
Citation: Zhu, H.; Liu, H.; Zhou, Q.;

Cui, A. Towards an Accurate and

Reliable Downscaling Scheme for

High-Spatial-Resolution Precipitation

Data. Remote Sens. 2023, 15, 2640.

https://doi.org/10.3390/rs15102640

Academic Editor: Yuanjian Yang

Received: 16 March 2023

Revised: 27 April 2023

Accepted: 16 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Towards an Accurate and Reliable Downscaling Scheme for
High-Spatial-Resolution Precipitation Data
Honglin Zhu 1, Huizeng Liu 2 , Qiming Zhou 1,* and Aihong Cui 1

1 Department of Geography, Hong Kong Baptist University, Hong Kong, China
2 Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
* Correspondence: qiming@hkbu.edu.hk

Abstract: Accurate high-spatial-resolution precipitation is significantly important in hydrological
and meteorological modelling, especially in rain-gauge-sparse areas. Some methods and strategies
have been applied for satellite-based precipitation downscaling, residual correction and precipitation
calibration. However, which downscaling scheme can provide reliable high-resolution precipitation
efficiently remains unanswered. To address this issue, this study aimed to present a framework
combining the machine learning downscaling algorithm and post-process procedures. Firstly, four
ML-based models, namely support vector regression, random forest, spatial random forest (SRF) and
eXtreme gradient boosting (XGBoost), were tested for downscaling and compared with conventional
downscaling methods. Then, the effectiveness of the residual correction process using ordinary
Kriging and the calibration process using the geographical difference analysis (GDA) method was
investigated. The results showed that the ML-based methods had better performance than the
conventional regression and interpolation approaches. The SRF and XGBoost outperformed others in
generating accurate precipitation estimation with a high resolution. The GDA calibration process
significantly improved the downscaled results. However, the residual correction process decreased
the downscaling performance of the ML-based models. Combining the SRF or XGBoost downscaling
algorithm with the GDA calibration method could be a promising downscaling scheme for precipita-
tion data. The scheme could be used to generate high-resolution precipitation, especially in areas
urgently requiring data, which would benefit regional water resource management and hydrological
disaster prevention.

Keywords: precipitation; downscaling; machine learning; geographical difference analysis;
residual correction

1. Introduction

As the primary force of the hydrological cycle and energy balance, precipitation is a
significant variable in meteorological and hydrological modelling [1–4]. The spatial and
temporal distribution of precipitation are two decisive factors in global water cycle and
climate change studies [5–8]. However, precipitation is one of the most difficult meteoro-
logical components to estimate due to its high spatiotemporal variations [9]. Although in
situ rainfall gauges can provide reliable observations, the limited and uneven distribution
of rain gauge stations makes it difficult to reflect the spatial pattern of precipitation. There-
fore, acquiring accurate and high-resolution precipitation data still remains challenging,
especially in rain-gauge-sparse areas.

Alternatively, remote sensing could also be used to estimate precipitation with wide
spatial coverage. Many satellite precipitation estimates (SPEs) have been produced, such as
the Tropical Rainfall Measuring Mission [10,11], Climate Hazards Group Infrared Precipi-
tation with Station data [8], the Integrated Multi-Satellite Retrievals for Global Precipita-
tion Measurement mission [12] and the Global Precipitation Climatology Project [13,14].
One of the satellite precipitation products is the Precipitation Estimation from Remotely
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Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-
CDR) [15,16], which is widely used in many examples of hydrological modelling and has
been reported to have good performance in mainland China [17]. However, its resolutions,
varying from 0.25◦ to 0.10◦, are too coarse to be applied in regional-scale studies. Therefore,
spatial downscaling is required to produce high-resolution precipitation to make it more
applicable on a local scale.

There are mainly two downscaling techniques, dynamic and statistical downscaling,
that have been widely used, as they rely on less computational costs and no physical
assumptions [18]. They are implemented by first developing regression models between
precipitation and environmental factors with a coarse resolution, and then applying the
built models to finer environmental variables to produce high-resolution precipitation.
Many regression models have been applied to drive the hydrometeorological variables as
predictors for providing downscaling results [19]. For example, the relationship between
the precipitation and normalised difference vegetation index (NDVI) at different spatial
resolutions was first explored using the exponential model (ER) [20]. Jia et al. [21] used
the multiple linear regression (MLR) model to develop the correlation between precipita-
tion, vegetation and topography. Xu et al. [22] proposed a new geographically weighted
regression (GWR) model to estimate high-resolution precipitation based on the NDVI
and DEM.

