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Abstract: Ground Control Points (GCPs) are of great significance for applications involving the
registration and fusion of heterologous remote sensing images (RSIs). However, utilizing low-level
information rather than deep features, traditional methods based on intensity and local image features
turn out to be unsuitable for heterologous RSIs because of the large nonlinear radiation difference
(NRD), inconsistent resolutions, and geometric distortions. Additionally, the limitations of current
heterologous datasets and existing deep-learning-based methods make it difficult to obtain enough
precision GCPs from different kinds of heterologous RSIs, especially for thermal infrared (TIR) images
that present low spatial resolution and poor contrast. In this paper, to address the problems above,
we propose a convolutional neural network-based (CNN-based) layer-adaptive GCPs extraction
method for TIR RSIs. Particularly, the constructed feature extraction network is comprised of basic
and layer-adaptive modules. The former is used to achieve the coarse extraction, and the latter is
designed to obtain high-accuracy GCPs by adaptively updating the layers in the module to capture
the fine communal homogenous features of the heterologous RSIs until the GCP precision meets the
preset threshold. Experimental results evaluated on TIR images of SDGSAT-1 TIS and near infrared
(NIR), short wave infrared (SWIR), and panchromatic (PAN) images of Landsat-8 OLI show that the
matching root-mean-square error (RMSE) of TIS images with SWIR and NIR images could reach
0.8 pixels and an even much higher accuracy of 0.1 pixels could be reached between TIS and PAN
images, which performs better than those of the traditional methods, such as SIFT, RIFT, and the
CNN-based method like D2-Net.

Keywords: Ground Control Points (GCPs); convolutional neural network (CNN); layer-adaptive;
thermal infrared images (TIRs)

1. Introduction

Ground control points (GCPs) of remote sensing images (RSIs) are widely used in
image stitching, image registration, image fusion, and camera geometric correction [1–3].
GCPs of heterologous RSIs from different sensors or imaging bands are essential for further
utilization of various satellite images. However, the severe nonlinear radiation difference
(NRD) between heterologous RSIs will lead to low accuracy of GCP extraction and the
resulting positioning error, which has been one of the most important factors affecting the
further quantitative application of RSIs.

Thermal infrared (TIR) data reflects the thermal radiation information of the target
in the observation area. By measuring the differences in the thermal radiation of the
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imaging target, TIR images convert the invisible infrared light into visible content, which
has very important applications in military target detection, camouflage target disclosure,
etc. However, some characteristics of TIR images make it challenging to extract sufficiently
accurate GCPs from them. Affected by the thermal interaction between the target and the
surrounding environment, the temperature distribution difference of the ground objects
in the TIR RSI imaging area is small, resulting in a concentrated gray distribution and
poor contrast in the TIR images. Compared with visible images, TIR images record the
thermal radiation characteristics of ground objects, resulting in a nonlinear gray distribution
relationship with the reflection characteristics of the target. This results in less obvious
gray-level and edge features of TIR RSIs and relatively blurred visual effects. In addition,
compared with visible light and short-wave infrared (SWIR), the longer wavelength of TIR
leads to a low image spatial resolution. In addition, the existence of cold and hot shadows
in the TIR RSIs will cause discontinuous gray distribution and lower image contrast in the
shadow area, as well as insignificant texture, edges, and other features.

These characteristics above make GCPs extraction from TIR remote sensing images
face the following problems: First, the traditional grayscale-based control point extraction
algorithm relies on the grayscale changes around feature points, and the cross-correlation
matching process requires high consistency of gray mapping around control points. How-
ever, the gray distribution of the thermal infrared image is relatively concentrated, the
contrast is poor, and the gray mapping difference is also large compared with the reflection
characteristics of the target, resulting in a poor control point extraction effect. In addi-
tion, the control point extraction algorithm based on image features mainly relies on the
gray gradient, contour, texture, edge, and other information of the image itself, while the
resolution of a thermal infrared image is low and gray level and edge features are not
obvious, which makes it a challenge to extract more precise control point information
from TIR images. Furthermore, for the previous methods based on deep learning, they
simply used the feature map from a single immutable network construction even when
the characteristics of the input image were different, which led to a lack of flexibility in the
network and insufficient accuracy of the extracted GCPs.

In this paper, to address the problems above, we propose a convolutional neural
network-based (CNN-based) layer-adaptive GCPs extraction method for TIR RSIs. Different
from previous deep learning-based methods, our work does not use a fixed CNN network
but constructs a CNN feature extraction network with adjustable structure through the
novel layer-adaptive module. Specially, the constructed feature extraction network uses a
layer-adaptive module to capture the fine shared homogenous features of the heterologous
RSIs through the specific convolutional and pooling layer stacking structures. The layer-
adaptive module can adjust the layer in the module adaptively according to the preset GCP
precision threshold and process different input images with different network structures
until the accuracy of GCPs meets the requirements. This precision-oriented approach
enables our method to achieve higher precision GCPs compared to other methods. Test
results show that the accuracy of the GCPs extracted by our method is higher than that of
both traditional methods and deep learning-based methods.

