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Abstract: Satellite network is considered a prominent architecture for future space-air-ground inte-
grated networks, where the relay satellite network (RSN) plays an essential role in data transmission.
However, the relay satellite network faces practical challenges. First, due to the dynamic network
topology and limited resources such as storage capacity, antennas, and bandwidth, optimizing data
transmission and resource allocation in a resource-constrained stochastic system is challenging.
Second, satellites intermittently enter the eclipse zone, which leads to an unstable energy supply.
Therefore, optimal energy management is required to balance energy supply and consumption. In
this paper, we proposed an online optimal control algorithm, based on Lyapunov stability theory, to
optimize data transmission and energy management jointly. Furthermore, the performance of our
proposal is analyzed comprehensively, including the reasonable bounds for data and energy and the
optimality of our proposed algorithm. Finally, extensive performance evaluation simulations are
performed based on real-world satellite parameters. The simulation results indicate that the proposed
method can achieve long-term network stability and energy sustainability. Moreover, the proposed
algorithm shows an improvement of 9.6% and 20.3% in system utility compared to the non-optimized
transmission method and non-optimized energy management algorithm, respectively.

Keywords: relay satellite network; data transmission; resource allocation; stochastic optimization

1. Introduction

With the rapid development of spatial information networks (SIN), space-air-ground
integrated networks (SAGIN) have received extensive attention in recent years [1]. In many
application scenarios, such as resource exploration and environment monitoring, the
terrestrial networks cannot be deployed due to topographical reasons [2]. Acting as a
backbone architecture in SIN, the satellite network can efficiently transfer the data randomly
generated in these special scenarios due to its wide coverage and high communication
capacity [3]. In view of the small size and low cost, low earth orbit (LEO) satellites can
be deployed in large numbers to collect high-quality data from the earth. However, some
types of LEO satellites (e.g., remote sensing satellites, meteorological satellites) are not
networked in satellite cluster [4]. These satellites can only download the on-board data
for a few minutes when they are within the coverage of ground stations [5], which brings
significant challenges in downloading spatial data. To tackle the data transmission problem,
the relay satellite network (RSN) is considered a prominent solution. In RSN, geostationary
earth orbit (GEO) satellites are dedicated to supplying data forwarding services for user
satellites (i.e., LEO satellites) through the seamless switching of inter-satellite links (ISLs) [6].
In addition, GEO satellites with stable orbits can download received data to ground stations
via satellite-ground links (SGLs).
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It is of paramount importance to design reliable and stable transmission strategies
for the stochastic arrived data in RSN. Different from the terrestrial network with static
properties, the topology of RSN changes dynamically due to the periodic operation of user
satellites in their own orbits. Furthermore, limited resources of RSN (e.g., battery capacity,
transmission bandwidth, and transceivers) may complicate the data transmission decisions.
Generally, solar energy harvesting has been utilized to power LEO satellites [7]. However,
the LEO satellites harvest energy only when exposed to the sun. The satellite is mainly in a
discharging state during the eclipse phase [8], which further limits the data acquisition and
transmission. Moreover, only background knowledge about dynamic network topology,
channel transmission capacity, and solar exposure duration is available. This may pose
great challenges in stable transmission and sustainable energy supply over the whole
network operation process. This can be manifested in the following two aspects:

• Random data arrivals and fluctuating energy supply. First, spatial data arrives at
user satellites randomly, which leads to the data buffer varying over time. A larger
data cache will prolong the transmission time due to limited network capacity, which
may result in transmission delay. Second, the remaining battery capacity fluctu-
ates dynamically due to the energy consumption required for data acquisition and
transmission [9]. Furthermore, satellite networks face dynamic energy supply due
to unstable illumination. Each satellite charges itself by receiving solar energy only
when the satellites move to the sunny side. Particularly, the satellite may fall to a
resting state due to insufficient residual energy, which would decrease transmission
performance [10]. Thus, an optimization control method with sustainable energy is
required to transmit the stochastic arrived data.

• Time-variant inter-satellite link. Due to the intermittent connection between GEO
satellites and LEO satellites, ISLs have time-varying characteristics. Although potential
ISLs are predictable, technical research on inter-satellite routing is required to enhance
transmission performance [11]. In addition, the number of antennas that can be
used to establish ISLs is limited, which will directly affect the transmission state of
satellites [12]. This challenges the resource allocation and link contact plan design
(CPD). On the one hand, if the LEO satellite connected to the GEO satellite has
insufficient energy to achieve transmission, it will cause a waste of antenna resources.
On the other hand, the connected user satellites with a small data buffer will waste
scarce bandwidth resources. Therefore, it is of vital importance to develop effective
link allocation strategies in dynamic satellite networks.

In the literature, there have been some data transmission scheduling schemes for
satellite networks [13,14]. These methods improve the transmission performance to a
certain extent, but ignore the impact of insufficient energy supply for satellites in practical
applications. Motivated by the actual problems considered in this paper, there are also
some works on designing joint energy and resource allocation strategies [15,16]. However,
these works are mainly oriented to predictable data arrival, which cannot be applied
to the scheduling of stochastic arrived data directly. The existing works [17,18] on data
transmission with random data arrival has more or less some limitations, such as operating
in a finite-horizon or requiring prior statistics on data arrivals. Therefore, an energy-
efficiently collaborative transmission method should be carefully designed for random
arrived data.

To comprehensively consider the characteristics of the relay satellite network, we
systematically study an online data transmission optimization method, which can achieve
a higher system utility and long-term stability. The main contributions of this paper can be
summarized as follows:

• We design a dynamic stochastic system model considering the RSN features (i.e.,
dynamics of network topology, limited transmission resources, and unstable energy
supply). We present a multi-objective optimization problem to maximize system
utility without prior statistics knowledge about the stochastic process.
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• To solve the joint optimization problem of data transmission and energy management
in stochastic satellite networks, we propose an online optimal control algorithm,
named DTEM, which can improve transmission performance and energy efficiency.
In particular, we construct an optimization framework based on Lyapunov stability
theory to decompose the optimization problem into three sub-problems, i.e., data
acquisition, energy harvesting, and inter-satellite transmission. Based on this, our
proposed method can adaptively optimize the system variables (i.e., data acquisition
rate, energy harvesting rate, ISL contact state, and transmission rate) at each time slot.