In addition to the simple statistical regression algorithms, some advanced ML algo-
rithms have also been adopted for downscaling, and have been found to outperform other
conventional approaches [23–25]. The support vector machine (SVM) was first used by
Chen et al., (2010) [26] to spatially downscale the general circulation models (GCMs) of
precipitation. He et al. (2016) [27] proposed an adoptable RF-based approach for precipita-
tion downscaling, which employed two independent RFs and yielded better estimation
for extreme precipitation. Jing et al., (2018) [2] applied the classification and regression
trees (CARTs) algorithm in the downscaling of TRMM precipitation and reported its better
performance than the k-nearest neighbours (KNNs) method. Machine learning algorithms
have been utilised not only as stand-alone tools, but also in conjunction with other down-
scaling methods. For example, Devak et al., (2015) [28] developed a dynamic downscaling
framework by integrating the KNN and SVM techniques. Yan et al. [29] presented a down-
scaling and merging scheme based on the RF and Cokriging model, and achieved better
accuracy than the original global precipitation measurement mission (GPM) precipitation.
Pour et al., (2016) [30] developed a hybrid approach using the RF in classification and
SVM in regression to downscale the daily rainfall. The exploration of machine learning
algorithms in precipitation downscaling research indicated their superior performance.

Following the diverse application of machine learning algorithms to downscale pre-
cipitation, some studies have evaluated and compared their performances in downscal-
ing. Raje and Mujumdar (2011) [31] compared the performance of three downscaling
methods, namely, conditional random forest (CRF), KNN, and SVM for downscaling
precipitation from the Canadian global climate model, in which CRF and KNN models
performed slightly better than the SVM model in reproducing high-resolution precipita-
tion. Nasseri et al., (2013) [32] implemented the assessment of four downscaling methods,
including the cubic-order multivariate adaptive regression splines (MARS), model tree
(MT), KNN and genetic-algorithm-optimised SVM (GA-SVM), and the combination of
the MT and MARS methods produced more accurate results. Sharifi et al., (2018) [33]
evaluated three downscaling techniques (MLR, artificial neural networks (ANNs) and
spline interpolation methods) based on the relationships between GPM (IMERG) and cloud
properties in northeast Austria. Ghorbanpour et al., (2021) [34] compared the performance
of SVM, RF, GWR, MLR and exponential regression on downscaling TRMM precipitation,
and the SVM algorithm demonstrated the highest performance.

The existing comparative studies have demonstrated assessments mainly focusing on
the RF and SVM algorithms. However, other advanced algorithms, such as spatial random
forest (SRF) and eXtreme gradient boosting (XGBoost), have been gradually developed
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and used in downscaling. Chen et al. [9] incorporated spatial autocorrelation into the RF
algorithm and proposed the SRF for precipitation downscaling. XGBoost has not been
reported in the downscaling of precipitation data, but it has been successful applied in the
downscaling of terrestrial water storage from the Gravity Recovery and Climate Experiment
(GRACE) satellite, indicating its great potential in precipitation downscaling [35,36]. RF
and SVM are the representatives of the bagging method and kernel methods, respectively,
and have been widely used in the spatial downscaling of satellite precipitation estimates.
Nevertheless, the application of the spatial extension of RF (SRF) and boosting methods
such as XGBoost were not investigated in this field. Therefore, the effectiveness of these
ML approaches to downscale the satellite precipitation data will be evaluated in this study
for the best-performing downscaling algorithm.

Another key question is whether residual correction and calibration are essential to
improve the first results of downscaling. The downscaling result contained the residuals
that were not captured by the downscaling models, and required further residual correc-
tion and a calibration process. Residual correction considers the difference between the
simulated values with a coarse resolution and the original satellite data [37]. Some studies
have indicated that residual correction could improve the downscaled results [16,21,22,24].
For example, residual correction greatly corrected the precipitation bias obtained from
the spline interpolation method [24], classification and regression tree [16,21] and the k-
nearest neighbours [22], and thus it was considered as an essential step for downscaling.
However, there were also some studies that came to the opposite conclusion. Duan and
Bastiaanssen [38] suggested that the employment of residual correction reduced the perfor-
mance of the multiple linear regression model for downscaling. Xu et al. [22] also found
that residual correction reduced the estimate performance of the GWR model. Thus, the
significance of residual correction in improving the downscaled results from ML models
will be investigated.

The calibration process merges in situ observations with downscaled precipitation [39].
Geographical difference analysis (GDA) [38,39] has been proposed for improving the down-
scaled results. GDA calibration computed the difference between downscaled precipitation
and the in situ observations at each rain gauge, and the difference was interpolated into
high spatial resolution and added to the uncalibrated results. GDA can minimise the
difference between the downscaled against the observed data, and it was more effective
than other calibration methods, such as regression analysis [34,39], especially in areas with
scanty distribution. Therefore, this study will explore whether or not the combination of
the GDA and ML-based models is effective in downscaling precipitation data.

To answer these aforementioned research questions, this study aims to identify an
effective downscaling scheme. The downscaling scheme was determined by the following:
(1) systematically evaluating the ML-based spatial downscaling methods and (2) investigat-
ing the contribution of the residual correction and calibration process on the downscaled
results. The results from this study can address the significance and contribution of
ML-based downscaling models, calibration and the residual correction process, and the
downscaling scheme is promising in providing accurate and reliable precipitation data
with a high resolution.