The rest of this paper is organized as follows: In Section 2, we introduce the previous
related research in this field. Section 3 details the proposed CNN-based layer-adaptive
GCPs extraction method. Experimental results are illustrated and compared in Section 4.
Finally, the conclusions are carried out in Section 5.

2. Related Work

GCPs are of great significance for the further quantitative application of heterologous
RSIs. GCP extraction has always been a popular research issue and has made great progress
in the past decades. In general, GCPs extraction methods are broadly classified into
traditional methods and intelligent methods.

Traditional methods mainly rely on grayscale and handcrafted features such as gradi-
ents, edges, and corners, as well as geometric texture. Traditional GCP extraction methods
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can be roughly divided into two categories: intensity-based methods and feature-based
methods. An intensity-based method counts the information in the image window in the
spatial domain or frequency domain and completes the extraction of control point pairs
by optimizing the similarity measurement of the statistical values. Common similarity
measurement methods primarily include the mutual information method (MI) [4], the nor-
malized cross correlation method (NCC) [5], etc. The intensity-based method is also called
the gray-based method because gray-level information is commonly used for statistics.
Since intensity information is directly used to extract GCPs, gray-based methods are often
sensitive to problems such as window size, illumination differences, geometric distortion,
etc. Therefore, the methods above can hardly meet the requirements for GCP extraction
from heterologous RSIs with nonlinear radiation distortions (NDR), the results of which
will become worse, especially for distortion images.

Feature-based methods first extract local features (point feature, edge feature, texture
feature, etc.) of the image by the feature extraction operator and establish the correspond-
ing descriptor. Furthermore, the GCPs are screened out through descriptor matching and
outlier removal algorithms [6]. Representative local feature detection methods include
scale invariant feature transform (SIFT) [7], Harris operator [8], Moravec operator [9], Fea-
tures from Accelerated Segment Test (FAST) [10], Smallest Univalue Segment Assimilating
Nucleus (SUSAN) [11], etc. Particularly, SIFT, famous for its geometric invariance in scale,
rotation, illumination, etc., is one of the most classical feature-based GCP extraction meth-
ods. Wang [12] used the SIFT algorithm to extract GCPs from mountainous area images
of Landsat-8 and the Advanced Spaceborne Thermal Emission and Reflection Radiometer
Global Digital Elevation Model (ASTER GDEM), which achieves a positioning accuracy of
better than 1.0 pixel in panchromatic (PAN), near-infrared (NIR), and intermediate infrared
sensors. Relying on integral images for image convolutions, speeded-up robust features
(SURF) [13] can compute and compare much faster than previously proposed schemes.
Affine-SIFT [14] extended SIFT for the computation of affine invariant image local features,
which effectively covers all six parameters of the affine transform. In order to overcome the
difference in image intensity between the heterologous RSIs, Ma et al. [15] proposed a posi-
tion scale orientation (PSO)-SIFT using a new gradient definition and a feature matching
method combining the position, scale, and orientation of each key point. Moravec is one of
the earliest local feature detection operators, which finds the local maximum value of the
minimum intensity change by moving the rectangular window on the image. In terms of
thermal infrared (TIR) RSIs presenting low spatial resolution and poor contrast, Li et al. [3]
proposed an accurate geometric-texture-based GCPs extraction approach that achieves
sub-pixel-level matching accuracy. Furthermore, the phase congruency (PC) feature is
also used to solve the problem of NRD in multi-modal RSIs. Ye et al. [16] built a dense
descriptor called the Histogram of Orientated Phase Congruency (HOPC) that captures
similar geometric structure or shape features of multi-modal images. Furthermore, the
magnitude and orientation of PC are used to construct HOPC. Li et al. [17] detected corner
feature points and edge feature points on the PC map and constructed a maximum index
map, which is suitable for multi-modal image feature description. However, challenges
still exist with the traditional methods above, especially for heterologous images. The
sensitivity of hand-crafted features based on image intensity and gradient to NRD makes it
difficult for traditional methods to achieve both robust and highly accurate results in the
problem of GCP extraction from multi-modal RSIs.