• We analyze the performance of our proposed algorithm in satellite networks compre-
hensively, including the maximum storage of buffer and the minimum capacity of the
battery, which are required to maintain system stability. Furthermore, we compare
the time-average system optimal performance with the global system optimal solu-
tion. Further, we establish a satellite scenario under dynamic network topology and
conduct extensive simulations to demonstrate the efficiency of our method.

The remainder of this paper is structured as follows. In Section 2, we introduce the
related work about data transmission schemes in satellite networks. In Section 3, we
design a dynamic stochastic system model and summarize our optimization formula for
maximizing system utility. In Section 4, we elaborate on the solution strategy and propose
an efficient online algorithm, and the analysis for system performance is discussed in
Section 5. Then, extensive simulations are illustrated in Section 6. Finally, this paper is
concluded in Section 7.

2. Related Work

As we know, the research about data transmission schemes in satellite networks has
been intensively studied. Mainly, RSN relays space data from LEO satellites at the user
satellite layer to ground stations directly, which attracts many researchers to improve
network transmission performance.

In the literature, there have been some data transmission scheduling schemes for
executing tasks with predictable data arrival [16,19,20]. In [16], a two-stage task scheduling
scheme has been designed, which decomposes task scheduling into a power allocation (PA)
problem and a PA-based task scheduling optimal problem. The authors in [19] presented
a task scheduling algorithm composed of two stages, i.e., an initial scheduling stage and
a dynamic scheduling stage. In [20], a heuristic mission scheduling algorithm has been
given, in which the dynamic setting of antennas based on visibility window constraints
is considered. To solve the problem of scheduling hybrid tasks, a stochastic optimization
framework has been proposed [21], which can maximize the average time of tasks by
joint optimization of the scheduling period and antenna allocation. The authors in [22]
suggested a task scheduling schema considering breakpoint transmission. In the scheme,
a single task is split into multiple sub-tasks and rationally arranged in multiple transmission
time windows.

Some existing efforts have studied resource optimization strategies in data transmis-
sion [23–25]. To schedule stochastic arrived data, wang et al. proposed a queue stability
model and a dynamic contact capacity optimization scheme [23]. An et al. [24] considered
different strategies, to obtain optimal power and adaptive transmission rate in a relay
satellite network. In [25], the authors designed a resource optimization model to realize
the continuity of radio resources for mapping with packets. In addition, several studies
explore reinforcement learning methods to address the resource allocation problem. In [26],
the authors focused on power allocation, power splitting, and time allocation optimization
strategies corresponding to the static and dynamic schemes. To optimize relay and trans-
mission power resources, a deep Q-network-based approach is proposed in underwater
acoustic sensor networks with energy harvesting module [27]. Chen et al. [28] studied the
optimization of resource utilization and proposed a Markov decision process algorithm
considering the energy status of the relay nodes. The authors in [29] utilize a deep rein-
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forcement learning model to improve the effectiveness of computational task offloading
in SAGIN.

For the time-varying dynamic topology of satellite networks, the ISLs between satel-
lites are not persistent, which exhibits the characteristics of a delay tolerant network
(DTN) [30,31]. To make effective use of limited network resources, some works focus on
routing (i.e., link allocation) in the literature, such as [32,33]. Limited by the number of
transceivers, Zhou et al. obtained the maximum feasible contacts between satellites based
on conflict graphs (CGs) with the same edge weight [18]. To avoid a large-scale routing
table caused by calculating all routes, the authors in [34] proposed a routing calculation
schema based on contact graph routing (CGR), employing four strategies. To overcome the
problem that CGR is limited in large-capacity transmission, Zhang et al. designed a multi-
flow maximizing routing strategy based on a storage time aggregation graph (STAG) [35].
To send the same information to multiple users, the authors proposed an energy-efficient
routing scheme with a delay guarantee based on the multicast time-expanded graph
(MTEG) [36]. In [37], D.Raverta et al. exploited uncertain contact plans to enhance data
transmission under which routing is described as the Markov Decision Process (MDP) with
multiple copies.

To summarize, most of the current data transmission strategies are geared towards
predictable data transfer tasks or do not fully consider the impact of energy harvesting
on network performance. For practical application in time-varying satellite networks,
the data transmission scheme should consider optimization of the data acquisition rate, link
allocation, inter-satellite transmission rate, and energy harvesting. Although reinforcement
learning can cope with the dynamics and complexity of satellite systems, such methods
require extensive training to learn optimization strategies. In this paper, we work on an
online optimal control method for energy-efficient data transmission that does not require
the prior knowledge.

3. System Model and Problem Formulation

In this section, we design a stochastic system model that includes the RSN network,
dynamic models of data queue, and energy queue. Then, a system utility maximization
problem is formulated with multiple constraints. The key notations with descriptions used
in this paper are summarized in Table 1.

Table 1. Notations description.