2. Materials and Methods
2.1. Study Area

This study was undertaken in Guangdong Province in China, covering a total area of
179,800 km2 between 109◦ and 118◦E and 20◦ and 26◦N. As shown in Figure 1, the study
area is dominated by mountainous and hilly terrain, ranging from high in the north (1888 m
above sea level) to low in the south (0 m). About 33% of the whole district is mountains,
and hills and plains account for 25% and 22%, respectively [40]. Dominated by the East
Asian Monsoon, the study area crosses three climatic sub-zones, i.e., the middle subtropics,
the south subtropics and the tropics. The climate is characterised by a warm and relatively
dry winter and hot and wet summer, with average annual precipitation ranging from 1366
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to 2343 mm [41]. The abundance and high spatial instability of the rainfall make this region
an appropriate choice for the assessment of precipitation downscaling and estimation.
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Figure 1. Topography, rain gauges and geographic location of Guangdong Province in China.

2.2. Dataset and Pre-Processing

Table 1 shows the rain gauge observation, satellite dataset and other environmental
predictors used in this study. The PERSIANN-CDR is a real-time satellite product and
provides the precipitation data at 0.25◦ spatial resolution from 1983 for the space coverage of
60◦S–60◦N [16]. For this study, the annual precipitation data of PERSIANN-CDR from 2006
to 2010 were used. The observed precipitation of 86 meteorological stations (Figure 1) was
provided by the National Meteorological Information Center with data quality control [42].
Daily records from January 2006 to December 2010 were used and annual precipitation at
each site was calculated by the sum of the daily records. In the rare cases of missing data
at some stations, observations from the 10 nearest surrounding stations were averaged as
the recordings.

The DEM data were obtained from the Shuttle Radar Topography Mission (SRTM) by
NASA and the National Mapping Agency [43,44]. The SRTM DEM with a spatial resolution
of 90 m was resampled to 0.01◦ by averaging the values in the pixels. The DEM derivatives
involving slope and aspect were obtained based on the SRTM DEM. In our study, NDVI
was used, and the dataset was supplied by the NDVI3g by the GIMMS working group
using the Advanced Very-High-Resolution Radiometer (AVHRR) data [45–47]. The data
were processed using the maximum value composite (MVC) method and synthesised every
fortnight (24 times per year), with a spatial resolution of 1/12◦ (8 km). The annual NDVI
was calculated by averaging the monthly NDVI value. The MODIS 8-day Land Surface
Temperature (LST) product (MOD11A2) with a spatial resolution of 1 km was provided
from NASA Earth Data [48]. The annual LST values were obtained via temporal averaging.
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Table 1. Datasets used in this study.

Data Type Dataset Spatial
Resolution

Temporal
Resolution Source

Meteorological
data

PERSIANN-CDR 25 km Annual http://chrs.web.uci.edu/persiann (accessed on 1
December 2021)

rainfall gauge
observation Point Daily http://data.cma.cn/data/detail/dataCode/ (accessed

on 1 December 2021)

Land surface
data

SRTM DEM 90 m - https://doi.org/10.5066/F7PR7TFT (accessed on 1
December 2021)

slope, aspect 90 m - Derived from SRTM DEM

LST 1 km 8 d https://doi.org/10.5067/MODIS/MOD11A2.006
(accessed on 1 December 2021)

GIMMS NDVI3g 8 km 15 d The National Center for Atmospheric Research

2.3. Downscaling of PERSIANN-CDR Precipitation

The statistical downscaling techniques were built on the assumption that the correlation
between PERSIANN-CDR precipitation and environmental variables conducted with coarse resolu-
tion (0.25◦ × 0.25◦) could be equally applied at a fine resolution (1 km× 1 km) [38,49–51]. In this
study, the models considered the NDVI, DEM and LST as predictors, which was suggested
by [9,33,34]. The relationship between NDVI and precipitation has been widely introduced
to downscaling models because vegetation types have influenced the humidity and moist
convention strongly [21,38,52]. Precipitation, as a prediction, was largely influenced by to-
pographical factors such as elevation, slope and aspect [22,51]. Topographical factors have
been adopted to estimate precipitation. LST both in daytime and at night were important
responses to precipitation [53,54]. Thus, LST was used as a contributing factor to improve
the accuracy of the downscaling process. In addition, the geographic location information,
i.e., longitude and latitude, were also considered as input factors to drive the downscaling
models [2,55].

Four ML-based algorithms (SVR, RF, SRF and XGBoost) were considered as candidates
to develop the downscaling model. The RF and SVR algorithms were considered as classical
ML models and have been used in many downscaling studies [25,56]. SRF was proposed as
the extension of the RF method to deal with spatial prediction issues and had great potential
in precipitation downscaling. SRF introduced the Moran’s index of spatial autocorrelation
as an explanatory variable into the RF model, and minimised the spatial autocorrelation
of simulation residuals [57,58]. The XGBoost algorithm is an effective modified version
of the gradient boosting decision tree model [59]. All of these four models have shown
reasonable estimation results in the literature. In addition to the four ML-based algorithms,
one interpolation approach (ordinary Kriging) and two regression models (MLR and GWR)
were also employed as comparative studies for downscaling. Three variables were used
in the MLR model. The GWR is a local regression method that introduced geographical
location information into the regression model [22].

