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Abstract: Wildfires are one of the major disasters among many and are responsible for more than
6 million acres burned in the United States alone every year. Accurate, insightful, and timely
wildfire detection is needed to help authorities mitigate and prevent further destruction. Uncertainty
quantification is always a crucial part of the detection of natural disasters, such as wildfires, and
modeling products can be misinterpreted without proper uncertainty quantification. In this study,
we propose a supervised deep generative machine-learning model that generates stochastic wildfire
detection, allowing fast and comprehensive uncertainty quantification for individual and collective
events. In the proposed approach, we also aim to address the patchy and discontinuous Moderate
Resolution Imaging Spectroradiometer (MODIS) wildfire product by training the proposed model
with MODIS raw and combined bands to detect fire. This approach allows us to generate diverse
but plausible segmentations to represent the disagreements regarding the delineation of wildfire
boundaries by subject matter experts. The proposed approach generates stochastic segmentation
via two model streams in which one learns meaningful stochastic latent distributions, and the other
learns the visual features. Two model branches join eventually to become a supervised stochastic
image-to-image wildfire detection model. The model is compared to two baseline stochastic machine-
learning models: (1) with permanent dropout in training and test phases and (2) with Stochastic
ReLU activations. The visual and statistical metrics demonstrate better agreements between the
ground truth and the proposed model segmentations. Furthermore, we used multiple scenarios to
evaluate the model comprehension, and the proposed Probabilistic U-Net model demonstrates a
better understanding of the underlying physical dynamics of wildfires compared to the baselines.

Keywords: wildfire detection; generative machine-learning; stochastic modeling; remote sensing;
segmentation; uncertainty analysis

1. Introduction

Wildfires are one of the necessary dynamic components of terrestrial ecosystems,
and they provide significant ecological benefits [1,2]. Natural wildfires offer significant
ecological benefits through promoting forest rejuvenation, nutrient cycling, and habitat
diversity, all of which contribute to the overall health and resilience of ecosystems [3].

However, it is important to acknowledge the growing trends in wildfire size, fre-
quency, and intensity, which are largely influenced by human activities and interventions.
Factors such as wildfire suppression efforts and urban/wildlife encroachment have con-
tributed to increases in wildfire size, frequency, and intensity [4,5]. These anthropogenic
influences have transformed wildfires into a global problem in recent decades [2,6]. Conse-
quently, wildfires have emerged as one of the most destructive natural hazards, with severe
consequences for both human and ecological systems.
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The scale of devastation caused by wildfires is alarming. In the United States alone,
wildfires have burned over 6 million acres of land [7], while globally, the figure exceeds
1 billion acres [8]. These staggering numbers underscore the urgent need for effective
wildfire management strategies, enhanced understanding of fire behavior, and improved
decision-making processes to mitigate the devastating impacts of wildfires on communities,
ecosystems, and economies. By leveraging advanced technologies, such as remote sensing,
data analytics, and predictive modeling, researchers and practitioners can gain valuable
insights into wildfire dynamics and develop proactive measures to reduce risks and enhance
resilience in fire-prone regions.

Preventive and mitigative decision-making and proper resource management are tied
to the availability of insightful, accurate, and timely wildfire monitoring, along with a
deep understanding of wildfire dynamics. For this reason, wildfire detection is an active
research field focusing on understanding wildfire’s complex processes and correlated
factors (e.g., fuel load and structure, vegetation health and types) [9–11]. Many studies
have been conducted to improve the accuracy and detection latency [12–15] for the benefit
of acute and agile decision-making. Wildfire studies can be categorized into two main
directions: (1) deterministic and (2) stochastic models. Deterministic models are a category
of simulation that assumes the simulation process is fully resolved and the simulations can
be conducted with negligible errors [16]. Many studies use such an assumption to address
this problem using deterministic tools [17–19]. For instance, Toan et al., 2019 [18] developed
a deterministic machine-learning model that uses geostationary satellites (GOES-16) as
input to detect wildfires at the pixel level. The paper reports robustness against different
wildfire types and adversarial conditions. In another study, Sayed et al., 2019 [19] created
a wildfire dataset from satellite imagery and used a feed-forward neural network and
Support Vector Machine (SVM) to detect wildfire events. Although deterministic models
can solve complex highly non-linear scenarios, they are still insufficient in fully resolving the
process behaviors [20]. Additionally, deterministic models are limited from the uncertainty
quantification perspective [13,21,22].