Symbol Description

U Set of user satellites
R Set of relay satellites
T Set of time slots
Di(t) Data queue of user satellite i in slot t
δij(t) Connection state of ISL in slot t
ξij(t) ISL capacity in slot t
ϕi(t) Data acquisition rate of user satellite i in slot t
γi(t) Inter-satellite transfer rate of user satellite i in slot t
ρi(t) Energy Harvesting rate of user satellite i in slot t
Ec

i (t) Energy consumption at user satellite i in slot t
Eh

i (t) Harvested energy at user satellite i in slot t
Ei(t) Energy queue of user satellite i in slot t

3.1. Network Model

The relay satellite network considered in this paper consists of four parts: a set of
user satellites denoted as i ∈ U = {1, 2, . . . , M} that are moving on their low orbits,
geosynchronous relay satellites j ∈ R = {1, 2, . . . , N}, ground stations G = {1, 2, . . . , L}
and data management center (DMC). Consider a typical time-slotted RSN that operates over
T time slots presented as t ∈ T = {0, 1, 2, . . . , T}, and the interval of the slot is τ. As shown
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in Figure 1, the user satellite collects data from the earth or space environment and stored
it in the buffer. The relay satellite provides forwarding service for user satellites with
intermittent ISLs and then downloads the received data to ground stations via continuous
SGLs (i.e., DMC) directly. Here, we set a binary variable δij(t) to indicate whether user
satellite i is connected to relay satellite j or not at time slot t. When δij(t) = 1, the user
satellite transmits spatial data to the relay satellite, otherwise, δij(t) = 0.

In particular, each relay satellite employs K antennas, which can establish ISLs with
up to K user satellites simultaneously. Additionally, a user satellite can only connect to
one relay satellite due to the limited antenna. For example, when K = 1, if the i-th user
satellite establishes a connection with the j-th relay satellite at time slot t, then the relay
satellite j cannot provide forwarding services for other user satellites at that slot. We have
the following formulas:

N

∑
j=1

δij(t) ≤ 1, ∀i ∈ U. (1)

M

∑
i=1

δij(t) ≤ K, ∀j ∈ R. (2)

Ground station

DMC

User satellite layer

Relay satellite layer

Data acquisition

Data transmissionGround layer

Figure 1. RSNs architecture.

3.2. Transmission Model and Data Queue

In RSN, different user satellites have different types of data acquisition missions.
Considering the differentiated data amount of missions, we denote ϕi(t) as the data
collection rate of user satellite i in slot t. The upper bound of ϕi(t) is denoted by ϕmax, i.e.,

0 ≤ ϕi(t) ≤ ϕmax. (3)

The spatial data collected by the user satellite at each time slot is first stored in the
buffer and then transmitted in a carry-forward mode. We define Di(t) as the buffered data
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queue length at the beginning of slot t. We also let ξij(t) be the link capacity from user
satellite i to relay satellite j [38], expressed by

ξi(t) =
PuGtGrLs(t)L f

kTs · (Eb/N0)req ·Ma
, (4)

where Pu is the ISL transmission power (in W). Gt is the transmitting antenna gain of the
user satellite. Gr is the receiving antenna gain of the relay satellite. Ls(t) and L f are the
free space loss and the total line loss, respectively. k is the Boltzmann’s constant (in JK−1),
and Ma is the link margin. Furthermore, Ts is the temperature of system noise (in K),
and (Eb/N0)req is the ratio of received energy per bit to noise density. We define ξmax as
the upper bound of link capacity, i.e., ξi(t) ≤ ξmax.

In addition, we define γi(t) as the inter-satellite transmission rate of satellite i through
ISL in slot t, which is limited by the link capacity. Therefore, we have

0 ≤ γi(t) ≤ ξi(t). (5)

We formulate the data queue evolution of user satellite i by input process and delivery
process, which corresponds to data acquisition rate ϕi(t) and data transfer rate γi(t), i.e.,

Di(t + 1) = [Di(t)− τ
N

∑
j=1

δij(t)γi(t)]+ + τϕi(t), (6)

where τϕi(t) is the data flow entering data buffer in slot t, and τ ∑N
j=1 δij(t)γi(t) is the data

flow leaving data queue in time slot t, respectively. To keep the stability of the data queue,
we impose the following constraint that the total collected data is less than the transferred
data over the infinite time horizon, i.e.,

lim
T→+∞

1
T

T−1

∑
t=0

M

∑
i=1

ϕi(t) ≤ lim
T→+∞

1
T

T−1

∑
t=0

M

∑
i=1

N

∑
j=1

δij(t)γi(t). (7)

3.3. Energy Consumption and Harvesting Model

In RSNs, the energy management of user satellites consists of two parts: energy
consumption and energy harvesting. The three factors that affect energy consumption are
the satellite’s orbital movement, data acquisition, and transmission. Denote Ec

i as energy
consumption of user satellite i in slot t, which is given by

Ec
i (t) = τ ×

(
Pn + Pt ·

γi(t)
ξmax

· δij(t) + Pr ·
ϕi(t)
ϕmax

)
. (8)

Wherein, Pn, Pt, and Pr are the constant power of regular operation, data transmission,
and data acquisition, respectively. Since the data collection rate ϕi(t) has a maximum value
of ϕmax and the inter-satellite transmission rate γi(t) is with the maximum value of ξmax.
We derive the upper bound of total energy consumption as Ec

max = τ · (Pn + Pt + Pr).
Since a satellite moves around the earth, it harvests energy when the satellite runs to

the sunny side. Denote Eh
i as the amount of energy harvested by satellite i (i ∈ U) during

slot t as follows
Eh

i (t) = ρi(t)×max{0, τ −ωi(t)}, (9)

where ωi(t) is the remaining time of user satellite i in the shadow during time slot t,
and ωi(t) = 0 implies satellite i is in eclipse. The energy harvesting rate ρi(t) is bounded
by ρmax.
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In the dynamic process of energy, buffered energy Ei(t + 1) at user satellite i is related
to Ei(t), consumed power, and harvested energy in slot t. We build the time-varying energy
queue model as follows

Ei(t + 1) = Ei(t)− Ec
i (t) + Eh

i (t). (10)

Normally, the remaining energy in the battery at the end of time slot t is bound by its
maximum capacity. In addition, the battery needs to retain a certain amount of energy to
ensure the regular operation of the satellite. Thus, we have the following constraint

B(1− µ) ≤ Ei(t) ≤ B, ∀i ∈ U, (11)

where B denotes the capacity of the satellite battery, and µ represents the maximum energy
consumption proportion of the battery.

