Towards an Accurate and Reliable Downscaling Scheme for High-Spatial-Resolution Precipitation Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset and Pre-Processing
2.3. Downscaling of PERSIANN-CDR Precipitation
2.4. Residual Correction and Calibration Framework
2.5. Performance Evaluation
3. Results
3.1. Accuracy Analysis of ML-Based and Conventional Downscaled Methods
3.2. Spatial Distribution of the Downscaled Results
3.3. Were Residual Correlation and Calibration Procedures Helpful?
4. Discussion
4.1. Downscaled Results Based on ML Methods
4.2. Performance of Downscaling Results after GDA Calibration and Residual Correlation
4.3. Future Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.; Song, L.; Xia, Z.; Lin, Y.; Myneni, R.B.; Choi, S.; Wang, L.; Ni, X.; Lao, C.; Yang, F. Mapping annual precipitation across Mainland China in the period 2001–2010 from TRMM3B43 product using spatial downscaling approach. Remote Sens. 2015, 7, 5849. [Google Scholar] [CrossRef] [Green Version]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A comparison of different regression algorithms for downscaling monthly satellite-based precipitation over North China. Remote Sens. 2016, 8, 835. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Bao, A.; Liu, T.; Chen, S.; Ndayisaba, F. Evaluation of PERSIANN-CDR for meteorological drought monitoring over China. Remote Sens. 2016, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Xu, J.; Dai, X.; Ruan, H.; Liu, X.; Jing, W. Multi-Source Precipitation Data Merging for Heavy Rainfall Events Based on Cokriging and Machine Learning Methods. Remote Sens. 2022, 14, 1750. [Google Scholar] [CrossRef]
- Chu, H.J.; Wijayanti, R.F.; Jaelani, L.M.; Tsai, H.P. Time varying spatial downscaling of satellite-based drought index. Remote Sens. 2021, 13, 3693. [Google Scholar] [CrossRef]
- Elnashar, A.; Zeng, H.; Wu, B.; Zhang, N.; Tian, F.; Zhang, M.; Zhu, W.; Yan, N.; Chen, Z.; Sun, Z.; et al. Downscaling TRMM monthly precipitation using google earth engine and google cloud computing. Remote Sens. 2020, 12, 3860. [Google Scholar] [CrossRef]
- Fan, D.; Wu, H.; Dong, G.; Jiang, X.; Xue, H. A temporal disaggregation approach for TRMM monthly precipitation products using AMSR2 soil moisture data. Remote Sens. 2019, 11, 2962. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Hu, B.; Li, Y. Easy-to-use spatial Random Forest-based downscaling-calibration method for producing high resolution and accurate precipitation data. Hydrol. Earth Syst. Sci. 2021, 25, 5667–5682. [Google Scholar] [CrossRef]
- Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A.T.C.; Stocker, E.; Adler, R.F.; Hou, A.; Kakar, R.; Wentz, F.; et al. The status of the tropical rainfall measuring mission (TRMM) after two years in orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Hsu, K.L.; Gao, X.; Sorooshian, S.; Gupta, H.V. Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteorol. 1997, 36, 1176–1190. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Miao, C.; Ashouri, H.; Hsu, K.L.; Sorooshian, S.; Duan, Q. Evaluation of the PERSIANN-CDR daily rainfall estimates in capturing the behavior of extreme precipitation events over China. J. Hydrometeorol. 2015, 16, 1387–1396. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Khorrami, B.; Jehanzaib, M.; Tariq, A.; Ajmal, M.; Arshad, A.; Shafeeque, M.; Dilawar, A.; Basit, I.; Zhang, L.; et al. Spatial Downscaling of GRACE Data Based on XGBoost Model for Improved Understanding of Hydrological Droughts in the Indus Basin Irrigation System (IBIS). Remote Sens. 2023, 15, 873. [Google Scholar] [CrossRef]
- Abdollahipour, A.; Ahmadi, H.; Aminnejad, B. A review of downscaling methods of satellite-based precipitation estimates. Earth Sci. Inform. 2022, 15, 1–20. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Rutten, M.M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens. Environ. 2009, 113, 362–370. [Google Scholar] [CrossRef]
- Jia, S.; Zhu, W.; Lu, A.; Yan, T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [Google Scholar] [CrossRef]
- Xu, S.; Wu, C.; Wang, L.; Gonsamo, A.; Shen, Y.; Niu, Z. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics. Remote Sens. Environ. 2015, 162, 119–140. [Google Scholar] [CrossRef]