Stochastic models, as opposed to deterministic models, acknowledge the presence of
unresolved subprocesses and seek to incorporate them into the modeling framework. These
stochastic approaches introduce randomness into the inference process, resulting in varying
outcomes even under identical conditions. This variability gives rise to a distribution of
possible outcomes, providing a comprehensive view of the wildfire segmentation. Such
stochastic models prove to be well-suited for wildfire analysis due to their ability to capture
the inherent uncertainty and complexity associated with these natural phenomena [23,24].
By considering multiple plausible generated outcomes, stochastic models offer informative
insights into the characteristics of potential wildfire patterns and aid in assessing the
uncertainty and variability associated with the segmentation results.

The modeling characteristics of stochastic models enable a more comprehensive un-
derstanding of the inherent uncertainties and complexities associated with wildfires [25,26].
By considering the variability and uncertainty in the data, stochastic models can capture
the inherent stochasticity in wildfire processes and provide valuable insights into the
spatial dynamics of wildfire events. This is important in wildfire analysis as it allows
for the exploration of various scenarios and the assessment of the likelihood of different
outcomes. Moreover, stochastic models facilitate probabilistic-based decision-making pro-
cesses, enabling more informed and robust wildfire management strategies. The utilization
of stochastic models in wildfire analysis has shown promising results in improving our
understanding of fire behavior, predicting fire spread patterns [25,26]. Through the in-
corporation of stochastic modeling approaches, we can enhance our ability to effectively
understand and mitigate the risks associated with wildfires, ultimately contributing to
more resilient and sustainable fire management practices [25].

Additionally, wildfire ground-truth segmentations are arbitrary and/or noisy to some
level, due to human labeling, instrument differences, and other artifacts, affecting the
wildfire segmentation shapes. A good example of the wildfire discrepancies can be seen
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in the comparison of MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) fire
radiative power products [27]. Even subject matter experts (SMEs), assigned to wild-
fire delineation tasks, often disagree on the active fire’s spatial extent. These plausible
but discrepant takes from the same events prompt a different look at wildfire detection
where wildfire segmentations are considered a distribution of events instead of a single
unified segmentation.

With the advent of terrestrial and atmospheric remote sensing, mainly supported
by satellite and aviation platforms, the means to monitor and detect wildfires have been
more accessible [28]. Advances in observation sensors, and specific enhancement of spatial,
temporal, and spectral resolution, allow more in-depth studies and reveal some of the
unknown dynamics of fires such as holdover fires [28,29]. However, with the increase in the
number of satellites/aviation missions, and the increase of retrieved information, efficient
and effective land management through remote sensing has been challenging [15].

Machine learning proposes an opportunity to extract useful information from a large
volume of remote sensing datasets. Unsupervised methods are popular for such processes
due to generally limited labels for remote sensing in Earth science. Methods such as Auto-
Encoders (AEs) are widely used for such tasks where the network is an encoder–decoder
architecture and the model aims to learn a compressed representation of the data with
minimum information loss [30]. The main issue of these deterministic models in image-
to-image translation is their loss of resolution problem. The encoder part of the model
subsamples the spatial information to compress the data and due to such an operation,
the decoder is not able to recover the spatial information effectively [31,32]. To remedy this
issue, [32] proposed U-NET which is encoder–decoder architecture with skip-connections in
all spatial resolution levels from encoded activations to the corresponding decoding layers
to preserve the spatial information. Despite the wide applications of AEs and U-NETs, they
are not capable of learning distributions around events which limits their expressibility
of data. Generative models such as variational inference methods enable characterizing
stochastic behaviors in data [33], such as ones in wildfire processes.