3.4. Problem Formulation

According to (7), it is clear that the total data arriving at the network affects the
throughput of the satellite network. Thus, optimizing the data acquisition rate can enhance
the network transmission capacity while avoiding congestion and achieving system stability.
On this basis, we give the objective function, which maximizes the time-average system
utility (MTASU), as

MTASU : max
Θ(t)

lim
T→∞

1
T

T

∑
t=0

E[H(t)]

s.t. f easible contact constraints : (1)–(2);

data transmission constraints : (3)–(7);

energy management constraints : (8)–(11).

Wherein H(t) = U[ϕi(t)] = ∑M
i=1 log (1 + ϕi(t)) is the system utility. Θ(t) is defined as

the set of vectors in slot t, including ISL contact state, data acquisition rate, inter-satellite
transmission rate, energy consumption, and energy harvesting, which can be written as
Θ(t) = (δij(t), ϕi(t), γi(t), Ec

i (t), Eh
i (t)).

4. Solutions and Algorithms

In this section, we propose a decomposition strategy to solve the MTASU problem
using the Lyapunov optimization method. Then, we devise an online algorithm, named
DTEM, to obtain optimum solutions without prior statistics knowledge about the stochas-
tic variables (i.e., ISL contact state, data acquisition rate, transmission rate, and energy
harvesting rate on user satellites) for any time slot.

4.1. Solution Development

As mentioned above, MTASU is a multi-objective mixed-integer optimization (MMO)
problem with integer and continuous parameters, which is difficult to tackle. Furthermore,
RSN is a stochastic network with time-varying uncertainties. We solve the MMO problem
based on the Lyapunov optimization framework.

4.1.1. Lyapunov Function

First, we define L(t) as the Lyapunov function to describe the square of all modeled
queues in time slot t, i.e.,

L(t) =
1
2

M

∑
i=1

[
D2

i (t) + (Ei(t)−B)2
]
, (12)

where (Ei(t)−B) denotes the remaining capacity of the battery.
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4.1.2. Lyapunov Drift

To maintain the stability of RSN, we define a Lyapunov drift function ∆(t) to de-
scribe the difference of the Lyapunov function between two adjacent time slots, with the
following expression

∆(t) = E[L(t + 1)− L(t)|Π(t)], (13)

where Π(t) is system state at slot t with the expression of Π(t) , (D(t), E(t)). By minimiz-
ing ∆(t), the queues Di and Ei(t) can approach a stable state over the operation process.

4.1.3. Collaborate System Utility

An improved Lyapunov Drift function ∆V(t) is defined by collaborating system utility
H(t), expressed as

∆V(t) = E[∆(t)−VH(t)|Π(t)], (14)

where V is a positive constant to tradeoff system utility and stability. Compared with the
Lyapunov drift function, minimizing ∆V(t) can simultaneously maximize system utility
and achieve system stability.

Since it is not easy to obtain the minimum value of ∆V(t) directly, we turn to minimize
the maximum of ∆V(t) as obtained in Theorem 1.

Theorem 1. Under the condition of modeled queues and system utilityH(t), the maximum value
of ∆V(t) is expressed by

∆V(t) ≤ E[ΓV(t)|Π(t)] + Λ, (15)

where Λ is a constant that can be denoted as

Λ =
M
2

[
(τξmax)

2 + (τϕmax)
2 + (τρmax)

2 + (Ec
max)

2
]
. (16)

As shown in (17), ΓV(t) is a function of the variables in Π(t) and the process of proof
is expressed in Appendix A.

ΓV(t) =
M

∑
i=1

ρi(t)(τ −ωi(t))(Ei(t)−B)︸ ︷︷ ︸
BMO

+
M

∑
i=1

τ
[
Di(t)−

Pr

ϕmax
(Ei(t)−B)

]
ϕi(t)−VH(t)︸ ︷︷ ︸

DACO

+
M

∑
i=1

N

∑
j=1

τ
[ Pt

ξmax
(B − Ei(t))−Di(t)

]
δij(t)γi(t)︸ ︷︷ ︸

LTO

.

(17)

Since Λ is a constant, ∆V(t) can be minimized by minimizing ΓV(t). According to the
system stochastic variables, ΓV(t) is divided into three parts in (17). Thus, we can achieve
the initial optimization goal by optimizing the energy harvesting rate ρi(t), data acquisition
rate ϕi(t), ISL contact plan δij(t), and inter-satellite transmission rate γi(t).

4.2. Decomposition Strategy

As shown in (17), we transform the optimization problem of minimizing ΓV(t) to three
sub-problems: battery management optimization (BMO), data acquisition control optimiza-
tion (DACO), and link transmission optimization (LTO), which are optimized separately.
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4.2.1. Battery Management

For the optimization of the BMO problem, we aim at minimizing the first part
in (17), i.e.,

BMO : min
ρi(t)

M

∑
i=1

ρi(t)(τ −ωi(t))(Ei(t)−B)

s.t. (9), (11).

According to constraint (11), we have Ei(t)− B ≤ 0, and τ − ωi(t) is a constant in
each time slot due to the periodic motion of the celestial bodies. Note that it is pointless to
optimize ρi(t) when the satellite is in shadow during time slot t. Thus, the optimal solution
can be obtained by maximizing energy harvest rate ρi(t) when 0 < τ − ωi(t). In other
words, the RSN should harvest energy from the sun as much as possible until the battery
capacity is full. The optimal solution ρ∗i (t) can be obtained as follows

ρ∗i (t) = min
{
(B − Ei(t))/(τ −ωi(t)), ρi(t)

}
. (18)

4.2.2. Data Acquisition Control

For the DACO problem, we need to minimize the second part in (17) under the
constraint of (3), i.e.,

DACO : min
ϕi(t)

M

∑
i=1

τ
[
Di(t)−

Pr

ϕmax
(Ei(t)−B)

]
ϕi(t)−VH(t)

s.t. (3).