- Shirali, E.; Nikbakht Shahbazi, A.; Fathian, H.; Zohrabi, N.; Mobarak Hassan, E. Evaluation of WRF and artificial intelligence models in short-term rainfall, temperature and flood forecast (case study). J. Earth Syst. Sci. 2020, 129, 188. [Google Scholar] [CrossRef]
- Baghanam, A.H.; Eslahi, M.; Sheikhbabaei, A.; Seifi, A.J. Assessing the impact of climate change over the northwest of Iran: An overview of statistical downscaling methods. Theor. Appl. Climatol. 2020, 141, 1135–1150. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Bai, Y.; Yang, C.; Wang, J.; Zhou, Q.; Hu, S.; Shi, T.; Liao, X.; Wu, G. Improving satellite retrieval of oceanic particulate organic carbon concentrations using machine learning methods. Remote Sens. Environ. 2021, 256, 112316. [Google Scholar] [CrossRef]
- Chen, S.T.; Yu, P.S.; Tang, Y.H. Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol. 2010, 385, 13–22. [Google Scholar] [CrossRef]
- He, X.; Chaney, N.W.; Schleiss, M.; Sheffield, J. Spatial downscaling of precipitation using adaptable random forests. Water Resour. Res. 2016, 52, 8217–8237. [Google Scholar] [CrossRef]
- Devak, M.; Dhanya, C.T.; Gosain, A.K. Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall. J. Hydrol. 2015, 525, 286–301. [Google Scholar] [CrossRef]
- Yan, X.; Chen, H.; Tian, B.; Sheng, S.; Wang, J.; Kim, J.S. A downscaling–merging scheme for improving daily spatial precipitation estimates based on random forest and cokriging. Remote Sens. 2021, 13, 2040. [Google Scholar] [CrossRef]
- Pour, S.H.; Shahid, S.; Chung, E.S. A Hybrid Model for Statistical Downscaling of Daily Rainfall. Procedia Eng. 2016, 154, 1424–1430. [Google Scholar] [CrossRef]
- Raje, D.; Mujumdar, P.P. A comparison of three methods for downscaling daily precipitation in the Punjab region. Hydrol. Process. 2011, 25, 3575–3589. [Google Scholar] [CrossRef]
- Nasseri, M.; Tavakol-Davani, H.; Zahraie, B. Performance assessment of different data mining methods in statistical downscaling of daily precipitation. J. Hydrol. 2013, 492, 1–14. [Google Scholar] [CrossRef]
- Sharifi, E.; Saghafian, B.; Steinacker, R. Downscaling Satellite Precipitation Estimates With Multiple Linear Regression, Artificial Neural Networks, and Spline Interpolation Techniques. J. Geophys. Res. Atmos. 2019, 124, 789–805. [Google Scholar] [CrossRef] [Green Version]
- Karbalaye Ghorbanpour, A.; Hessels, T.; Moghim, S.; Afshar, A. Comparison and assessment of spatial downscaling methods for enhancing the accuracy of satellite-based precipitation over Lake Urmia Basin. J. Hydrol. 2021, 596, 126055. [Google Scholar] [CrossRef]
- Sahour, H.; Sultan, M.; Vazifedan, M.; Abdelmohsen, K.; Karki, S.; Yellich, J.A.; Gebremichael, E.; Alshehri, F.; Elbayoumi, T.M. Statistical applications to downscale GRACE-derived terrestrialwater storage data and to fill temporal gaps. Remote Sens. 2020, 12, 533. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, K.; Wang, M. Downscaling groundwater storage data in China to a 1-km resolution using machine learning methods. Remote Sens. 2021, 13, 523. [Google Scholar] [CrossRef]
- Ulloa, J.; Ballari, D.; Campozano, L.; Samaniego, E. Two-step downscaling of TRMM 3b43 V7 precipitation in contrasting climatic regions with sparse monitoring: The case of Ecuador in tropical South America. Remote Sens. 2017, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Bastiaanssen, W.G.M. First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure. Remote Sens. Environ. 2013, 131, 1–13. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Bastiaanssen, W.G.M. Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. Int. J. Remote Sens. 2012, 33, 2603–2627. [Google Scholar] [CrossRef]
- Xin, Y.; Lu, N.; Jiang, H.; Liu, Y.; Yao, L. Performance of ERA5 reanalysis precipitation products in the Guangdong-Hong Kong-Macao greater Bay Area, China. J. Hydrol. 2021, 602, 126791. [Google Scholar] [CrossRef]
- Yan, M.; Chan, J.C.L.; Zhao, K. Impacts of Urbanization on the Precipitation Characteristics in Guangdong Province, China. Adv. Atmos. Sci. 2020, 37, 696–706. [Google Scholar] [CrossRef]
- CMDSC China Meteorological Data Service Center: Gauge Data [Data Set]. Available online: http://data.cma.cn/data/detail/dataCode/ (accessed on 1 December 2021).