Variational Auto-Encoders (VAEs) are among the most popular unsupervised varia-
tional inference techniques in machine learning. We propose a supervised version of VAEs,
developed by [34], where the model consists of four submodels: (1) prior network in charge
of learning the latent prior distribution of input data, (2) posterior network in charge of
learning the latent posterior distribution of input and target data, (3) U-NET network in
charge of feature extraction of inputs, and (4) Combination network that uses the U-NET
features and samples from latent distribution to generate stochastic wildfire segmentations.

The main contributions of this work are: (1) developing a stochastic machine-learning
model with accurate and fast probabilistic inference on target wildfire segmentation, (2) con-
ducting uncertainty quantification by drawing a significant number of samples, and (3)
performing what-if scenarios to understand the impact of inputs variability.

The rest of the paper is structured as follows: Section 2 presents the methodology
and proposed model, Section 3 shows the obtained results, uncertainty quantification, and
comparison with baseline along with discussions, and Section 4 focuses on the conclusion
and summary of findings.

2. Methodology
2.1. Variational Autoencoder

To gain a comprehensive understanding of the proposed methodology, it is impera-
tive to establish a foundational understanding of variational autoencoders (VAEs). VAEs
represent a key component in elucidating the intricacies of the proposed approach. Vari-
ational autoencoders (VAEs) are powerful unsupervised generative models that combine
the concepts of autoencoders and variational inference. They are designed to learn a low-
dimensional latent space representation of complex high-dimensional input data. The
latent space is a continuous multivariate distribution that captures the underlying structure
and variations within the data. VAEs consist of two main components: (1) an encoder
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and (2) a decoder. The encoder maps input data into the latent space, while the decoder
reconstructs the data from the latent space back to the original input space.

In VAEs, instead of directly encoding input data into a single point in the latent repre-
sentation, the data is encoded into probability distributions over the latent variables [35].
This probabilistic representation allows for more flexibility and uncertainty modeling. It
enables VAEs to not only reconstruct the input data but also generate new samples by sam-
pling from the learned probability distributions in the latent representation and decoding
them using the decoder network.

The fundamental idea underlying VAEs is to approximate the input data distribution
(i.e. marginal likelihood) noted by Pθ(x). VAEs achieve this goal by maximize the evidence
lower bound (ELBO), which serves as the objective function during the training process
(1). The ELBO consists of two main components: the reconstruction loss, which measures
how well the VAE can reconstruct the input data, and the regularization term that en-
courages the latent space to adhere to a predefined prior distribution, often a multivariate
Gaussian distribution. By maximizing the ELBO, VAEs achieve a delicate balance between
accurately reconstructing the input data and regularizing the latent space to follow the
prior distribution.

log Pθ(x) ≥ L(θ, φ; x) = EQφ(z|x)
[
− log Qφ(z | x) + log Pθ(x, z)

]
(1)

Equation (1) can be re-written as equation below with the ELBO loss on left. Right hand
side of the equation presents the regularization term, called Kullback-Leibler divergence,
and reconstruction term.

L(θ, φ; x) = −DKL
(
Qφ(z | x)‖Pθ(z)

)
+EQφ(z|x)[log Pθ(x | z)] (2)

DKL
(
Qφ(z | x)|Pθ(z)

)
term represents the Kullback-Leibler (KL) divergence between

the posterior distribution Qφ(z | x) and the prior distribution Pθ(z). It measures the
discrepancy or difference between these two distributions. EQφ(z|x)[log Pθ(x | z)] represents
the expected log-likelihood of the reconstruction, where x is the input data and z is a latent
variable sampled from the posterior distribution Qφ(z | x). It measures how well the VAE
can reconstruct the input data given a sampled latent variable.