The procedure of ML-based downscaling methods is shown in Figure 2. It was
achieved by firstly developing the regression models between precipitation and environ-
mental variables on a coarse scale and then applying the models to the high-resolution
environmental factors to generate the precipitation data with high spatial resolution. The
data from 2006 to 2010 were used as the training and validation dataset, in which 80%
was used to adjust the parameters of the regression model and the other 20% was applied
for validation. To avoid the overfitting of the model, the five-fold cross-validation [57]
method was implemented. In this study, the R package “e1071” was used for constructing
the SVR model [60]. The R package “randomForest” was used for the RF model [61]. The
SRF model and XGBoost model were implemented in the R package “spatialRF” [62] and
“xgboost” [63], respectively. The GWR model was played in GWR 4.0 software [64].

http://chrs.web.uci.edu/persiann
http://data.cma.cn/data/detail/dataCode/
https://doi.org/10.5066/F7PR7TFT
https://doi.org/10.5067/MODIS/MOD11A2.006
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2.4. Residual Correction and Calibration Framework

As shown in Figure 2, the residual correction was conducted using three steps [33,37].
First, the estimated precipitation with 0.25◦ resolution using the constructed models was
obtained and subtracted from the original PERSIANN-CDR dataset to obtain the residuals
with 0.25◦ resolution. The residuals with coarse resolution were then interpolated to
0.01◦ using the ordinary Kriging method. Finally, the downscaled precipitation with
a high resolution was corrected by adding the residual at 0.01◦ resolution. Different
from the residual correction, the calibration process considered the difference between
the downscaled rainfall and observation measurements. The GDA calibration approach
proposed by [39] was adopted, which was more effective than the geographical ratio
analysis (GRA) [38]. The process of the GDA calibration method was demonstrated in
Figure 2. Firstly, the downscaled precipitation map was extracted to the point-based data
according to the location of rain gauges, which were then subtracted from the observed
recordings to obtain the difference. The point-based difference was then interpolated
using the inverse distance weighting (IDW) technique, and the interpolated differences
were added to the downscaled precipitation as the calibrated results. The mean yearly
precipitation for all 86 rain gauges was ranked from low to high, with the sequence of 1–81.
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A total of 50% of the rain gauge stations with odd numbers were selected for calibration,
and the remaining ones were used for validation.

2.5. Performance Evaluation

To evaluate the downscaling results, four indicators of correlation coefficient (CC),
root mean square error (RMSE), mean absolute error (MAE) and Kling-Gupta efficiency
(KGE) were used. The correlation coefficient is the ratio between the covariance of two
variables and the product of their standard deviations; RMSE is the arithmetic square root
of the difference between the measured precipitation value and the predicted precipitation
value at the site and MAE is the average of the absolute value of the difference between
the measured precipitation value and the predicted precipitation value at the site. In
addition, the KGE was applied to evaluate the overall performance of the downscaled
precipitation data. KGE combines three components of model errors (i.e., correlation, bias
and coefficients of variation) in a balanced way [65]. The equations of the index applied are
presented in Table 2.

Table 2. The evaluation index and the equation applied.

Evaluation Index Equation

Correlation coefficient (CC)
CC =

n
∑

i=1
(Ei−E)(Oi−O)√

n
∑

i=1
(Ei−E)2×

√
n
∑

i=1
(Oi−O)

2

Root mean square error (RMSE) RMSE =

√
1
n

n
∑

i=1
(Ei −Oi)2

Mean absolute error (MAE)
MAE =

n
∑

i=1
|Ei−Oi |

n

Kling-Gupta efficiency (KGE) KGE = 1−
√
(cc− 1)2 + ( E

O
− 1)

2
+ ( CVE

CVO
− 1)

2

where Ei = the estimated precipitation at station i, Oi = the observed precipitation at station I and n is the number
of rain gauge stations. E is the mean of the estimated precipitation. O is the mean of the observed precipitation.
CVE is the coefficient of variation of the estimated precipitation, and CVO is the coefficient of variation of the
observed precipitation.

3. Results
3.1. Accuracy Analysis of ML-Based and Conventional Downscaled Methods

Table 3 shows the CC, MAE, RMSE and KGE of each method including the ML-based
and the conventional methods based on the 86 individualistic rain gauges used for each
validation year from 2006 to 2010. The accuracy of the original PERSIANN-CDR was
not very high, having the lowest CC and KGE and the highest MAE and RMSE. The
downscaling methods applied improved the spatial resolution as well as the accuracy. The
validation results of each year differed and were related to the performance of the original
satellite precipitation, indicating that the accuracy of the downscaled results was not only
affected by the accuracy of the regression model, but also the quality of the original satellite
precipitation data. The four ML-based methods produced better performance than the
other three conventional methods in terms of KGE, indicating their better capability in
fitting non-linear relationships between satellite precipitation and environmental variables.