Recently, deep learning has achieved great success in computer vision. Learning-based
features have acquired achievements in image matching tasks [18–21]. Many deep trainable
features perform better in heterologous RSIs GCPs’ extraction than handcrafted features.
Due to the differences in imaging mechanisms and imaging sensors between heterologous
images, low-level handcrafted features may not be shared across modalities. For example,
the visible remote sensing sensors mainly receive the reflected light of the ground objects
from the sun, while the TIR imaging mainly depends on the thermal radiation of the
target source itself, which is related to the temperature and radiation intensity of the
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imaging target. In such a situation, the handcrafted features of the visible image reflect
more edge and texture information, while the thermal infrared image may reflect more
temperature information. Therefore, representing different meanings under different
radiation characteristics with handcrafted features based on grayscale is hard to show
robustness to NRD. In contrast, the image semantic information obtained from the deep
feature is often shared between heterologous RSIs. A deep learning network can obtain
deep features that are more abstract and global. A common approach is to combine the deep
features extracted through neural networks like convolutional neural networks (CNN) [22]
with traditional methods to obtain more robust and universal feature descriptors for
matching. Yang et al. [23] used multi-scale feature descriptors generated from CNN on
image registration for multi-temporal satellite images. Deep feature descriptors from
different convolution layers are shared by image patches of different sizes and are used
together to describe the feature points. Considering the spatial relationship, Ma et al. [24]
proposed a two-step method using both the deep feature extracted from CNN and the
classical local handcrafted feature. This method adjusts the location of matching blocks
using different convolutional features output from different convolutional layers, which
makes the location of matching points more accurate. Ye et al. [25] integrated SIFT and
CNN features into the PSO-SIFT algorithm for RSI registration. These methods use CNN
as a feature extractor and then use the extracted CNN features to describe and match
the feature points to obtain GCPs. Recently, a two-branched siamse network was also
applied for feature extraction and patch matching. Han et al. [18] proposed a Siamese
network architecture named “MatchNet”, which extracts patch pair features for image patch
matching. Zhu et al. [26] proposed a two-branch convolutional network with unshared
weights to extract features uniquely and transformed the matching mission into a two-class
classification mission. Using the DoG function instead of the s-LoG function, the size of
the image patch can completely cover the texture structure around key points. Hughes
et al. [27] proposed a pseudo-siamese CNN architecture to identify corresponding patches
in optical and synthetic aperture radar (SAR) remote sensing imagery. Zhang et al. [28]
proposed a Siamese fully convolutional network (SFcNet) with a hard negative mining
strategy to obtain GCPs of optical, NIR, TIR, SAR, and map images.

In short, for the previous methods, due to the strong feature extraction ability of deep
learning networks, some classic image classification networks, such as the VGG-16 [29]
network, are often used as the feature extractor, and the feature map output from the
convolution layer can be used as the descriptors of RSI feature points after processing.
However, these methods simply use the feature map from a single immutable network
construction even when the characteristics of the input image are different, which leads
to insufficient accuracy of the extracted GCPs and a lack of flexibility in the network.
Different from that, our work does not use a fixed CNN network but constructs a CNN
feature extraction network with an adjustable structure through the layer-adaptive module.
The layer-adaptive module can adjust the layer in the module adaptively according to
the preset GCP precision threshold and process different input images with different
network structures until the accuracy of GCPs meets the requirements. This precision-
oriented approach enables our method to achieve higher precision GCPs compared to
other methods.

In summary, although traditional methods are classic and applicable in some condi-
tions, they are not satisfactory when applied to heterologous RSIs and TIS RSIs with low
contrast and resolution. Existing deep learning-based methods are more resistant to NRD
in heterologous images. However, it is difficult to perform targeted feature extraction when
facing TIS RSIs, making it difficult to obtain high-precision GCPs. Therefore, it is necessary
to study a GCP extraction method suitable for TIS RSIs.

3. Methods

The overall flow of the proposed method is as follows: First, the CNN network is used
for feature extraction of RSIs from different sources. The proposed CNN-based feature
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extraction network consists of a basic module and a layer-adaptive module. The network
structure and parameters in the basic module are fixed and used for preliminary extraction
of image features. The output from the basic module is further processed as an input to the
layer-adaptive module. In the adaptive module, for images with different characteristics,
different combinations of pooling and convolutional layers are used by initially estimating
the error and giving feedback so as to obtain features more suitable for matching. After
the layer-adaptive module, a 3D feature map is output. Second, feature detection and
description are performed on the feature map. Key points are detected in the feature map by
three different detection conditions, and the high-dimensional vectors at the corresponding
position in the feature map are the descriptors of the key points. Third, Euclidean distance is
used to measure the similarity between feature descriptors. A K-D tree is used for searching
and obtaining candidate matching points. The final GCPs are obtained by eliminating the
mismatched points using the random sample consensus (RANSAC). The framework of the
proposed layer-adaptive GCPs extraction method is shown in Figure 1.
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3.1. CNN Feature Extractor

The GCP extraction algorithm, based on low-level features of the image, mainly relies
on the gray-level gradient, contour, texture, and edge. However, the nonlinear radiation
differences between heterogeneous RSIs result in the fact that these kinds of features are
not shared across modes. In particular, compared with visible images, TIR images record
the thermal radiation characteristics of features, and their grayscale distribution has no
linear relationship with the target reflection characteristics. Additionally, due to the longer
wavelength, TIR images have lower resolution, which makes edge features less obvious.
Considering that the deep features reflect the semantic information of the image, a CNN-
based network is used as a feature extractor in order to obtain the deep features for GCPs
matching. The proposed CNN feature extractor is divided into a basic module and an
adaptive module.