This regularization process encourages the latent space of the VAE to capture mean-
ingful and continuous representations of the data. It facilitates various tasks, including
data generation and interpolation, by ensuring that similar input data points are mapped
to nearby regions in the latent space. As a result, VAEs provide a powerful framework for
learning complex data distributions and exploring the latent space in a probabilistic manner.

VAEs focus on unsupervised learning and aim to learn meaningful representations of
the input data by modeling the underlying probability distributions. Probabilistic U-Net
extends the variational capabilities of VAEs to supervised learning and create possibilities
to perform tasks such as segmentation in variational context.

2.2. Proposed Approach

Image segmentation is the process of identifying and isolating objects or features of
interest in input images. One of the commonly used techniques for the segmentation of
instances is the U-NET model, initially developed for biomedical image segmentation but
also applicable to other fields such as Earth sciences and space exploration. U-NET is a
deep convolutional neural network that performs image-to-image translation by taking
an image as input and generating a segmentation map as output. The model is trained
using supervised learning, which involves providing accurate segmented images to train
the network to map input images to their corresponding segmentations. Despite the
impressive performance of U-NET in image segmentation tasks, its deterministic nature
poses a limitation. The mapping from input images to output segmentation maps is fully
deterministic and fails to consider sources of uncertainty and stochasticity, which can lead
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to overfitting and poor generalization to new data. Moreover, the deterministic nature of U-
NET limits its ability to perform “what-if” analysis and provide probabilistic segmentations.

Kohl et al. [34] proposed a novel Probabilistic U-Net model for image segmentation
that combines the U-NET with a Conditional Variational Auto-Encoder (CVAE) [36,37]. The
CVAE framework allows the model to generate plausible hypotheses and explore “what-if”
scenarios. The architecture of the proposed model is depicted in Figure 1. Specifically,
the U-NET generates segmentations that are conditioned on the samples drawn from
the latent feature space of the VAE. This low-dimensional space captures the range of
possible segmentation variations and can be used to evaluate “what-if” scenarios during
the evaluation phase. By conditioning the segmentation generation on the latent space, the
model can produce multiple segmentation maps for a single input image, corresponding to
different regions of the latent feature space that are sampled. According to the authors, this
capability enables the model to “learn hypotheses that have a low probability and to predict them
with the corresponding frequency” (Kohl et al., 2018).

Figure 1. Graphical illustration of the proposed Probabilistic U-Net framework. The inputs are NDVI,
NDVI difference with long-term NDVI, and MODIS MCD43A4 channels for Land/Cloud/Aerosols.
(a) presents the training scheme where the prior network encodes inputs and the posterior network
encodes the inputs and target data together into multivariate Gaussian distributions. The samples
from the unified multivariate Gaussian distribution are concatenated with U-Net outputs to produce
stochastic events of target data. (b) demonstrates the inference scheme where samples are drawn
from the prior network.
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The output of the U-NET (the green block) and the drawn sample from latent space
(the blue block labeled as z) are concatenated and passed to the red block F , which
generates the corresponding segmentation Si = F ( fU-NET(X, θ), zi; ψ), where Si represents
the segmentation corresponding to the latent space sample zi, and θ and ψ are the model
parameters of the U-NET model and the F , respectively. The model is trained using
two objectives, namely (1) generating accurate wildfire segmentation from the input data
and (2) generalizing well to unseen or rare scenarios. The model is enforced to meet the
first objective by minimizing the supervised cross-entropy loss between the generated
segmentation, S(X, z), and the ground truth, Y. The model generalizes its understanding
by minimizing the Kullback–Leibler divergence between the prior, P(z | X), and posterior,
Q(z | Y, X), distributions of the variables in the latent feature space. Thus, the total loss
function is a combination of the two losses as follows:

L(Y, X) =Ez∼Q(.|Y,X)

[
− log P(Y | S(X, z))

]
+

βKL
[
Q(x | Y, X)||P(z | X)

] (3)

The parameter β serves as a hyper-parameter that governs the extent to which the
KL-divergence term, also known as the regularization term, influences the model’s output.
The model (illustrated in detail in Figure 2) is trained end-to-end Hyper-parameter opti-
mization was performed using logarithmic scaling from 10−6 to 10−3 and the optimum
value for β is 0.0001.