The performance of Kriging and MLR was unsatisfactory with low CC and KGE, as the
relationship between precipitation and environmental factors cannot be properly captured
by these two models. XGBoost and SRF tend to outperform RF and SVR with higher KGE
and CC (seen in Table 3). SRF produced the highest CC for each year ranging from 0.68 to
0.95, and produced the lowest MAE and RMSE for most validation years, ranging from
126.67 mm to 353.75 mm and 153.59 mm to 403.48 mm, respectively, which implied its good
capability in fitting the non-linear relationships. Regarding KGE, XGBoost obtained the
highest values for all years from 0.46 to 0.79.
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Table 3. Validation results of downscaling approaches for the testing period.

Dataset 2006 2007 2008 2009 2010

CC

PERSIANN-CDR 0.52 0.47 0.60 0.79 0.51

Kriging 0.57 0.51 0.56 0.80 0.48
MLR 0.63 0.55 0.68 0.84 0.53
GWR 0.66 0.62 0.73 0.89 0.49

RF 0.78 0.69 0.82 0.91 0.64
SRF 0.79 0.71 0.84 0.95 0.62
SVR 0.77 0.65 0.79 0.90 0.68

XGBoost 0.78 0.71 0.80 0.93 0.62

MAE
(mm)

PERSIANN-CDR 351.99 247.20 367.76 244.33 357.02

Kriging 341.71 240.34 362.81 239.91 355.26
MLR 313.69 241.83 326.73 267.97 282.81
GWR 278.62 203.05 281.33 184.33 350.51

RF 244.63 193.28 222.57 172.37 299.61
SRF 236.56 186.56 211.41 126.67 353.75
SVR 245.48 196.61 243.70 184.19 302.78

XGBoost 244.43 188.79 247.21 139.59 270.83

RMSE
(mm)

PERSIANN-CDR 435.96 294.62 446.05 297.34 415.81

Kriging 426.48 291.53 444.10 289.80 414.34
MLR 417.41 291.33 415.81 315.71 332.88
GWR 355.34 249.63 353.08 223.15 409.47

RF 308.46 233.58 282.48 205.04 355.91
SRF 298.42 224.72 268.24 153.89 403.48
SVR 310.61 245.30 305.09 217.24 353.59

XGBoost 305.13 226.37 309.09 171.29 318.29

KGE

PERSIANN-CDR 0.36 0.35 0.57 0.67 0.35

Kriging 0.38 0.36 0.54 0.70 0.31
MLR 0.32 0.32 0.57 0.59 0.30
GWR 0.48 0.45 0.69 0.75 0.31

RF 0.51 0.46 0.72 0.72 0.35
SRF 0.56 0.50 0.73 0.79 0.34
SVR 0.51 0.42 0.71 0.72 0.49

XGBoost 0.57 0.53 0.73 0.79 0.46

3.2. Spatial Distribution of the Downscaled Results

Figure 3 shows the spatial distribution patterns of the original PERSIANN-CDR and
downscaled results in the year 2010. All of the downscaled precipitation maps show
similar distribution patterns to the original PERSIANN-CDR map, where there was much
higher precipitation in the middle and lower precipitation in other areas. This is not a
surprise, as all of the regression models were trained from satellite precipitation and would
contain similar distribution characteristics as in the PERSIANN-CDR map. The annual
precipitation map of the original PERSIANN-CDR contained some mosaic-like pixels due
to the coarse resolution, while the downscaled maps of the ML-based algorithms provided
enriched spatial information and reproduced basic spatial features. GWR worked well not
only in terms of accuracy but also in capturing the spatial features of the PERSIANN-CDR
distribution. MLR generally obtained higher CC and KGE than Kriging, but it failed to
reproduce the spatial distribution and underestimated the precipitation in the middle area.
Kriging and the original PERSIANN-CDR both had poor results of CC and KGE, and they
produced almost the same spatial pattern, which might because Kriging interpolation could
only generate the smooth values of the original satellite data. In Figure 3, SVR and XGBoost
provided more details with large spatial variations. For example, in the regions highlighted
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by the black circles (Figure 3g,h), the downscaled maps of SVR and XGBoost reproduced
the low precipitation in these two areas.
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The spatial distribution of the prediction bias of downscaling results was analysed
based on the individual rain gauges in the year 2010. As shown in Figure 4, PERSIANN-
CDR tended to overestimate at most rain gauges, especially in the middle and eastern areas
where the annual precipitation was higher, indicating that PERSIANN-CDR had difficulty
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in estimating heavy rainfall values. Similarly, other downscaled results reproduced this
spatial pattern, as both the over- and under-estimation involved in the PERSIANN-CDR
data were conclusively brought to the downscaled results. The number of rain gauges with
overestimation in the results of the four ML methods (Figure 4e–h) decreased compared
with the other models.
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3.3. Were Residual Correlation and Calibration Procedures Helpful?