3.1.1. Basic Module

CNN is one of the representative algorithms of deep learning and is widely used
in image classification, natural language processing, human motion prediction, target
detection and recognition, etc. A typical CNN is formed by a combination of a convolutional
layer, a pooling layer, and a fully connected layer. The convolutional layer performs
convolution on the input image using filters with specific trainable weights to obtain a
feature map. The feature maps input to the pooling layer are processed in a window with
a maximum or average pooling operation, which selects the maximum or average value
in the operation window as the output, respectively. Each node in the fully connected
layer is connected to all nodes in the previous layer in order to map the distributed feature
representation extracted from the convolutional layer to the sample label space. Here, we
introduce the VGG-16 model, a classical convolutional neural network model for image
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classification with powerful feature extraction capabilities after being trained. The original
VGG-16 network consists of thirteen convolutional layers and three fully connected layers.
Here, we use conv1, conv2, and conv3 as the basic modules in our CNN feature extractor.

The basic module B is mainly composed of the first three convolutions of the VGG-16
network. The input of the basic module is an image I with a size of a× b. The output feature
map of the basic module F′ = B(I), F′ ∈ Rw×h×n. After the third layer of convolution, the
number of feature map channels is 256, that is, n = 256, and the spatial resolution of the
feature map becomes a quarter size of I due to the pooling operation. For all input images,
the basic module B is the same, including the organizational structure and parameters
of layers. The output F′ of the basic module continues to enter the adaptive module for
convolutional operation. In the adaptive module, the composition and parameters of the
network will be adaptively changed according to the different input images so as to extract
the modal-invariant features for GCP extraction.

3.1.2. Layer-Adaptive Module

The proposed CNN network has a layer-adaptive module that can adaptively deter-
mine which features are more important and automatically select them during the sampling
process. The layer-adaptive module is aimed at the target of feature point extraction and
detection of remote sensing images from different sources, carries out network adaptive
fine-tuning for different input images, selectively uses different types of pooling layers and
their parameters, and uses the output of different convolution layers as the final output
result. The infrastructure of our adaptive module consists of one pooling layer and three
convolution layers. The standard operation of the pooling layer is to take the maximum
value or average value according to the step size in the pooling window and then sample
the feature map. The pooling layer itself has no parameters to learn, but it can reduce
the size of neural network parameters, increase the receptive field, and retain significant
texture features (max pooling) or global average features (average pooling). The previous
neural network structures used a single pooling layer fixedly. However, when used as a
feature extractor, the operation of the pooling layer, such as the selection of pooling type
and the window size of the pooling operation, will have an impact on the subsequent
feature extraction and control point extraction accuracy. Therefore, after the preliminary
estimation of GCP extraction accuracy, we make an adaptive adjustment to the pooling
layer in the adaptive module and complete the adjustment when the extraction accuracy
reaches the preset threshold.

We denote the adaptive module as Gd, d = 1, 2, 3, 4, 5. According to Table 1, the
variable d assumes distinct values that correspond to various operations. The operations
in the table are sorted from highest to lowest priority. The priority of each operation is
determined by the empirical value obtained from the previous experiment. The smaller the
value, the more likely the operation is to obtain higher accuracy in our task.

Table 1. Operations of the layer-adaptive module. The number in parentheses represents the window
size and strides of the pooling operation. Conv4 includes three convolutional layers with kernel sizes
of 3 × 3 × 512.

d Operation

1 max pooling(2,1) + conv4
2 max pooling(3,1) + conv4
3 max pooling(4,1) + conv4
4 average pooling(2,1) + conv4
5 average pooling(3,1) + conv4

Define the tracking error:
e = Rd − R (1)

where Rd is the preliminary estimation accuracy, and R is the accuracy threshold. When
the GCPs accuracy is lower than the threshold accuracy, that is, e > 0, we let d = d + 1.
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The adaptive module updates and reprocesses until there is a d̃ making e ≤ 0. If there is
still e > 0 after all operation combinations have been tested, select Gd̃, d̃ = 1, 2, 3, 4, 5 that
minimizes e. F = Gd̃(F′) is the output feature map of the layer-adaptive module, which is
also the output of the CNN feature extractor. The schematic diagram of the whole feature
extraction network is shown in Figure 2.
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3.2. Feature Detection and Description
3.2.1. Feature Detection and Description on F

The output feature map of the CNN feature extractor is used for both feature detection
and description. Here, we consider the different meanings represented by the feature map
F: as a 3D tensor, F can be considered as a set of high-dimensional vectors in the channel
direction. At the same time, on a channel-by-channel basis, a feature map F can be viewed
as a set of 2D feature detection response maps Dk ∈ Rh×w, k = 1, . . . , n.

Combining the considerations in both directions, we use the feature map F for both
the detection and description of the key points [19]. When the feature map is used for
detection, first the channel with the largest feature vector response is found:

m = argmax
k

Dk (2)

subsequently the local maximum value is detected:

Dm
ij is max in Dm

i′ j′ ,
(
i′, j′

)
∈ N (i, j) (3)

whereN (i, j) is the set of 3× 3 neighbors of the pixel (i, j). When (2) and (3) are satisfied at
the same time, (i, j) is the feature point, and the feature descriptor of this point is obtained
by normalizing the 512-dimensional vector corresponding to (i, j) in the feature map:

d̂ij = dij/‖dij‖2 (4)

3.2.2. Multiscale Detection

The feature pyramid is a basic method used to detect objects of different sizes. Scale
changes often exist between RSIs from different sources due to the influence of image
resolution. Therefore, we use the image feature pyramid to obtain scale robustness features.
For an input image I, different multiples of sampling operations are performed and input
into the feature extraction network to obtain the feature pyramid:

P = { Fρ|ρ = 0.5, 1, 2} (5)
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ρ = 0.5, 1, 2 corresponds to different resolutions. The low-resolution feature maps in P
are fused [19]:

F̃ρ = Fρ + ∑
γ<ρ

Fγ (6)

The low-resolution feature maps are upsampled for accumulation using bilinear
interpolation during fusion. Detected positions are marked and upsampled from the
coarsest resolution to the next scales, resulting in a marked region. The subsequent key
points detected in the marked region are ignored in order to avoid redundancy detection.