- CGIAR SRTM Data, CGIAR [Data Set]. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1?qt-science_center_objects=0#qt-science_center_objects (accessed on 1 December 2021).
- Shortridge, A.; Messina, J. Spatial structure and landscape associations of SRTM error. Remote Sens. Environ. 2011, 115, 1576–1587. [Google Scholar] [CrossRef]
- National Tibetan Plateau/Third Pole Environment Data Center Global GIMMS NDVI3g v1 Dataset (1981–2015). 2018. Available online: https://climatedataguide.ucar.edu/collections/climate-data-record (accessed on 1 December 2021).
- Tucker, C.J.; Pinzon, J.E.; Brown, M.E.; Slayback, D.A.; Pak, E.W.; Mahoney, R.; Vermote, E.F.; El Saleous, N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 2005, 26, 4485–4498. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 2014, 6, 6929. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Hook, S.; Hulley, G. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006 [Data set]. Nasa Eosdis Land Processes Daac. 2015. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD11A2 (accessed on 1 December 2021).
- Arshad, A.; Zhang, W.; Zhang, Z.; Wang, S.; Zhang, B.; Cheema, M.J.M.; Shalamzari, M.J. Reconstructing high-resolution gridded precipitation data using an improved downscaling approach over the high altitude mountain regions of Upper Indus Basin (UIB). Sci. Total Environ. 2021, 784, 147140. [Google Scholar] [CrossRef]
- Zhang, Q.; Shen, Z.; Xu, C.Y.; Sun, P.; Hu, P.; He, C. A new statistical downscaling approach for global evaluation of the CMIP5 precipitation outputs: Model development and application. Sci. Total Environ. 2019, 690, 1048–1067. [Google Scholar] [CrossRef]
- Zhang, T.; Li, B.; Yuan, Y.; Gao, X.; Sun, Q.; Xu, L.; Jiang, Y. Spatial downscaling of TRMM precipitation data considering the impacts of macro-geographical factors and local elevation in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 215, 109–127. [Google Scholar] [CrossRef]
- Zhan, C.; Han, J.; Hu, S.; Liu, L.; Dong, Y. Spatial Downscaling of GPM Annual and Monthly Precipitation Using Regression-Based Algorithms in a Mountainous Area. Adv. Meteorol. 2018, 2018, 1506017. [Google Scholar] [CrossRef] [Green Version]
- Chai, Y.; Martins, G.; Nobre, C.; von Randow, C.; Chen, T.; Dolman, H. Constraining Amazonian land surface temperature sensitivity to precipitation and the probability of forest dieback. Npj Clim. Atmos. Sci. 2021, 4, 6. [Google Scholar] [CrossRef]
- Shah, H.L.; Zhou, T.; Huang, M.; Mishra, V. Strong Influence of Irrigation on Water Budget and Land Surface Temperature in Indian Subcontinental River Basins. J. Geophys. Res. Atmos. 2019, 124, 1449–1462. [Google Scholar] [CrossRef]
- Shen, Z.; Yong, B. Downscaling the GPM-based satellite precipitation retrievals using gradient boosting decision tree approach over Mainland China. J. Hydrol. 2021, 602, 126803. [Google Scholar] [CrossRef]
- Hu, S.; Liu, H.; Zhao, W.; Shi, T.; Hu, Z.; Li, Q.; Wu, G. Comparison of machine learning techniques in inferring phytoplankton size classes. Remote Sens. 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.M.; Gräler, B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 2018, 2018, e5518. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.N.; Ziegler, A. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017, 77. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Zhang, Y.; Zhou, Q.; Zhang, X. Effectiveness of Semi-Supervised Learning and Multi-Source Data in Detailed Urban Landuse Mapping with a Few Labeled Samples. Remote Sens. 2022, 14, 648. [Google Scholar] [CrossRef]
- Dimitriadou, E.; Hornik, K.; Leisch, F.; Meyer, D.; Weingessel, A.; Leisch, M.F. Package ‘e1071’. R Software Package. 2009. Available online: http://cran.rproject.org/web/packages/e1071/index.html (accessed on 1 December 2021).
