 0.000

s(Year):
Reed 0.844 9 6.633 0.010 s(Year):

Reed 0.857 9 7.368 0.008

s(Hab) 1.999 2 4895.312 0.000 s(Hab) 1.999 2 4859.347 0.000
s(DOD):
Meadow 1.759 9 11.336 0.000 s(DOYD):

Meadow 0.915 9 11.851 0.000

s(DOD):
Mudflat 1.342 9 3.263 0.068 s(DOYD):

Mudflat 1.774 9 7.512 0.010

s(DOD):
Reed 0.000 9 0.000 0.465 s(DOYD):

Reed 0.000 9 0.000 0.302

s(Rain):
Meadow 1.161 9 2.514 0.108 s(Rain):

Meadow 0.592 9 0.809 0.239

s(Rain):
Mudflat 1.795 9 17.702 0.000 s(Rain):

Mudflat 1.743 9 16.902 0.000

s(Rain):
Reed 2.184 9 15.608 0.001 s(Rain):

Reed 1.993 9 10.801 0.004

R2 (adj) 0.984 R2 (adj) 0.984

edf = effective degree of freedom; Ref.df = reference degree of freedom; Chi.sq = Chi square. DOD = duration of
dry season (days); DOYD = date of water level withdrawal (day of year); and Rain = total precipitation in winter.
# s = smoothing term; * Bold indicated significant, and p = 0.000 means < 0.00001.

The effects of dry season rainfall on meadow were small and insignificant while its
effects on mudflat and reed were nonlinear and significant (Table 4 and Figure 8). The
mudflat area decreased with the increase in dry season rainfall, although the decreasing
slope was small at the two extreme ends (i.e., too dry or too wet, Figure 8). The reed
area increased with rainfall until ~300 mm, after which the effect of rainfall was negative
(Figure 8).
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4. Discussion
4.1. Overall Evaluation of Mapping Approach

Medium resolution satellite imagery, such as the 30 m Landsat TM, ETM+, or OLI,
is often preferred for mapping wetland vegetation at large scale [98]. Although high
performance classification can be achieved using a single date satellite image [57,99],
multitemporal data that capture the vegetation phenology are often more robust [100,
101] due to the highly dynamic nature of the floodplain landscape [2,13]. This study
retrospectively created a long-term time series (1988–2021) of yearly wetland vegetation
cover in the EDT floodplain using multitemporal Landsat images. Our approach had three
main advantages that contributed to the superior classification power (Figures 3 and 4)
despite the slight underestimation of mudflats and overestimation of water.

First, we maximized the number of available images used in vegetation indices com-
puting. The study area is located in a subtropical monsoon region; therefore, high quality
satellite images are limited if selected by the percentage of cloud cover over the whole
scene [51,57,99,101]. A previous study using an image fusion of Landsat and MODIS
(moderate resolution imaging spectroradiometer) data to address this issue achieved ac-
ceptable performance [67]. Recalculation of cloud cover with pixel quality assessment
(band 18) greatly increased the number of useable images (i.e., a total of 364). The high fre-
quency image collection justified the further procedures to extract the vegetation phenology
for classification.
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Second, lack of ground-truth samples is an obvious drawback for mapping historical
vegetation distribution retrospectively. Many studies have used historical high-resolution
satellite and/or aerial photos available from Google Earth or other platforms (such as
Nearmap Australia, website accessed on 29 March 2022, https://www.nearmap.com/
au/en) to compile a testing dataset and model training [101,102]. Here, we overlaid two
historical vegetation maps representing dry and wet conditions more than 10 years apart
to create stratified random samples. The approaches captured the characteristic wetland
types for the whole study period and guaranteed the ability of the samples for the entire
study period.

Finally, we extracted the essential phenological variables for classification. The four
wetland covers had distinct signatures in terms of the 42 vegetation indices (Figure 2). For
example, the NDVI values for reedbed increased in wet but decreased in the dry season,
and Carex meadows had the opposite trend [27]. The combination of these phenological
variables resulted in accurate and precise classification. Nevertheless, there were uncertain-
ties between mudflat and water, both of which had very low vegetation indices values and
no clear trends in wet or dry seasons. The inclusion of image texture features [101] might
improve the discrimination of the two classes.

4.2. Drivers of Wetland Vegetation Dynamics

The mapping of the floodplain wetland types was not a primary objective of this study.
The long-term time series of yearly maps was created to investigate how wetland habitats
respond to river flow variation for designing effective restoration.

Overall, the duration of the low water season and date of water level withdrawal were
found to be the primary drivers of wetland habitat dynamics. Many studies demonstrate
that vegetation patterns in floodplains are driven by the hydroperiod, i.e., the duration and
temporal pattern of inundation [57,58,91]. Spatial variations in the hydroperiod, which can
result from minor differences in elevation (i.e., microtopographic pattern), often produce
dramatic differences in vegetation across floodplains [103]. However, the effects of all
other tested flow regime variables, such as the rate of water level withdrawal, mean water
levels during high and low water seasons, and the lowest water level, were insignificant.
The results were largely consistent with our previous findings [57], which found that the
development of Carex meadow in the EDT floodplain was positively related to the date
of water level withdrawal. However, these findings were at odds with Peng et al. [101],
who reported the close correlations between the size of reedbed and Carex meadow area
and water level at different seasons. The main reason for this disagreement might be
the different focus areas. To reduce the confounding impacts of human activities on the
floodplain, we excluded areas with reed plantation and winter cropping (Figure 2), whereas
Peng et al. [101] investigated the entire lake.