3.3. Feature Matching and Outlier Removal

The distance between two instance points in the feature space is a response to the
degree of similarity between the two. In this paper, we measure the similarity of two feature
points based on the Euclidean distance between the feature descriptors. The Euclidean
distance for two points to be matched is:

des
(
d, d′

)
=
√

∑n
i=1

(
di − d′i

)2 (7)

In a collection E of points to be matched, d′ is the nearest neighbor of the point d when:

∀d′′ ∈ E, des
(
d, d′

)
≤ t · des(d, d′′ ) (8)

When searching for the nearest neighbor of a point, a K-D tree is used to build a data
index for searching and obtaining candidate matching pairs for efficiency. Finally, the
RANSAC algorithm is used for outlier elimination and matching. We chose the affine trans-
formation model to determine the geometric constraint relationship between image pairs.

3.4. Transfer Learning and Fine-Tuning
3.4.1. Transfer Learning

When used as a feature extractor, CNN is generally required to have strong gen-
eralization abilities to realize the processing of different tasks. In order to improve the
generalization ability of the network, a lot of work has been carried out on the structure
and optimization process of the neural network. At the same time, in deep learning, more
training data means that deeper networks can be used and network generalization ability
can also be improved. However, for many tasks related to RSI processing, the difficulty
of data set acquisition and production has always been a problem since it takes a lot of
manpower and material resources to improve the network generalization ability through
large-scale data sets. In fact, in practical applications, in addition to focusing on how to
enhance the generalization ability of CNN, the characteristics of tasks and data themselves
are also very important. In our research, when CNN is used as a feature extractor, its
mission is no longer to output image classification or image segmentation results but to
output feature maps that retain important details or overall features of the image while
retaining certain spatial positioning capabilities at the same time, so as to detect candidate
GCPs and describe their features for matching.

For deep networks for different missions, shallow layers of networks are more likely to
learn primary features that are common to all tasks, while deep networks are more relevant
to their specific tasks. Therefore, we choose to fine-tune the specific layers, conv4_3, on
the pre-trained network to improve the performance on feature extraction. Specifically, for
a VGG-16 network pre-trained on ImageNet [30], we discard the part after conv4_3 and
freeze the weights of the convolutional layers before conv4_3. We use the MegaDepth [31]
dataset to fine-tune our feature extractor. In the fine-tuning process, the learning rate is set
at 0.001 and divided by 2 every 10 epochs. Finally, we pick conv1, conv2, and conv3 of the
trained VGG-16 as the basic modules and the rest as the layer-adaptive modules.

3.4.2. Triplet Margin Ranking Loss

Due to the fact that feature extraction networks are used for both feature detection
and feature description, we focus on the following two points for network training: when
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detecting features, key points are repeatable under various imaging conditions. When
describing features, the feature descriptors should be as unique as possible in order to
facilitate subsequent matching and avoid mismatching. Considering the above two aspects,
we use the triplet margin ranking loss (TMRL) [32] as the loss function. The triplet margin
ranking loss for a margin M can then be defined as:

m(c) = max(0, M + p(c)2 − n(c)2) (9)

where p(c) is the positive descriptor distance between the corresponding descriptors and
n(c) is the negative distance between them. This TMRL enhances the distinctiveness of
feature descriptors by penalizing any irrelevant descriptors that lead to incorrect matching.
In addition, a detection term is added to the triplet margin ranking loss in order to seek out
the repeatability of detections [19]:

L(I1, I2) = ∑
c∈C

s(1)c s(2)c

∑q∈C s(1)q s(2)q

m(p(c), n(c)) (10)

where C is the set of all correspondences between I1 and I2, and s(1)c , s(2)c are the detection
scores [19] at points A and B in I1 and I2.

The above loss function will generate the weighted average value of the margin terms
m based on the detection scores of all matches. Therefore, in order to minimize the loss, the
most relevant correspondence with a lower margin term will obtain higher relative scores.
In the same way, correspondences with higher relative scores are encouraged to obtain
similar descriptors that are different from other features.

3.4.3. Training Data

In order for the feature extractor to learn the expression of pixel level feature similarity
under the radiation and geometric differences of heterogeneous images, the selection of
training data needs to meet three conditions:

1. The scale of the training data should be large enough.
2. Training data needs to have pixel-level correspondence.
3. The training data should have significant radiation and geometric differences.