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning: Methods and Applications; Springer: New York, NY, USA, 2012; pp. 157–175. [Google Scholar]
- Benito, B.M. spatialRF: Easy Spatial Regression with Random Forest. R Package Version 1.1.0. 2021. Available online: https://blasbenito.github.io/spatialRF/ (accessed on 1 December 2021).
- Chen, T.; He, T. Xgboost: Extreme Gradient Boosting. R Package Version 0.4-2 1.4. 2015, pp. 1–4. Available online: https://cran.microsoft.com/snapshot/2017-12-11/web/packages/xgboost/vignettes/xgboost.pdf (accessed on 1 December 2021).
- Oshan, T. GWR4 2016. Available online: https://gwrtools.github.io/gwr4-downloads.html (accessed on 1 December 2021).
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Shangguan, W.; Li, L.; Yao, Y.; Yu, F. Improved daily SMAP satellite soil moisture prediction over China using deep learning model with transfer learning. J. Hydrol. 2021, 600, 126698. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Sheng, S.; Mansaray, L.R.; Liu, Z.; Wu, H.; Wang, X. A new downscaling-integration framework for high-resolution monthly precipitation estimates: Combining rain gauge observations, satellite-derived precipitation data and geographical ancillary data. Remote Sens. Environ. 2018, 214, 154–172. [Google Scholar] [CrossRef]
- Huang, X.; Swain, D.L.; Hall, A.D. Future precipitation increase from very high resolution ensemble downscaling of extreme atmospheric river storms in California. Sci. Adv. 2020, 6, eaba1323. [Google Scholar] [CrossRef]
- Zhao, N. An efficient downscaling scheme for high-resolution precipitation estimates over a high mountainous watershed. Remote Sens. 2021, 13, 234. [Google Scholar] [CrossRef]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A spatial downscaling algorithm for satellite-based precipitation over the Tibetan plateau based on NDVI, DEM, and land surface temperature. Remote Sens. 2016, 8, 655. [Google Scholar] [CrossRef] [Green Version]
- Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [Google Scholar] [CrossRef]
- Xu, X.; Du, C.; Ma, F.; Qiu, Z.; Zhou, J. A Framework for High-Resolution Mapping of Soil Organic Matter (SOM) by the Integration of Fourier Mid-Infrared Attenuation Total Reflectance Spectroscopy (FTIR-ATR), Sentinel-2 Images, and DEM Derivatives. Remote Sens. 2023, 15, 1072. [Google Scholar] [CrossRef]
- Wang, F.; Tian, D.; Lowe, L.; Kalin, L.; Lehrter, J. Deep Learning for Daily Precipitation and Temperature Downscaling. Water Resour. Res. 2021, 57, e2020WR029308. [Google Scholar] [CrossRef]
- Tu, T.; Ishida, K.; Ercan, A.; Kiyama, M.; Amagasaki, M.; Zhao, T. Hybrid precipitation downscaling over coastal watersheds in Japan using WRF and CNN. J. Hydrol. Reg. Stud. 2021, 37, 100921. [Google Scholar] [CrossRef]
- Wu, H.; Yang, Q.; Liu, J.; Wang, G. A spatiotemporal deep fusion model for merging satellite and gauge precipitation in China. J. Hydrol. 2020, 584, 124664. [Google Scholar] [CrossRef]