Note that H(t) is a concave function of ϕi(t), and the other part of DACO is lin-
ear. Therefore, the DACO problem is convex, which can be solved based on the convex
optimization theory. Denote ϕ∗i (t) as the optimal solution of DACO, we have

ϕ∗i (t) =


ϕmax, ϕmax ≤ FL,
FL, 0 < FL < ϕmax,
0, others,

(19)

where FL = (Vϕmax)/(τDi(t)ϕmax − τPr(Ei(t)−B))− 1.

4.2.3. Data Transmission and Link Allocation

To solve the link transmission and link allocation problem, we should minimize the
third part in (17) under corresponding constraints as follows

LTO : min
δij(t),γi(t)

M

∑
i=1

N

∑
j=1

τ
[ Pt

ξmax
(B − Ei(t))−Di(t)

]
δij(t)γi(t)

s.t. (1), (2), (5).

Note that the ISL contact state δij(t) and the transmission rate γi(t) are integer variable
and continuous variable, respectively. It is easy to know the LTO problem is a mixed-integer
linear programming (MILP) problem, which is proved to be an NP-hard problem. Thus, we
solve the LTO problem in steps. To express our solution conveniently, let δ∗ij(t) and γ∗i (t) be
the optimal ISL contact state and transmission rate, respectively. Moreover, λi(t) is defined
as the weight of LTO at slot t, i.e.,

λi(t) =
Pt

ξmax
(B − Ei(t))−Di(t). (20)

Before the ISL is established, satellites are constantly harvesting energy and collecting
space data. In this case, the energy queue Ei(t) continues to approach the capacity of
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battery B, and the data queue Di(t) keeps approaching the maximum storage of buffer.
According to constraint (11), we have

λi(t) < 0. (21)

Thus, we can obtain the solution for LTO by maximizing δij(t) · γi(t). There is no need
to optimize the transmission rate when the ISL contact is inactive, i.e., δij(t) = 0. It makes
sense to optimize the transmission rate when δij(t) = 1. Thus, we can obtain the optimal
ISL contact state as follows

δ∗ij(t) = 1. (22)

In order to improve system utility, the RSN should transfer data to the relay satellite
as much as possible when the ISL contact is active. Note that the inter-satellite transmission
rate is limited by link capacity. Thus, link capacity is the optimal solution for transmission
rate, i.e.,

γ∗i (t) = ξi(t). (23)

In addition, the transmission rate can reach the optimal solution only when Di(t) is
larger than ISL capacity. Therefore, the necessary condition of Formula (23) is Di(t) ≥ ξi(t).
To this end, the LTO problem can be transformed into a link allocation optimization (LAO)
problem, expressed as

LAO : min
δij(t)

M

∑
i=1

N

∑
j=1

τλi(t)δij(t)ξi(t)

s.t. (1), (2).

To minimize λi(t), relay satellites tend to assign antennas to user satellites with longer
data queues and energy queues. We can observe that the LAO problem falls in the category
of a weighted maximum matching problem. As shown in Figure 2, the link allocation
problem can be represented as a weighted bipartite graph (WBG). Let M be the user satellite
set and N be the relay satellite set. For each i ∈ M, j ∈ N, we denote wij as the weight
of edge from i to j. According to (20), we set wij = Di(t) − Pt

ξmax
(B − Ei(t)). Then, the

LAO problem can be effectively addressed based on the WBG by the Kuhn–Munkres (KM)
algorithm [39].

...
...

Figure 2. Weighted bipartite graph: the transformed link assignment.

4.3. Algorithm Design

As shown in Algorithm 1, an online data transmission and energy management
(DTEM) method is proposed to obtain optimal solutions for energy-efficient data transmis-
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sion problems. The designed algorithm consists of four steps. Firstly, we can obtain the
optimal solution for the EHO problem (lines 1–5). Secondly, the solution for the DACO
problem is proposed to obtain an optimal data acquisition rate (lines 6–13). Then, we for-
mulate a many-to-many matching problem to solve the problem of link allocation (line 14).
Based on this, we can obtain the optimal solution for the LTO problem (lines 15–19). Finally,
the data queue Di(t + 1) and energy queue Ei(t + 1) are calculated based on the obtained
optimal solutions, i.e., ρ∗i (t), ϕ∗i (t), δ∗ij(t) and γ∗i (t) (lines 20–22).

Algorithm 1: DTEM
Input :Di(t), Ei(t), ∀i ∈ M.
Output : ρ∗(t), ϕ∗(t), δ∗ij(t), γ∗i (t),D(t + 1), E(t + 1).

/* Solution for the EHO problem */
1 for i ∈M do
2 if ρi(t)(τ −ωi(t)) ≤ B − Ei(t) then
3 ρ∗i (t) = ρi(t).
4 else
5 ρ∗i (t) = (B − Ei(t))/(τ −ωi(t)).

/* Solution for the DACO problem */
6 for i ∈ M do
7 FL = (Vϕmax)/(τDi(t)ϕmax − τPr(Ei(t)−B))− 1.
8 if FL ≥ ϕmax then
9 ϕ∗i (t) = ϕmax.

10 else if FL ≤ 0 then
11 ϕ∗i (t) = 0.
12 else
13 ϕ∗i (t) = FL.

/* Solution for the LTO problem */
14 Solve the LAO problem to obtain δ∗ij(t).

15 for i ∈ M do
16 if ∑N

j=1 δij(t) == 1 then
17 γ∗i (t) = ξi(t).
18 else
19 γ∗i (t) = 0.

/* Update data queue and energy queue */
20 for i ∈ M do
21 Compute Di(t + 1) according to (6).
22 Compute Ei(t + 1) according to (8).