2.3. Baseline Methods

To compare the performance of our proposed approach and evaluate its capabilities
in generating consistent and contextual information, we developed two baseline methods
with the similar stochastic nature. These baseline models are similar to the proposed
model in capturing distributions over multi-modal segmentation. The introduced models
are designed to accommodate the similarity in network architecture and to investigate
the nature of stochasticity. By developing these baselines, we were able to analyze the
effect of each stochasticity approach on (1) learning the underlying distribution of the
wildfires, and (2) the performance of the network architectures under similar conditions.
The baselines will shed light on the efficacy of the different stochasticity similar varieties of
U-Net.

2.3.1. U-Net with Dropout

Dropout in a U-Net architecture can perform as a special case of the delta rule in which
we introduce noise in the transmission of information [38] by randomly masking weights
of the network. Dropout is presented as an especial case of delta rule called stochastic
delta rule [39] in which each weight in the model is assigned as a random variable from a
Gaussian distribution with the mean µwij and standard deviation of σwij [38]. Dropout, as an
special case of stochastic delta rule, introduces a form of regularization that aids in escaping
poor local minima. By randomly deactivating a subset of neurons during each training
iteration, dropout prevents the network from relying too heavily on specific neurons or
features. This selective deactivation encourages the remaining neurons to compensate and
learn more robust representations, leading to a broader exploration of the weight space and
increasing the odds of finding the optimum solution [38]. Additionally, keeping the dropout
in the inference process will introduce stochasticity by generating results from a randomly
selected sub-network and will result in an approximation of posterior distribution [40].
Dropout obtains these advantages by removing hidden neurons according to a Bernoulli
distribution with a probability parameter p. The dropout probability of the baseline model
is set to be p = 0.3 meaning that at each pass of the network, only 70% of the neurons will
be activated via a random selection.
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Figure 2. Network Architecture of Probabilistic U-Net consisting of three main networks: U-Net (plus
a merge sub-network), prior network, and posterior network. The Convolution Blocks in the blue
hidden layers consist of three sub-blocks of 2D convolutional layers with the same size features and
kernel size and ReLU activation. The darker blue layers in U-Net represent the merger sub-network
where the samples from latent distribution are concatenated with U-Net output and flow through the
merger network to generate wildfire masks.

2.3.2. U-Net with Stochastic Activations

The concept of stochastic non-linear activations was first proposed by [41] to improve
models by resolving the degenerative behavior of deterministic activation functions. An-
other study by Shridhar et al., 2020 [42] introduced a probabilistic activation definition
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which makes the model behavior stochastic. The activation function, regardless of its type,
will gain stochasticity by introducing Gaussian noise to its value [42]. In this architecture,
instead of using a deterministic activation (e.g., ReLU), a Gaussian noise trick will apply
perturbation to the forward and backward processes Figure 3. The parameters of the Gaus-
sian perturbation can stay fixed or trained as a trainable parameter via backpropagation.
Obtained from several experiments, the optimum sigma is found to be 5.

Figure 3. Rectified Linear Activation (ReLU) and stochastic ReLU. σ represents the standard deviation
of the Gaussian noise.

2.4. Statistical Metrics

We have used multiple statistical metrics to evaluate the segmentation quality and
assign lower and higher bounds for multiple draws of the same events. In particular,
we used

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score =
2 TP

2 TP + FP + FN
(6)

Jaccard Index =
TP

TP + FP + FN
(7)

where TP, TN, FP, and FN are the true positive, true negative, false positive, and false
negative, respectively. Precision, Recall, and F1-score are popular metrics that provide
valuable Jaccard Index, also known as Intersect of Union (IoU), which is a good measure to
calculate the overlap of predicted and target wildfire segmentation. Due to the stochasticity
of each sample, we represented the statistics with lower and upper bounds of performance
for each metric.