In order to meet the above conditions, we used the MegaDepth dataset. It is com-
posed of more than 1 million landmark images with large differences in shooting light
and scale. It also contains a large number of multimodal image pairs, such as day and
night. The dataset screened approximately 100,000 high-quality images from these images
and reconstructed 196 different scenes using the open-source motion recovery structure
software COLMAP [33]. From these three-dimensional scenes, stereo image pairs can be
obtained. For each image pair, using the 3D information and camera parameters provided,
the pixels on the second image can be projected onto the first image, establishing pixel-
level correspondence between the image pairs, which satisfies the second condition we
provide. Thus, the MegaDepth dataset satisfies the above three conditions and is selected
for model training.

4. Experimental Results and Discussion

To verify the effectiveness of the proposed method, we selected several infrared RSIs
for evaluation. We compare our method against SIFT, RIFT, and D2-Net. The program is
executed on a workstation with an Intel Xeon(R) Gold 6248R CPU running at 3.00 GHz,
376 GB of RAM, and an NVIDIA A100 GPU. The operating system is Ubuntu20.04. The
code is programmed in MATLAB and Python 3.7.

4.1. Experimental Datasets

SDGSAT-1 TIS has an unprecedented infrared imaging capability, which can provide
TIR images with a high spatial resolution of 30 m. Landsat 8 OLI provides PAN images at
a spatial resolution of 15 m and SWIR and NIR images at 30 m. We selected images from
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SDGSAT-1 and Landsat 8 OLI to test the proposed method. The selected images include
different scenes, such as mountain areas and urban areas, with a time span from 2013 to
2022. The details of the test data are introduced in Table 2. Figure 3 shows all the test data.

Table 2. Introduction of test data.

Item Satellite Category Date and Time
(Local)

Bands
(µm)

GSD 1

(m)
Description

P-A and
P-B

Landsat-8 OLI SWIR 3 February 2021, 11:45 2.1–2.3 30
Mountainous areasSDGSAT-1-TIS TIR 20 November 2022, 14:36 8.0–10.5 30

P-C and
P-D

Landsat-8 OLI PAN 30 January 2021, 10:32 0.50–0.68 15
Dense urban distribution areasSDGSAT-1-TIS TIR 24 February 2022, 09:45 10.3–11.3 30

P-E
Landsat-8 OLI NIR 10 December 2013, 10:32 0.84–0.88 30 Large span of time,

containing watersSDGSAT-1-TIS TIR 24 February 2022, 09:45 10.3–11.3 30
1 GSD refers to Ground Sample Distance.
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4.2. Results and Discussion
4.2.1. Experiment 1

In order to explain the impact of different pooling operations and the reasons for the
coding sequence of the layer-adaptive module, we count the number of key points that can
be detected in the output feature map and the number of correct matching points when
using different pooling operations. As shown in Figure 4, it can be seen that when the
max pooling layer with a window size 2, which corresponds to the adaptive module G1
is adopted, the largest number of key points and the number of final correct matching
points can be obtained. Therefore, the module with max pooling and core size 2 has
the highest priority. These are the reasons for the priority of different operations in the
adaptive module.
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4.2.2. Experiment 2

For the purpose of performance evaluation, root-mean-square error (RMSE), the
number of GCPs (NGCPs), and running time (RT) are adopted to make the analysis. We
introduce RMSE to evaluate the accuracy of GCP extraction as:

RMSE =

√√√√ 1
N

N

∑
i=1

[(
x′i − xi

)2
+
(
y′i − yi

)2
]

(11)

where (xi, yi) and
(

x′i , y′i
)

are the coordinates of GCPs in the sensed and referenced images
under the UTM reference system, respectively. The robustness of the extraction method
when dealing with images from different scenes can be evaluated by NGCPs. When the
accuracy of the extracted GCPs is basically the same, a larger NGCP means a larger number
of available GCPs, and the alignment accuracy becomes higher when using the GCPs for
applications such as geometric correction. RT is a simple and direct index to measure the
speed of a GCP extraction method, which reflects the efficiency of the method.

We select SWIR, PAN, and NIR images with TIS images for GCP extraction exper-
iments. The test datasets have different wavebands, scales, and resolutions, including
a variety of scenes such as mountainous areas, cities, and waters, a large time span, and
different degrees of NDR. Table 3 shows the results of SIFT, RIFT, D2-Net, and the pro-
posed method.

As shown, the SIFT algorithm fails on P-A, P-B, P-C, and P-D because of low resolution
and severe NDR, as well as different scales. The reason SIFT succeeds in P-E is because of
the presence of clear and significant edge features in P-E. Furthermore, the characteristics
of relatively small image information lead to good results in P-E not only for SIFT but also
for the remaining three methods. However, the NGCP of SIFT is small even when the
matching is successful, i.e., 36.