We analyze the time complexity of the DTEM algorithm including three parts, i.e., EMO,
DACO, and LTO. Since the problems EMO and DACO are independent for each user
satellite and can be solved by distributed computing. Therefore, the time complexity of the
LTO problem can be regarded as that of DTEM, which is determined by the KM algorithm.
Hence, the complexity of the DTEM algorithm is to solve the KM algorithm in the worst
case, i.e., O((max[K ∗ N, M])3).

5. Performance Analysis

In this section, we give the performance analysis of the DTEM algorithm and sys-
tem stability. Specifically, the maximum storage of buffer, minimum capacity of the
battery, and the gap between the optimality of DTEM and optimal system utility are
derived, respectively.
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5.1. Maximum Storage of Buffer

Since ISL has the characteristic of intermittent connection, data overflow can be solved
by a large buffer.

Theorem 2. Assume the data queue satisfies Formula (24) for any V > 0 at t = 0, that is

0 ≤ Di(0) ≤ (1/τ)VH′max + τϕmax, ∀i ∈ U (24)

where H′max is the maximum value of the first order derivative of system utility H(t), and the
maximum of data queue Dmax = (1/τ)VH′max + τϕmax. Thus, we have

0 ≤ Di(t) ≤ (1/τ)VH′max + τϕmax, ∀i ∈ U, t ∈ T (25)

Proof of Theorem 2. See Appendix B.

From (25), we can observe that the maximum data storage of each user satellite
increases with the maximum data sampling rate. As defined in the optimization ob-
jective function (MTASU), a larger sampling rate brings a larger system utility, which
indicates that increasing the system utility requires more storage capacity to ensure the
system stability.

5.2. Minimum Capacity of Battery

In RSN, the satellite should work at the best performance with the support of enough
battery capacity. Thus, the minimum capacity of the battery is derived to ensure the
performance of RSN by considering that the satellite cannot transmit data due to lack of
energy, i.e., Ei(t) ≤ Ec

max. For the LTO problem, it is in the case that the ISL is not active,
i.e., δij(t) = 0. Thus, we have λi(t) ≥ 0, which is contrary to (21). The appropriate size of B
for the energy queue is shown in Theorem 3.

Theorem 3. Only and if only the residual energy cannot support the maximum energy consump-
tion, i.e., Ei(t) ≤ Ec

max, the battery capacity of satellite i can be defined as

B = Ec
max +Dmax

ξmax

Pt
, i ∈ U. (26)

Proof of Theorem 3. See Appendix C.

As shown in (26), the required battery capacity B is related to the maximum data
storage size Dmax of each satellite. The larger Dmax, the larger B will be. This indicates that
a larger battery capacity is required to provide sustainable energy to transmit the increased
data backlog.

5.3. Optimization Performance

In Theorem 4, we give the analysis of the optimization performance for DTEM, which
shows the gap of system utility between DTEM and the optimal solution.

Theorem 4. The time-average system utility of DTEM is denoted as H and the optimal system
utility asH∗. We have

H ≥ H∗ − B
V

(27)

Proof of Theorem 4. See Appendix D. Theorem 4 shows that the gap of optimality is
within O(1/V) for Q and Q∗. According to (27), the system utility Q will approach the
optimal system utility Q∗ by increasing V.
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6. Simulation Evaluation
6.1. Simulation Setup

We build an RSN scenario based on the Satellite Toolkit (STK) which can provide
real-world satellite parameters such as orbit inclination and altitude. Then, we evaluate the
proposed DTEM algorithm by using the MATLAB simulator. Specifically, the RSN scenario
consists of twenty LEO satellites (i.e., user satellites), three GEO satellites, and six GSs.
The user satellites are distributed in four orbits with five satellites for each. The orbital
altitudes are set to 816 km with an inclination of 86.58◦. We assume that one relay satellite
is equipped with three antennas, i.e., K = 3, and each relay satellite is allocated two
ground stations. The network operation period is set to one day which is divided into
1440 time slots, i.e., the slot duration τ is 60 s. We obtain the network topology and sunlight
time windows of user satellites for all time slots from the Satellite Toolkit (STK). The ISL
transmission capacity randomly takes a value between [8, 10] Mbps, and the maximum
data acquisition rate is ϕmax = 30 Mbps. The parameters of energy management are set
as follows: Pn = 10 W, Pt = 20 W, Pr = 25 W, µ = 80% [15]. Furthermore, we set the
maximum energy harvesting rate as ρmax = 50 W with probability 0.8 or (1/3)ρmax with
probability 0.2 when the RSN expose to the sun. Initially, we set Di(0) = 0 and Ei(0) = B,
respectively, where B is derived from (26).

6.2. System Utility

We evaluate the effects of weights V on system utility as shown in Figure 3. As we can
see, with the increase in V, the system utility follows an upward trend. It verifies the theory
that a larger V can increase the system utility as Theorem 4. It can be further noted that
the system utility increases rapidly at the initial stage. Since system utilityH(t) is a concave
function, it can be observed that the growth rate ofH(t) decreases when V > 2× 105.

To test the performance of the proposed DTEM algorithm in improving system utility,
four benchmark algorithms are taken for comparison. We evaluate the effectiveness of
different optimization modules (i.e., data transmission and energy management) separately.
In terms of the data transmission performance, we compare the DTEM algorithm with
a fair contact plan (FCP) scheme proposed in [40], which allocates ISL connections with
maximum cumulative disable connection opportunities. We also set a Random Link
Matching Scheme (RLMS) via the idea of ISL allocation in [18] for comparison. In terms
of the energy management performance, we consider two reference schemes, a greedy
algorithm [41] with maximum remaining energy (GMR) for ISL contacts and an energy
harvesting for the randomness scheme (EHRS) [23]. Specifically, FCP and RLMS have a
similar control strategy for energy harvesting and data acquisition as DTEM, but without
a data transfer optimization module. Correspondingly, GMR and EHRS do not consider
energy management optimization compared to DTEM.