3. Experiments

In this section, we present the segmentation performance of the proposed method
along with the two baselines, but first, we introduce the dataset used in this study and then
explain the statistical metrics used in comparisons.

3.1. Dataset

In this study, we focus on the discrepancies in the fire products of MODIS constellation
and VIIRS instruments onboard the joint NASA/NOAA Suomi National Polar-Orbiting



Remote Sens. 2023, 15, 2718 9 of 16

Partnership (Suomi NPP) and NOAA-20 satellites [43]. We aim to frame this problem to
(1) offer an alternative fire product to resolve the MODIS’ patchy and inconsistent segmenta-
tion, and (2) develop a distribution-over-event-based model to obtain epistemic uncertainty
quantification and run what-if scenarios on input variables. For this purpose, we have
collected MODIS MCD43A4, a daily product with 250 m spatial resolution, and collocated
VIIRS fire product, with a daily 375 m spatial resolution, as target data. We used the
Land/Cloud/Aerosol boundaries and properties channels with bandwidths of 620-670,
841–876, 459–479, 545–565, 1230–1250, 1628–1652, 2105–2155 nanometer (Table 1). We added
the Normalized Difference Vegetation Index (NDVI) as a reliable proxy for estimating the
fuel loads available for fires [44,45] using the following equation:

NDVI =
NIR− RED
NIR + RED

(8)

The NDVI ranges from −1 (not vegetation) to 1 (healthy vegetation) and is obtained
from near-infrared (841–876 nm) and red (620–670 nm) bands. Multiple alternatives to
NDVI have tried to address some of its issues using additional band [46,47]; however, due
to the less noise sensitivity of NDVI and wide application of NDVI in the literature [48–51],
NDVI has been considered to be the reference index for fuel-load analysis. Despite the
usefulness of NDVI, it cannot be useful directly for fire detection due to the location
dependency of NDVI values. For instance, NDVI values can be lower in arid zones
compared to subtropical regions, but still, wildfires happen in subtropical regions due
to abnormally low vegetation moisture. To tackle this issue, relative NDVI is calculated
by subtracting the NDVI of each day from the mean NDVI of the same location for the
whole period of study. This will give us a sense of abnormal vegetation conditions potent
for wildfires.

Table 1. List of data used as inputs in the model.

Input Bandwidth

Land/Cloud/Aerosols Boundary 620–670
841–876

Land/Cloud/Aerosols Properties

459–79
545–565

1230–1250
1628–1652
2105–2155

NDVI N/A

NDVI Derivation N/A

The target fire dataset is obtained from thermal anomalies/active fire products with
two fire-associated properties; brightness temperatures (in Kelvin), and fire radiative power
(in Megawatts) among others. The dataset is provided in individual point locations with
a spatial resolution of 375 m which is converted into gridded maps using the nearest
neighbor method.

The training, validation, and testing sets consist of patches of data described above
over wildfire events detected across the Continental United States. We shifted patches
randomly to generate augmented patches and prevent the artifact of always having wildfire
pixels in the center of the patch. The data were collected and patched for 2018 and filtered
to only keep events with more than 20 pixels of wildfire inside. We used a 60-20-20
percentage for training, validation, and testing to obtain the hyper-parameter values. Then
we retrained the models using training and validation sets and then evaluated the unbiased
estimate of the performance using the testing set.

To generate multiple inference segmentations from the same input data, we feed
the inputs to the U-NET model to obtain relevant spatial features. Simultaneously the
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inputs are fed into the prior network and obtain latent space samples (z in Figure 1b).
Combining the U-NET features with each sample z will provide a unique variation of
corresponding segmentation. Multiple samples drawn from prior networks will provide
multiple segmentations for that specific event.