To explore whether residual correction helped to improve the precipitation estimation,
the accuracy of the downscaling results based on the four ML methods before and after
residual correction (termed RF_RC, SRF_RC, SVR_RC and XGBoost_RC) is summarised
in Table 4. The residual correction process did not improve the precipitation estimation
of the four ML-based methods. It undermined the CC and KGE values, and increased
the MAE and RMSE. The partial results after residual correction even performed worse
than the original PERSIANN-CDR. Table 5 shows the results of KGE, CC, MAE and RMSE
after the GDA calibration framework, and the validation results are based on the obser-
vations from half of the rain gauges. The GDA calibration improved the accuracy of the
precipitation estimation, and it significantly decreased the MAE and RMSE. RF_GDA and
SVR_GDA received greater improvements than XGBoost_GDA and SRF_GDA, with KGE
ranging from 0.41 to 0.86 and from 0.54 to 0.84 mm, respectively. The KGEs of precipitation
estimation before and after residual correction based on different ML algorithms are pre-
sented in Figure 5. The results after residual correction and calibration were affected by the
downscaled results directly. The precipitation data after residual correction generated the
smallest accuracy. The results of the ML-based methods after GDA calibration achieved the
best performance.

Table 4. Performance of the results after residual correction. The satellite precipitation was first
downscaled using different ML-based methods, and then the downscaled results were under residual
correction, which were termed RF_RC, SRF_RC, SVR_RC and XGBoost_RC.

Datasets 2006 2007 2008 2009 2010

CC

RF_RC 0.60 0.57 0.59 0.84 0.48
SRF_RC 0.59 0.52 0.56 0.81 0.48
SVR_RC 0.61 0.56 0.62 0.84 0.60

XGBoost_RC 0.58 0.50 0.59 0.81 0.49

MAE
(mm)

RF_RC 331.28 231.78 349.56 221.55 354.22
SRF_RC 336.53 239.07 362.81 236.6 353.68
SVR_RC 330.26 232.75 342.11 226.41 355.46

XGBoost_RC 338.54 245.87 351.14 224.49 354.98

RMSE
(mm)

RF_RC 414.38 279.13 426.51 265.11 413.86
SRF_RC 419.57 289.92 444.09 285.15 412.52
SVR_RC 410.27 284.03 420.4 269.3 407.87

XGBoost_RC 424.13 293.98 429.11 272.15 414.12

KGE

RF_RC 0.39 0.38 0.56 0.70 0.31
SRF_RC 0.40 0.36 0.54 0.70 0.32
SVR_RC 0.41 0.39 0.59 0.72 0.36

XGBoost_RC 0.39 0.35 0.56 0.68 0.31

Figure 6 presents maps of three different results in the validation year of 2010:
(1) downscaled precipitation based on four ML methods, (2) downscaled precipitation
after residual correction and (3) downscaled precipitation after calibration in the validation
year of 2010. In the GDA calibration, observations from half of the rain gauges were used
for merging (Figure 6b), and the other half were applied for the validation (Figure 6c). The
results of the four ML-based methods showed different spatial patterns before residual cor-
rection, whereas the final results after residual correction had similar spatial patterns which
were consistent with those of the original PERSIANN-CDR. Additionally, precipitation after
the residual correction declined in the northern side and increased in the east compared
with the results before residual correction. The results after calibration provided lager
spatial variability in precipitation patterns and generated more spatial details compared
with those before calibration. For example, the results after GDA calibration produced
low precipitation values in the regions of the red circles in Figure 6, while the results after
residual correction did not reproduce this feature. For the middle region, the downscaled
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results and results after residual correction generated high precipitation over a large area,
but the results after GDA calibration relieved the overestimation in this region.

Table 5. Accuracy of the results after GDA calibration. The downscaling results were then calibrated
using GDA and the datasets obtained were interpreted as RF_GDA, SRF_GDA, SVR_GDA and
XGBoost_GDA.

Datasets 2006 2007 2008 2009 2010

CC

RF_GDA 0.91 0.78 0.82 0.93 0.69
SRF_GDA 0.89 0.79 0.81 0.94 0.74
SVR_GDA 0.90 0.79 0.78 0.95 0.70
XGBoost_GDA 0.92 0.79 0.80 0.92 0.73

MAE
(mm)

RF_GDA 154.93 146.49 197.07 119.18 186.82
SRF_GDA 165.45 147.84 202.16 108.39 231.86
SVR_GDA 165.72 146.06 209.06 109.58 187.47
XGBoost_GDA 153.7 143.32 204.15 125.92 176.12

RMSE
(mm)

RF_GDA 209.42 189.83 238.7 154.87 238.21
SRF_GDA 220.02 189.93 246.94 143.5 272.21
SVR_GDA 215.21 192.97 257.62 137.81 235.53
XGBoost_GDA 194.00 183.27 246.67 159.09 224.19