RIFT can obtain a GCP extraction accuracy of 1.5 pixels on average and a certain
number of GCPs in P-A, P-B, and P-D. It is worth noting that RIFT is not scale invariant;
therefore, for P-C and P-D, the two images of each image pair need to be resampled to have
approximately the same GSD [17]. However, after adjusting the TIS image using bilinear
interpolation, the RMSEs of RIFT in both P-C and P-D reach 4 pixels, which may be due
to the fact that our resampling method is not suitable enough. The analysis above reflects



Remote Sens. 2023, 15, 2628 12 of 18

the drawback of the RIFT method, which is its lack of robustness at scale. Additionally,
the RIFT method takes relatively longer due to the fact that the RIFT algorithm needs to
compute the maximum index map constructed from the log-Gabor convolution sequence
for feature description, which is time-consuming.

Table 3. Comparison of the results of different GCP extraction methods. ‘-’ represents RMSE > 5 pixels.

Item Method RMSE (Pixel) NGCPs RT (s) Item Method RMSE (Pixel) NGCPs RT (s)

P-A

SIFT - 7 0.493

P-B

SIFT - 8 0.753
RIFT 1.528 350 13.11 RIFT 1.501 296 13.45

D2-Net 1.309 503 5.016 D2-Net 1.400 337 4.259
Proposed
(R = 0.8) 0.737 622 5.515 Proposed

(R = 0.8) 0.749 561 5.111

P-C

SIFT - 5 0.541

P-D

SIFT - 4 0.525
RIFT 4.389 248 12.87 RIFT 4.023 217 12.51

D2-Net 0.417 2735 8.159 D2-Net 0.664 1798 9.422
Proposed
(R = 0.2) 0.088 6644 12.56 Proposed

(R = 0.2) 0.132 4181 11.554

P-E

SIFT 1.003 36 0.446
RIFT 1.002 1397 13.6

D2-Net 1.224 819 3.316
Proposed
(R = 0.8) 0.791 1069 3.453

D2-Net and our proposed method are all based on CNN and use deep features for
matching. Since the semantic information is not disturbed by radiation differences, it can be
seen that both methods using deep features are robust in different experimental scenarios,
which indicates that the deep-learning-based method is suitable for heterologous RSI and
GCP extraction. In P-A, P-B, and P-E involving TIR, NIR, and SWIR images, the D2-Net
method achieved an average RMSE of 1.5 pixels and an average run time of about 3–4 s. In
P-C and P-D images, including panchromatic and TIR images, the D2-Net method achieves
an accuracy of 0.5 pixels, but with a higher time cost.

The proposed method is superior in accuracy and NGCPs to the other three methods.
The RMSE of TIS images with SWIR and NIR images could reach 0.8 pixels, and an even
higher accuracy of 0.1 pixels could be reached between TIS and PAN images. The reasons
are as follows: (1) The proposed method is accuracy-oriented, adding feedback and adap-
tive adjustment mechanisms based on a given error threshold, always tending to obtain
the most accurate extraction results. (2) In a general sense, the higher the number of key
points that can be initially extracted from the output feature map, the higher the number of
GCPs that can be subsequently filtered to meet the accuracy requirement. As a result, our
method also always tends to obtain a larger number of GCPs, i.e., larger NGCPs. However,
it should be noted that our method is not optimal in terms of run time. This is because
during the adjustment performed by the layer-adaptive module, the accuracy of the point
extraction needs to be initially estimated, which leads to the possibility that more time is
needed for the computation. That is, our method tends to trade off runtime for a more
accurate result.

In general, our method is able to extract sub-pixel-level GCPs for TIR images with low
resolution. Furthermore, when higher resolution images are available for reference, such as
panchromatic images in P-C and P-D, our method can obtain high precision GCPs with
RMSEs around 0.1, which is crucial for subsequent quantification applications of remote
sensing images.

Figure 5 shows the results of the four methods on the datasets. As seen, SIFT fails
in all datasets except P-E. It is clear that the proposed method could basically obtain the
largest number of GCPs and the most uniform distribution of GCPs. RIFT obtains relatively
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more GCPs in P-E. Compared to our proposed method, D2-Net performs slightly inferiorly
because the network of D2-Net is fixed.

4.3. Further Evaluation and Analysis
4.3.1. Ablation Study

In this paper, we propose a layer-adaptive module to obtain features that are more
suitable for matching and improve the accuracy of GCP extraction. We also perform
resampling before inputting the image into the feature extraction network to improve
robustness for images of different scales. To verify the effectiveness of the layer adaptation
module and resampling operation, we conducted ablation experiments. We removed the
layer adaptation module and the sampling process for experiments, and the experimental
results are shown in Table 4.

From the experimental results, it can be seen that the RMSE of GCPs significantly
increases and the accuracy decreases after removing the layer-adaptive module. This
indicates that the features extracted by the layer-adaptive module are more suitable for our
matching task. In addition, for test groups P-C and P-D with scale differences, the number
of GCPs detected significantly decreased after removing the resample operation, which
indicates that this operation makes the proposed method robust to scale changes.
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Table 4. Comparison of the results of the ablation study.