- Kumar, B.; Atey, K.; Singh, B.B.; Chattopadhyay, R.; Acharya, N.; Singh, M.; Nanjundiah, R.S.; Rao, S.A. On the modern deep learning approaches for precipitation downscaling. Earth Sci. Inform. 2023, 1–14. [Google Scholar] [CrossRef]
Data Type | Dataset | Spatial Resolution | Temporal Resolution | Source |
---|---|---|---|---|
Meteorological data | PERSIANN-CDR | 25 km | Annual | http://chrs.web.uci.edu/persiann (accessed on 1 December 2021) |
rainfall gauge observation | Point | Daily | http://data.cma.cn/data/detail/dataCode/ (accessed on 1 December 2021) | |
Land surface data | SRTM DEM | 90 m | - | https://doi.org/10.5066/F7PR7TFT (accessed on 1 December 2021) |
slope, aspect | 90 m | - | Derived from SRTM DEM | |
LST | 1 km | 8 d | https://doi.org/10.5067/MODIS/MOD11A2.006 (accessed on 1 December 2021) | |
GIMMS NDVI3g | 8 km | 15 d | The National Center for Atmospheric Research |
Evaluation Index | Equation |
---|---|
Correlation coefficient (CC) | |
Root mean square error (RMSE) | |
Mean absolute error (MAE) | |
Kling-Gupta efficiency (KGE) |
Dataset | 2006 | 2007 | 2008 | 2009 | 2010 | |
---|---|---|---|---|---|---|
CC | PERSIANN-CDR | 0.52 | 0.47 | 0.60 | 0.79 | 0.51 |
Kriging | 0.57 | 0.51 | 0.56 | 0.80 | 0.48 | |
MLR | 0.63 | 0.55 | 0.68 | 0.84 | 0.53 | |
GWR | 0.66 | 0.62 | 0.73 | 0.89 | 0.49 | |
RF | 0.78 | 0.69 | 0.82 | 0.91 | 0.64 | |
SRF | 0.79 | 0.71 | 0.84 | 0.95 | 0.62 | |
SVR | 0.77 | 0.65 | 0.79 | 0.90 | 0.68 | |
XGBoost | 0.78 | 0.71 | 0.80 | 0.93 | 0.62 | |
MAE (mm) | PERSIANN-CDR | 351.99 | 247.20 | 367.76 | 244.33 | 357.02 |
Kriging | 341.71 | 240.34 | 362.81 | 239.91 | 355.26 | |
MLR | 313.69 | 241.83 | 326.73 | 267.97 | 282.81 | |
GWR | 278.62 | 203.05 | 281.33 | 184.33 | 350.51 | |
RF | 244.63 | 193.28 | 222.57 | 172.37 | 299.61 | |
SRF | 236.56 | 186.56 | 211.41 | 126.67 | 353.75 | |
SVR | 245.48 | 196.61 | 243.70 | 184.19 | 302.78 | |
XGBoost | 244.43 | 188.79 | 247.21 | 139.59 | 270.83 | |
RMSE (mm) | PERSIANN-CDR | 435.96 | 294.62 | 446.05 | 297.34 | 415.81 |
Kriging | 426.48 | 291.53 | 444.10 | 289.80 | 414.34 | |
MLR | 417.41 | 291.33 | 415.81 | 315.71 | 332.88 | |
GWR | 355.34 | 249.63 | 353.08 | 223.15 | 409.47 | |
RF | 308.46 | 233.58 | 282.48 | 205.04 | 355.91 | |
SRF | 298.42 | 224.72 | 268.24 | 153.89 | 403.48 | |
SVR | 310.61 | 245.30 | 305.09 | 217.24 | 353.59 | |
XGBoost | 305.13 | 226.37 | 309.09 | 171.29 | 318.29 | |
KGE | PERSIANN-CDR | 0.36 | 0.35 | 0.57 | 0.67 | 0.35 |
Kriging | 0.38 | 0.36 | 0.54 | 0.70 | 0.31 | |
MLR | 0.32 | 0.32 | 0.57 | 0.59 | 0.30 | |
GWR | 0.48 | 0.45 | 0.69 | 0.75 | 0.31 | |
RF | 0.51 | 0.46 | 0.72 | 0.72 | 0.35 | |
SRF | 0.56 | 0.50 | 0.73 | 0.79 | 0.34 | |
SVR | 0.51 | 0.42 | 0.71 | 0.72 | 0.49 | |
XGBoost | 0.57 | 0.53 | 0.73 | 0.79 | 0.46 |
Datasets | 2006 | 2007 | 2008 | 2009 | 2010 | |
---|---|---|---|---|---|---|
CC | RF_RC | 0.60 | 0.57 | 0.59 | 0.84 | 0.48 |