KGE

RF_GDA 0.86 0.76 0.73 0.79 0.41
SRF_GDA 0.83 0.76 0.72 0.82 0.42
SVR_GDA 0.84 0.75 0.72 0.81 0.48
XGBoost_GDA 0.84 0.78 0.72 0.78 0.54
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4. Discussion
4.1. Downscaled Results Based on ML Methods

In this study, the performance of four ML algorithms and three conventional down-
scaling models was evaluated, with ML algorithms generally outperforming the others.
This can be attributed to two reasons. First, the ML models were better at capturing the
non-linear relationships between environmental predictors and the precipitation, and were
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more robust to outliers and noise in the data, which traditional downscaling models can-
not handle as effectively [36]. Second, ML can automatically select the most important
features relevant to precipitation, whereas conventional models rely on manual feature
selection [56,59]. This can result in a more efficient and effective training process, improving
the accuracy and robustness of the model and avoiding overfitting in the modelling [66].

Among the ML-based methods, XGBoost had the best KGE results, and outperformed
the SRF, SVR and RF models. This could be attributed to the boosting strategy used in
XGBoost, which helped to reduce the variance by aggregating the predictions of multiple
weaker models and avoid overfitting by using regularisation techniques, such as tree
pruning [25]. The better performance of SRF over RF and SVR might be due to incorporating
spatial information into the ML model, and thus it had improved predictive accuracy
compared to the SVR and RF models [9,55]. Similarly, GWR achieved better results than
MLR by implementing geographical weighting to the features in each of the local regression
equations [22,67]. These results highlighted the importance of spatial information in
downscaling models. However, SRF still received slightly worse downscaling results than
XGBoost, possibly because the spatial heterogeneity of precipitation was not well captured
by the spatial random forest model [9,27], and XGBoost had many hyperparameters that
can be tuned to optimise the model’s performance [18]. SVR had better performance than
RF, which might be attributed to the fact that the SVR model was less prone to overfitting
and had better generalisation ability than RF [34,56].

This study found that ML algorithms were more resilient than conventional downscal-
ing methods, and XGBoost achieved the highest performance out of the four ML algorithms.
However, the performance of the downscaling results varied not only with different algo-
rithms, but also with different years. As shown in Table 3 and Figure 6, the KGE and CC of
the downscaling results in 2009 had a higher value, but the results of 2007 and 2010 were
lower. The poor estimation in these years might be because the satellite data could not be
perfectly modelled by DEM, NDVI and LST. Meanwhile, the capability of models to explain
the satellite precipitation and environmental factors could impact the downscaling perfor-
mance, but more importantly, the accuracy of the original PERSIANN-CDR could be a main
error source in the downscaling results [68]. The error source analysis was not contained
in this study, but our results supported the findings in previous studies [20–22] that the
downscaling accuracy was largely determined by the quality of the original satellite data.

4.2. Performance of Downscaling Results after GDA Calibration and Residual Correlation

The downscaled precipitation showed more accurate results after GDA calibration,
with increased CC and KGE, as well as decreased MAE and RMSE. The improved per-
formance after GDA calibration was consistent with the previous studies [9,34,38,49]. To
further investigate whether the effect of GDA on improving accuracy was caused by the
downscaling process, a comparative experiment of directly performing the GDA on the
original satellite data was conducted. Table 6 shows the accuracy of satellite precipitation
data after GDA calibration. As shown, the GDA process could also improve the accuracy
of the original satellite data, but compared with the downscaled results after calibration in
Table 5, the improvement was not as significant as that achieved based on the downscaled
data, which suggests the importance of the downscaling process before the calibration.
This might be attributed to the fact that the downscaled precipitation had higher spatial
resolution, and could strengthen the performance of the calibration. In the calibration
procedure, the precipitation between the pixels and rain gauges was compared. However,
the precipitation in each pixel represented the areal average precipitation within it, while
the rain gauge measurements were point-based. The mismatch between the gridded and
the point-based values might have affected the calibration results. Downscaling provided
finer-resolution gridded data, and allowed for a more effective comparison with the rain
gauge data.
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Table 6. Accuracy of the original PERSIANN-CDR after GDA calibration for each year.

Year R MAE RMSE KGE

2006 0.80 199.30 262.72 0.75
2007 0.73 173.37 220.48 0.61
2008 0.68 239.28 310.46 0.65
2009 0.87 163.28 216.34 0.73
2010 0.64 249.46 304.56 0.36