3.2. Results

Throughout this section, we focus on evaluating the proposed Probabilistic U-Net
model and compare the performances to the two baseline models: Dropout U-Net and
Stochastic ReLU U-Net. We will first present a visual comparison benchmark for wildfire
detection and quantify the visual uncertainty, and then present a more comprehensive
performance using the metrics discussed in Section 3.3. Figure 4 consists of two independent
wildfire incidents that describe two different wildfire dynamics. Each incident ((a) and (b))
demonstrates the visual consistency of the Probabilistic U-Net and the two baselines by
drawing five random samples for a specific event. In Figure 4a, first five columns from left
for the first, second, and third rows present the samples from Dropout U-Net, Stochastic
ReLU U-Net, and Probabilistic U-Net models, respectively. Overall, all samples from all
models are consistent with the target segmentation (last row, far left column). It is noticed
that Dropout U-Net has less spatial coherency compared to the other two. Stochastic ReLU
U-Net detects consistent wildfire in the circular area but misses the bottom left region of fire.
The Probabilistic U-Net on the other hand shows a diverse range of detections capturing
both patches of circular and bottom left fires. Comparing the detected wildfires by all
models with NDVI indicates that all models understand the dynamics of vegetation and
wildfire, where fire spreads in the surrounding of low vegetation (burned area). The NDVI
deviation from the historical mean is very similar to the current NDVI in terms of burned
area shape and size meaning the NDVI has not significantly changed, but the region is still
experiencing wildfire activities. The far right column illustrates the spatial stochasticity of
each model from 1000 independent samples. The Dropout U-Net model demonstrates low
confidence in the bottom left region and left semi-circle of the circular region. Stochastic
ReLU U-Net is confident in its detections and does not anticipate any fire in the bottom left
region. The Probabilistic U-Net model produces a reasonable uncertainty map, covering
most of the observed region with high confidence; however, the model is uncertain about
the wildfire shape, specifically in the bottom left region.

Figure 4b demonstrates second independent incident where, similar to Figure 4a, the
first, second and third rows belong to Dropout U-Net, Stochastic U-Net and Probabilistic
U-Net, respectively. Performing similar to Figure 4a, all the segmentations are consistently
close to target mask (bottom row, left column). Dropout U-Net presents higher variability
compared to the other two models and result in higher uncertainty, especially in the wildfire
border areas. Stochastic U-Net detects a more consistent segmentation pattern with less
variability. It is noteworthy that Stochastic U-Net segmentations are undercomplete and do
not fully cover the target segmentation area. Probabilistic U-Net demonstrates coherent
patterns as target data, with uncertainty in the boundary of burning regions. The incident is
slightly different in dynamics compared to Figure 4 due to NDVI behavior. In this incident,
the NDVI deviation from historical mean is different, meaning the area is lossing vegetation
health quality due to the wildfire.

Figure 5 indicates the statistical performance of the three models over 1000 runs. We
present the model performances for the testing set (including 1500 non-overlapping wildfire
events) in box plots to incorporate the uncertainty level for each model. The precision
statistics show similar sentiment to the visual samples, where Dropout U-Net under-detects
the fire pixels (causing lower True Positives) with high variability, Stochastic ReLU U-Net
detects a significant area of wildfire with high confidence and Probabilistic U-Net that has
moderate detection capability with a similar range of Dropout U-Net variability. However,
the results shift in the recall, showing a higher range for Probabilistic U-Net compared to
the baselines. This stems from the lower FN values of this model, compared to the other
two baselines. As a result of this, the F1-score which is a harmonic mean of precision and
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recall shows higher performance for the proposed Probabilistic U-Net compared to the
baselines. Lastly, the Jaccard index or IOU indicates higher agreement between the target
segmentations and the Probabilistic U-Net segmentation variants. Stochastic ReLU U-Net
is the second-best model with low variability, and the lowest IOU belongs to the Dropout
U-Net model.