4.2.1. Reedbed Is Highly Persistent and Has Rapidly Expanded during the Study Period

Throughout the study period, the majority of original reedbed patches remained
(Table 3 and Figure 5), showing the greatest persistence to changes in flow regime (Figure 8).
On the other hand, the total reedbed area increased 2337 ha (or 62%) by encroaching into
Carex meadows (1507 ha) and mudflats (748 ha) over the 34 years. Expansion of reedbeds is
a worldwide phenomenon that has biodiversity concern [104]. The gradual encroachment
of reedbeds (Figure 6) into Carex meadows and mudflats will be a great threat to the
hundreds and thousands of waterbirds such as geese and swans wintering in EDT [16,17].

Surprisingly, none of the flow regime variables had significant effects on the expan-
sion of reedbed area (Figures 6 and 7, Table 4). The lack of relationship with flow regime
could be linked with the life form of Phragmites, which is a tall (up to 4 m) rhizomatous
grass, enabling it to survive the maximum water depth at areas currently occupied by
Carex meadows and mudflats. Moreover, Phragmites seeds spread copiously and clon-
ally by a vigorous system of rhizomes and stolons [105], therefore, can proliferate other
habitats through both clonal and sexual reproduction once recruited and established in

https://www.nearmap.com/au/en
https://www.nearmap.com/au/en
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wetland [106]. Other broader scale factors, such as the increase in winter rainfall associ-
ated with climate change [107], and the elevated atmospheric CO2 level (108), might be
responsible for the continuous spread of this cosmopolitan species.

4.2.2. Carex Meadow Has No Trend and Fluctuates with the Changes in Flow Regime

Although the mapped area of Carex meadow in 2021 was greater than that in 1988
(Table 3), the total area of Carex meadow varied greatly between years and showed no
trend (Figure 6), which was consistent with the findings of a previous study [101]. The
interannual variations of Carex meadow area in EDT were the balanced outcome of loss
to reedbed and gain from mudflat. While loss to reedbed was permanent (i.e., once an
area was replaced by reed, it remained as reed), the gain from mudflat was somehow
transient (i.e., there were many pixels switching between Carex meadow and mudflat).
In addition, the switching between Carex meadow and mudflat contributed more to the
year-to-year changes in total Carex meadow area, and the majority of pixels that had high
tendency to swap were located at the transient zone between the two habitats (Figure 5). A
previous study found that the wintering geese preferred to forage in this transient zone [16],
indicating its conservation importance.

The results of GAM indicated that the Carex meadow area increased with the duration
of the dry season and decreased with the day of the year when the water level started to
withdraw (Figure 8), which was consistent with both field observation and lab gemination
experiment [108]. The importance of the water level withdrawal date might be related
to the temperature requirement of the gemination of the species. In the middle Yangtze
region, the rhizomes of the tufted perennial grass Carex spp. generally cannot regerminate
when the air temperature is below 6 ◦C [109]. As the DOY of the water level withdrawal
increases, the air temperature decreases, reducing the colonization of Carex meadows.

4.2.3. Mudflat Is the Most Vulnerable Habitat

Being the only habitat type to show significant decrease during the 34-year period
(Figure 6), mudflat had the lowest persistence/total value (Table 3), and was vulnerable
to being replaced by other habitat types. By inspecting the yearly habitat maps, three
processes of loss were identified: (1) permanent replacement by reedbed; (2) irreversible
loss to water (i.e., erosion); and (3) transitional swapping with Carex meadow. Moreover, the
switch to and from mudflats was not symmetrical, with a higher tendency of shifting from
mudflat to Carex meadow, resulting in the slow advance of the transient zone towards water.
The accelerated erosion might be attributed to sand mining, a serious threat identified in
many river systems of the Yangtze Basin [42].

Mudflats have long been recognized as important foraging habitat for shorebirds in
coastal areas [110]. However, the ecological function of mudflats in freshwater floodplains
are largely overlooked; and most restoration projects focus on vegetated areas and shallow
waters. Nevertheless, they are also important resting and foraging habitats for a range
of wintering waterbirds in the Yangtze region [65]. Many waterbirds, such as swans and
storks, prey on organisms dwelling in mudflats [111]. The loss and vulnerability of mudflat
in EDT should be closely monitored.

5. Conclusions

Restoration of floodplain wetland associated with large rivers is vital for global bio-
diversity. Understanding how flow regime shapes wetland vegetation cover is critical for
effective restoration. In this study, we built a 34 year (1988–2021) time series map of wet-
land habitat using Landsat imagery and machine learning algorithm. The spatiotemporal
dynamics of four broad habitats were further investigated using GAMM. Our analysis
revealed the constant expansion of reedbeds and shrinkage of mudflats, which might
degrade the conservation function of the Ramsar wetland. The GAMM results showed
that the duration of dry season and the date when the water level started to withdraw
were the key flow regime parameters acting on the extent of wetland habitats. Moreover,
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the responses of different wetland vegetation to flow variations were distinct. Specifically,
while Carex meadow increased with an earlier water withdrawal and longer dry season,
reedbed continuously spread out independent of flow regime.
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