Figure 3. System utility versus V.
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The system utility of DTEM and benchmark algorithms are compared under different
weights V in Figure 4, where we can observe that DTEM has the highest system utility
among the three algorithms. As mentioned in Section 4, the optimal solution for the DACO
problem indicates that a smaller size of the data queue or a larger size of the energy queue
will result in a higher data acquisition rate (i.e., system utility). Since the DTEM schema
jointly optimizes the performance of data transmission and energy harvesting, DTEM is
superior to the other four schemes in improving system utility. It can be observed that
the system utility increases with the weight V at the beginning and converge afterwards
in Figure 4. The reason is that V is a weight to tradeoff the system utility and stability.
According to (14), a larger V brings a larger system utility. Furthermore, since U(t) is a
logarithm, the increase in system utility slows down after V > 2× 105.

Figure 4. System utility comparison under different V.

To further test the performance of DTEM, the system utility of all five algorithms
has been evaluated under different numbers of antennas on relay satellites (i.e., K) and
different maximum data acquisition rates ϕmax, respectively. We can observe that DTEM
can achieve higher system utility compared with benchmark algorithms under different K
in Figure 5. Furthermore, the system utility increases with the increase in antenna number,
which enables more data transmission to relay satellites. Then, the system utility trends
stable level due to the bottleneck of limited energy harvested by user satellites. Figure 6
depicts the system utility of DTEM and benchmark algorithms under different ϕmax. It
can be shown that DTEM has better performance gain in system utility than the other four
schemes. Moreover, the increase in ϕmax can bring higher system utility. However, when
the maximum data acquisition rate rises to some value, the system utility is improved very
slowly. This is due to the limited transmission channels and energy resources. In terms of
the maximum system utility, DTEM has a performance improvement of 4.8%, 9.6%, 10.6%,
and 20.3% compared to FCP, CGLM, GME, and EHRS, respectively, when the maximum
data acquisition rate ϕmax = 100 Mbps. This is attributed to the joint optimization of data
transmission scheduling and energy management.

6.3. Queue Length and Queue Dynamics

In Figures 7 and 8, we show the relationship between time-averaged queue length and
weights V. It can be noted that the maximum storage buffer and battery capacity increases
linearly with the value of V, which is derived in Theorems 2 and 3. As expected, the time-
averaged length of Ei(t) and Di(t) keeps linearly increasing with V, which matches with
the theoretical analysis in Equations (25) and (A4).
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Figure 5. System utility comparison under different K.

Figure 6. System utility comparison under different ϕmax.

Figure 7. Time-averaged data queue length versus V.
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Figure 8. Time-averaged energy queue length versus V.

In order to demonstrate the stability of the RSN under the DTEM scheme, we evaluate
the dynamic processes forDi(t) over 1440 time slots with different V. As shown in Figure 9,
Di(t) rises sharply at the initial stage, then decreases slowly and fluctuates around a certain
value. The reason lies in that no data is stored in the queue, which allows satellites to collect
spatial data as much as possible. Subsequently, the collected data is transmitted to relay
satellites through ISL. During the operation of RSN, our proposed online DTEM algorithm
controls data acquisition and transmission in a dynamic balance state. In addition, a larger
weight V brings a longer data queue. This implies that a larger V requires a larger storage
buffer to guarantee network stability.

Figure 9. The dynamics of data queue with different V.

Figure 10 presents the dynamic processes for Ei(t) over 1440 time slots with different
V. We can observe that Ei(t) reaches a large value at t = 0. With the operation of the
system, the length of the energy queue decreases and quickly converges to a relatively
stable state. This is because the energy queue length is initialized to the size of maximum
battery capacity according to Equation (26). In addition, the battery management model of
DTEM is effective for energy consumption and harvesting, which makes the energy queue
achieve a dynamic balance. Although satellites harvest solar energy as much as possible
when they move to the sunny side, there is only energy consumption when satellites are
eclipsed by the earth. As a result, Ei(t) cannot always be reached the full battery capacity.
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Similar to the reasons shown in Figure 9, a larger V requires the RSN to carry a larger
battery capacity to ensure the sustainability of the network.

Figure 10. The dynamics of energy queue with different V.

6.4. Impact of System Parameters

In Figures 11 and 12, we explore the impacts of system parameters on DTEM regarding
antennas number equipped at relay satellites and the maximum data acquisition rate of
user satellites.

In Figure 11, we evaluate the effect of antenna number on system utility. It can be
observed that the system utility increases as the number of antennas K increases under
different three weights V. This can be explained by the fact that an increase in K implies an
increase in the number of transmission channels which can improve transmission capacity.
Accordingly, the network will achieve a higher system utility. Moreover, we can observe
that the increasing trend of system utility stops for a certain value of K due to the bottleneck
of the harvested energy at user satellites.

Figure 11. The utility of RSNs versus K.

Figure 12 reveals the impact of parameter ϕmax (i.e., the maximum data acquisition
rate of user satellites) on system utility. From the figure, we can see that the system utility
of DTEM increases with the increase in ϕmax, which corresponds to the definition of system
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utility. However, as ϕmax further increases, the system utility increases very slowly under
different three weights V. This is because the transmission capacity and energy resources
of user satellites become the bottleneck.

Figure 12. The utility of RSNs versus ϕmax.