SRF_RC | 0.59 | 0.52 | 0.56 | 0.81 | 0.48 | |
SVR_RC | 0.61 | 0.56 | 0.62 | 0.84 | 0.60 | |
XGBoost_RC | 0.58 | 0.50 | 0.59 | 0.81 | 0.49 | |
MAE (mm) | RF_RC | 331.28 | 231.78 | 349.56 | 221.55 | 354.22 |
SRF_RC | 336.53 | 239.07 | 362.81 | 236.6 | 353.68 | |
SVR_RC | 330.26 | 232.75 | 342.11 | 226.41 | 355.46 | |
XGBoost_RC | 338.54 | 245.87 | 351.14 | 224.49 | 354.98 | |
RMSE (mm) | RF_RC | 414.38 | 279.13 | 426.51 | 265.11 | 413.86 |
SRF_RC | 419.57 | 289.92 | 444.09 | 285.15 | 412.52 | |
SVR_RC | 410.27 | 284.03 | 420.4 | 269.3 | 407.87 | |
XGBoost_RC | 424.13 | 293.98 | 429.11 | 272.15 | 414.12 | |
KGE | RF_RC | 0.39 | 0.38 | 0.56 | 0.70 | 0.31 |
SRF_RC | 0.40 | 0.36 | 0.54 | 0.70 | 0.32 | |
SVR_RC | 0.41 | 0.39 | 0.59 | 0.72 | 0.36 | |
XGBoost_RC | 0.39 | 0.35 | 0.56 | 0.68 | 0.31 |
Datasets | 2006 | 2007 | 2008 | 2009 | 2010 | |
---|---|---|---|---|---|---|
CC | RF_GDA | 0.91 | 0.78 | 0.82 | 0.93 | 0.69 |
SRF_GDA | 0.89 | 0.79 | 0.81 | 0.94 | 0.74 | |
SVR_GDA | 0.90 | 0.79 | 0.78 | 0.95 | 0.70 | |
XGBoost_GDA | 0.92 | 0.79 | 0.80 | 0.92 | 0.73 | |
MAE (mm) | RF_GDA | 154.93 | 146.49 | 197.07 | 119.18 | 186.82 |
SRF_GDA | 165.45 | 147.84 | 202.16 | 108.39 | 231.86 | |
SVR_GDA | 165.72 | 146.06 | 209.06 | 109.58 | 187.47 | |
XGBoost_GDA | 153.7 | 143.32 | 204.15 | 125.92 | 176.12 | |
RMSE (mm) | RF_GDA | 209.42 | 189.83 | 238.7 | 154.87 | 238.21 |
SRF_GDA | 220.02 | 189.93 | 246.94 | 143.5 | 272.21 | |
SVR_GDA | 215.21 | 192.97 | 257.62 | 137.81 | 235.53 | |
XGBoost_GDA | 194.00 | 183.27 | 246.67 | 159.09 | 224.19 | |
KGE | RF_GDA | 0.86 | 0.76 | 0.73 | 0.79 | 0.41 |
SRF_GDA | 0.83 | 0.76 | 0.72 | 0.82 | 0.42 | |
SVR_GDA | 0.84 | 0.75 | 0.72 | 0.81 | 0.48 | |
XGBoost_GDA | 0.84 | 0.78 | 0.72 | 0.78 | 0.54 |
Year | R | MAE | RMSE | KGE |
---|---|---|---|---|
2006 | 0.80 | 199.30 | 262.72 | 0.75 |
2007 | 0.73 | 173.37 | 220.48 | 0.61 |
2008 | 0.68 | 239.28 | 310.46 | 0.65 |
2009 | 0.87 | 163.28 | 216.34 | 0.73 |
2010 | 0.64 | 249.46 | 304.56 | 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Liu, H.; Zhou, Q.; Cui, A. Towards an Accurate and Reliable Downscaling Scheme for High-Spatial-Resolution Precipitation Data. Remote Sens. 2023, 15, 2640. https://doi.org/10.3390/rs15102640
Zhu H, Liu H, Zhou Q, Cui A. Towards an Accurate and Reliable Downscaling Scheme for High-Spatial-Resolution Precipitation Data. Remote Sensing. 2023; 15(10):2640. https://doi.org/10.3390/rs15102640
Chicago/Turabian StyleZhu, Honglin, Huizeng Liu, Qiming Zhou, and Aihong Cui. 2023. "Towards an Accurate and Reliable Downscaling Scheme for High-Spatial-Resolution Precipitation Data" Remote Sensing 15, no. 10: 2640. https://doi.org/10.3390/rs15102640
APA StyleZhu, H., Liu, H., Zhou, Q., & Cui, A. (2023). Towards an Accurate and Reliable Downscaling Scheme for High-Spatial-Resolution Precipitation Data. Remote Sensing, 15(10), 2640. https://doi.org/10.3390/rs15102640