For the residual correction, this study found that the estimated precipitation after resid-
ual correction was poorer than before, which was consistent with the results of previous
studies using the GWR model [22,59]. However, some studies reported opposite results,
indicating an improvement in precipitation data after residual correction. Zhao [69] illus-
trated that residual correction played an important role in RF-based downscaling. Residual
correction greatly increased the accuracy of the precipitation estimation conducted by
artificial neural networks [33]. The worse performance after residual correction in our
study might be explained by the following reasons: (1) The uncertainty in the original
satellite data was inherited in the results after residual correction. The residuals were the
difference between the estimation from models and the original PERSIANN-CDR with
coarse resolution, and reflected the precipitation that could not be predicted by the models.
However, if the original satellite data had significant errors, it would be difficult for resid-
ual correlation to produce accurate results. (2) The residuals with coarse resolution were
interpolated to 1 km using the ordinary Kriging method in this study, but other studies
have adopted different methods including spline, IDW and nearest neighbour interpolation
methods. The difference between the performance of Kriging and other interpolation
techniques has not been investigated sufficiently, which might affect the application of
residual correction [2,70]. (3) The interpolation of residuals using the Kriging method only
took the distance and direction into account and did not introduce other environmental
variables. The fewer predictors used in residual correlation may not be appropriate and
they cannot be used to capture the underlying patterns in the residuals, which could lead
to incorrect adjustments and worse results.

Furthermore, quantitative analysis of the effect of residual correction was implemented
to better understand why the accuracy decreased after residual correction. Noting that
the error of the original satellite precipitation and the estimated precipitation at 25 km
were ε(SL) and ε(DL), the error of the residuals at 25 km would be |ε(SL)− ε(DL)|. The
error of the downscaled precipitation with a high resolution was ε(DH)

2. Incorporating
the residual correction, the error of the precipitation would be [ε(SL)− ε(DL) + ε(DH)]

2.
The impact of the residual correction depends on the value of the error before and after
the residual correction, i.e., the value of ε(DH)

2 and [ε(SL)− ε(DL) + ε(DH)]
2. Specifi-

cally, the residual correction yields a positive effect when the expression 4.1 is negative.
Accordingly, when the ε(SL) is smaller than the ε(DL), or the ε(SL) is large enough, the
residual correction process will decrease the accuracy of the precipitation. Therefore, when
the accuracy of the original satellite data is not good, the residual correction should not be
conducted after downscaling.

[ε(SL)− ε(DL) + ε(DH)]
2 − ε(DH)

2

= [ε(SL)− ε(DL)] ∗ [ε(SL)− ε(DL) + 2ε(DH)]
(1)

4.3. Future Perspectives

This study demonstrated that ML-based approaches had more potential to be applied
in precipitation downscaling compared with other conventional downscaling methods,
and the XGBoost outperformed the others in generating high-resolution precipitation data.
However, there is still space for improvement in further studies. First, a larger sample size
of training datasets is required to construct the ML downscaling models, as the limited
data used in this study might lead to overfitting and poor generalisation of the ML models.
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Generally, the size and diversity of training datasets have a significant impact on the
performance of machine learning models, and a larger and high-quality training dataset
can help to improve the accuracy, generalisation ability and robustness of ML models [71,72].
Secondly, more observations from rain gauges should be involved for the testing of ML
models. In this study, the validation results were based on in situ data from only 86 rain
gauge stations. The limited spatial representativeness with only a few rain gauges made it
difficult to correctly capture the spatial variability in precipitation across the entire region,
which could lead to incomplete and potentially biased results [27]. Thirdly, multiple
satellite-derived precipitation data sources would be necessary and meaningful in further
downscaling studies. The PERSIANN-CDR was used as the original satellite-derived data
in this study to develop the ML-based downscaling models due to its longer temporal
coverage and good consistency with measurements. However, there are many other remote
sensing precipitation products, each with their limitations and advantages. To reduce
the uncertainty contained in satellite data, the combination of multiple satellite-derived
precipitation data would provide a more reliable estimation than individual precipitation
products [37]. Furthermore, with the advent of the “big data” era, deep learning has shown
great potential in the downscaling of precipitation in recent studies [73]. The application of
many deep learning algorithms, such as convolutional neural networks (CNNs) [74], long
short-term memory (LSTM) networks [75] and generative adversarial network (GAN) [76],
has displayed high accuracy and efficiency of precipitation downscaling in comparison to
traditional regression-based models. Evaluating the performance of different deep learning
models is beyond the scope of this study, but it could be explored in our future work.

5. Conclusions

This study aimed to present an accurate and reliable downscaling scheme for satellite-
based precipitation data. The performance of four ML algorithms and three conventional
downscaling models was evaluated, and residual correction as well as calibration proce-
dures were implemented to the downscaled results to examine possible improvements. The
results showed that the ML-based methods worked better in producing high-resolution
precipitation estimation than the classical interpolation methods. Specifically, XGBoost
achieved the best results in downscaling, followed by the SRF, SVR and RF algorithms. The
GDA calibration process significantly improved the downscaled results and is an essential
step in the downscaling scheme. However, no significant improvement was found after
the residual correction, indicating that residual correction should not be included in the
ML-based downscaling framework. Therefore, for an accurate and reliable downscaling
scheme, XGBoost should be used as the primary downscaling method, followed by the
calibration-based post-processing of the downscaled results. This downscaling scheme
demonstrated the most optimal downscaled results, and it can be applied in regions where
high-resolution precipitation is insistently required. In our future work, more emphasis
could be placed on downscaling with a temporal resolution, such as on the daily and
hourly scales.
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