7. Conclusions

In this paper, considering the stochastic network state and random data arrivals
demand, we formulated the data transmission scheduling problem with a joint resource
allocation and ISL assignment as a system utility optimization problem. We proposed
the DTEM algorithm, based on the Lyapunov stability theory, to enhance system utility
and guarantee system stability. To reduce computational complexity, we decompose the
optimization problem into battery management optimization, data acquisition control
optimization, and inter-satellite transmission optimization. Then, we solved the three sub-
problems to obtain the optimal energy harvesting rate, data acquisition rate, inter-satellite
transmission rate, and ISL connection allocation for each time slot. Moreover, the system
performance is analyzed comprehensively. Finally, extensive simulation results show the
superiority of DTEM in improving system utility and maintaining long-term network
stability and sustainability. Specifically, our proposed algorithm shows an improvement
of 9.6% in system utility compared to the non-optimized transmission method and 20.3%
compared to the non-optimized energy-management approach, respectively.
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Appendix A. Proof of Theorem 1

We square Formulas (6) and (7), respectively, to obtain the following Equations (A1)
and (A2), i.e.,

D2
i (t + 1) =

[
Di(t)−

N

∑
j=1

δij(t)γi(t)τ
]2

+ ϕ2
i (t)τ

2 + 2
[
Di(t)−

N

∑
j=1

δij(t)γi(t)τ
]+

ϕi(t)τ

≤D2
i (t) +

N

∑
j=1

δ2
ij(t)γ

2
i (t)τ

2 + ϕ2
i (t)τ

2 − 2Di(t)
N

∑
j=1

δij(t)γi(t)τ + 2Di(t)ϕi(t)τ

≤(τξmax)
2 + (τϕmax)

2 +D2
i (t) + 2τDi(t)

(
ϕi(t)−

N

∑
j=1

δij(t)γi(t)
)

(A1)

(
Ei(t + 1)−B

)2
=
(
(Ei(t)−B)− Ec

i (t) + Eh
i (t)

)2

≤(Ei(t)−B)2 +
(
Ec

i (t)
)2

+
(
Eh

i (t)
)2

+ 2(Ei(t)−B)
(
Eh

i (t)− Ec
i (t)

)
≤(τρmax)

2 + (Ec
max)

2 + (Ei(t)−B)2 + 2(Ei(t)−B)
(
Eh

i (t)− Ec
i (t)

) (A2)

Then, according to (11) and (12), we can derive the following formula

∆(t) =
1
2

M

∑
i=1

[
D2

i (t + 1) + (Ei(t + 1)−B)2 −D2
i (t)− (Ei(t)−B)2]

≤M
2

[
(τξmax)

2 + (τϕmax)
2 + (τρmax)

2 + (Ec
max)

2
]
+ (Ei(t)−B)

(
Eh

i (t)− Ec
i (t)

)
+

M

∑
i=1

[
τDi(t)

(
ϕi(t)−

N

∑
j=1

δij(t)γi(t)
)] (A3)

Appendix B. Proof of Theorem 2

Since Di(0) satisfies the constraint of data queue upper-bound, Theorem 2 can be
proved by mathematical induction. Assume that 0 ≤ Di(t) ≤ Dmax holds in time slot t.
According to (6), we have 0 ≤ Di(t + 1). Then, we focus on proving Formula (25) holds at
time slot t + 1, i.e., Di(t + 1) ≤ Dmax.

(1) If ϕi(t) = 0 at time slot t, no data is collected by satellite i. We have Di(t + 1) ≤
Di(t) ≤ Dmax.

(2) If satellite i collected space data in time slot t, i.e., ϕi(t) ≥ 0. Note that the DACO prob-
lem is a convex problem, we have (1/τ)VH′(ϕ∗i (t)) = Di(t)− (Pr/ϕmax)(Ei(t)−B).
Since Ei(t)−B ≤ 0 andH′(ϕ∗i (t)) ≤ H′max, we haveDi(t) ≤ (1/τ)VH′max. According
to (6), we can obtain Di(t + 1) ≤ Di(t) + τϕi(t). Therefore, we have
Di(t + 1) ≤ (1/τ)VH′max + τϕmax.

Appendix C. Proof of Theorem 3

The battery capacity B is derived when the residual energy of satellite i is insufficient
for data transmission and ISL is inactive, i.e., Ei(t) ≤ Ec

max and δij(t) = 0. Thus, we have
(Pt/ξmax)(B − Ei(t))−Di(t) ≤ 0 when δij(t) = 0, i.e.,

B ≤ Ei(t) +Di(t)
ξmax

Pt
. (A4)

To ensure the ISL cannot be established when Ei(t) ≤ Ec
max, we maximizeDi(t) in (A4).

Then, we have

B = Ec
max +Dmax

ξmax

Pt
. (A5)
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Appendix D. Proof of Theorem 4

Denote a random algorithm as Θ. We prove the optimality of the DTEM algorithm
by comparing ∆V(t) with the algorithm Θ. Furthermore, variables generated by each
algorithm will be tagged by DTEM and Θ, respectively. According to the Lyapunov opti-
mization theory proposed by Neely [42], the upper bounds of algorithm Θ are as follows,

E
[

∑
n∈N

U(ϕΘ
i (t))

]
≤H∗ + ζ,∣∣∣∣∣E

[
∑

n∈N

(
ϕΘ

i (t)−
N

∑
j=1

δΘ
ij (t)γ

Θ
i (t)

)]∣∣∣∣∣ ≤η1ζ,∣∣∣∣∣E
[

∑
n∈N

(
(Eh

i )
Θ(t)− (Ec

i )
Θ(t)

)]∣∣∣∣∣ ≤η2ζ,

(A6)

where ζ is positive and infinitesimal, and η1, η2 are constants.
According to (12) and (A6), we minimize ∆V(t) in (14) and have

∆(t)−VH(t) ≤ E
[

ΓDTEM
V (t)|Π(t)

]
+ B

≤ E
[

ΓΘ
V (t)

]
+ B

≤ (η1 + η2 + 1)ζ −VH∗ + B.

(A7)

Then, by setting ζ to a minimum value, (A7) can be simplified to

∆(t)−VH(t) ≤ B−VH∗. (A8)

Take the expectation (A8), (A8) can be deduced as

1
T
(L(T − 1)− L(0))− 1

T

T−1

∑
t=0

E[H(t)] ≤ B−VH∗. (A9)

Since L(t) is finite, by T → ∞, we haveH ≥ H∗ − B/V.
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