Item Method RMSE (Pixel) NGCPs RT (s)

P-A

Proposed
(Without LAM 1) 1.324 447 3.989

Proposed
(Without Resampling) 0.918 369 2.723

Proposed
(Without LAM and Resampling) 1.871 294 2.253

Proposed 0.737 622 5.515

P-B

Proposed
(Without LAM) 1.531 430 3.408

Proposed
(Without Resampling) 0.985 237 2.662

Proposed
(Without LAM and Resampling) 1.537 233 2.708

Proposed 0.749 561 5.111

P-C

Proposed
(Without LAM) 0.484 2030 5.632

Proposed
(Without Resampling) 0.889 414 9.571

Proposed
(Without LAM and Resampling) 1.049 297 3.444

Proposed 0.088 6644 12.56

P-D

Proposed
(Without LAM) 0.463 1087 5.463

Proposed
(Without Resampling) 0.148 498 9.583

Proposed
(Without LAM and Resampling) 0.791 383 3.512

Proposed 0.132 4181 11.554

P-E

Proposed
(Without LAM) 1.121 925 3.416

Proposed
(Without Resampling) 0.917 572 2.676

Proposed
(Without LAM and Resampling) 1.075 561 2.676

Proposed 0.791 1069 3.453
1 LAM refers to the layer-adaptive module.

4.3.2. Model Complexity Analysis

Larger input data and more complex networks will lead to a greater consumption of
computing resources. We compare the complexity and computational cost of the proposed
model with other deep learning-based methods. From Table 5, it can be seen that our
proposed method has a relatively small number of parameters. This is because in the layer
adaptation module, the adjustment mainly relies on the role of different pooling layers,
and the pooling layers themselves do not have weight parameters, which helps the model
be lightweight. In addition, our model does not include fully connected layers involving
large-scale parameters, which is one of the reasons why the model parameters are relatively
small. In terms of computational cost, compared to large-scale classification networks, our
computing cost has decreased due to the fact that, although our backbone network is based
on VGG-16, we have abandoned all layers behind conv4_3, which reduces a significant
amount of convolutional operations and computational costs in our network.
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Table 5. Parameters and GFLOPs of different GCP extraction models.

Model Image Size GFLOPs Parameters

VGG16 224 15.5 138 M
ResNet-based 224 3.87 25.6 M
VGG16-based 224 14.4 9.99 M

DenseNet-based 224 11.32 7.89 M
Proposed 224 13.9 7.63 M

4.3.3. Discussion

Overfitting is a common problem in machine learning. While our method obtains
good results, it is also necessary to discuss whether there is an overfitting problem in the
model. Here, we give two reasons to support the claim that our results are not caused by
overfitting. Firstly, there is no overlap between our training data and the test data used
in the experiment. During the training process, we used a large-scale universal dataset,
i.e., MegaDepth. In previous work, a common approach was to match RSIs and capture
image blocks that corresponded in pixels to the dataset, and then expand the dataset for
training through data augmentation. However, although the dataset we use conforms to
the one-to-one correspondence between pixels and meets the requirements of multimodal
images, it is not a remote sensing image dataset. In fact, MegaDepth is a more general
and large-scale image dataset. After training on this data set, if the model is overfitting,
it will not produce good results in our test data, i.e., heterologous RSIs. The test results
in Experiment 2 demonstrate that our model has strong generalization ability and has
achieved good results on the test data. In addition, we used the method of transfer learning.
Our network only fine-tunes the conv4_3 on the network that is pretrained on ImageNet.
In the process of fine-tuning, all weights except conv4_3 are frozen, which means the
parameters of the shallow layers will not change completely depending on the training
data set, thus avoiding overfitting in the training process.

The proposed method has achieved high accuracy in GCPs, but there are still some
shortcomings. Firstly, the appropriate selection of accuracy thresholds is a topic worth
discussing. The characteristics of our proposed method require us to provide an accuracy
threshold before extracting control points, and subsequent adaptive adjustment operations
will be based on the preset threshold. If the accuracy threshold is set too low at the
beginning, it will cause the adaptive module to make multiple adjustments to achieve the
target accuracy, which will consume relatively more time. Similarly, setting the accuracy
threshold too high can also lead to poor accuracy in the final result. Secondly, currently, our
method is relatively semi-intelligent, essentially replacing the features used for matching in
traditional methods with deep features. Thirdly, in the detection phase, we only considered
using the feature maps output from the last convolutional layer and ignored the outputs of
other layers.

In future work, it can be considered to establish mapping relationships with different
adaptive modules based on calculating some statistical values of the input image in order to
avoid potential resource waste caused by the iterative process. In addition, it is possible to
consider researching an end-to-end network that can directly output the final control point
extraction results. In addition, it is also possible to consider combining feature maps output
from other convolutional layers for joint detection, utilizing the higher spatial resolution of
low-level feature maps to improve the positioning accuracy of points.

5. Conclusions

In this paper, we propose a CNN-based layer-adaptive GCP extraction method for
TIR RSIs that can improve the accuracy of GCPs. The proposed network can adaptively
use different pooling layers to obtain features more suitable for matching. The proposed
method is robust to NRD between heterologous RSIs, which makes it outperform previous
intensity-based or feature-based methods. The method is tested on various scenes from
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SDGSAT-1-TIS images and Landsat-8 OLI SWIR, PAN, and NIR images. The experimental
results show that this method improves the accuracy of GCP extraction from TIR RSIs.
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