Figure 4. The figure demonstrates two independent wildfire incidents (subplot (a,b)) consisting
of 5 drawn samples (first 5 columns) from the proposed Prob. U-Net (first row) and the baseline
models (second and third rows) along with spatial uncertainty quantification for the same event
using 1000 runs (last column). The last row, shows the target segmentation, corresponding NDVI,
and NDVI deviation from historical, from left to right, respectively.
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Figure 5. Statistical comparison between Probabilistic U-Net, Dropout U-Net, and Stochastic ReLU
U-Net over 1000 runs.

3.3. Discussion

Furthermore, we investigated the semantic variation of the models by changing the
dynamic of NDVI. In this experiment, we aimed to better understand the grasp of each
model in understanding the NDVI dynamics. The experiments continued to investigate the
physical comprehension of each model by changing NDVI and observing the changes in
wildfire segmentations. We follow the following reasonings: (1) an increase in NDVI will
not trigger wildfire (at least not as severe as before), (2) a spotty decrease in NDVI allows
the wildfire to spread toward lower NDVI (unhealthy vegetation) area, (3) a significant
decrease in NDVI in a region will not provide enough fuel for the fire to spread. We tested
these hypotheses on the sample data we had in Figure 6. In the first three rows, we have
the model detections from original NDVI values which are similar to the samples shown
in Figure 4. The second three rows demonstrate the model responses to an increase of
NDVI within and surrounding low NDVI area (burned region). Based on the results, we
see that Dropout and Probabilistic U-Nets will not detect a burning segment and Stochastic
ReLU U-Net will detect smaller segmentations. The third three rows investigate the idea of
sparsely lowering the vegetation in regions close to burning scars. The results show that
Dropout U-Net and Stochastic ReLU U-Nets will not capture the ignitions toward new
places, especially in the bottom left region. However, Probabilistic U-Net is understanding
spread reasoning and detecting segments in the bottom left area. Lastly, we show significant
NDVI reduction for a large area in the last three rows. The NDVI decrease mainly impacts
the bottom left region and spotty locations in the circular segment region. All models
are correctly ruling out the possibility of wildfire in the bottom left region. Dropout U-
Net has difficulty understanding the circular shape affected by spotty NDVI decreases.
Stochastic ReLU U-Net is persistently detecting the circular segment, but Probabilistic
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U-Net has slightly adjusted the circular segment according to the spotty changes. It is
noteworthy that the model hyperparameters (σ, β, and dropout rate for Stochastic ReLU,
Probabilistic, and Dropout U-Nets) are selected based on best precision and recall. It seems
that Stochastic ReLU U-Net performs better under lower variability and deteriorates under
higher σ values.

Figure 6. Empirical investigation of model comprehension from NDVI dynamics. The first three rows
are the Stochastic ReLU, Dropout, and Probabilistic U-Net without a change in NDVI. The second
three rows are the same order of models with greener NDVI within and in the surrounding of the
bottom leaving a burned scar. The third three rows reduce NDVI sparsely, especially in the bottom
left region. The last three rows present a significant decrease in NDVI in the vicinity of the bottom
left region and spotty locations close to the circular scar.
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4. Conclusions

In this study, we proposed a stochastic machine-learning approach that learns a latent
distribution of wildfire events in a supervised manner and addresses the uncertainty
quantification and inter-dataset discrepancies. We investigated the proposed method by
segmenting active wildfires using the seven bands from MODIS and two derivatives (NDVI
and historical deviation of NDVI) as inputs. The proposed model was compared with
two stochastic baseline machine-learning models called Dropout U-NET, a U-NET with
dropouts in training and test phases, and Stochastic ReLU U-NET, a U-NET with Stochastic
ReLU activations. It was discovered through the conducted experiments that Probabilistic
U-Net is more accurate and flexible compared to the other two models. The Stochastic
ReLU U-Net seems to perform more accurately with lower variability, and Dropout U-Net
is less accurate but demonstrates a wider range of variability. Additionally, we performed
a scenario-based experiment to analyze the impact of physical changes on the response of
the models. The probabilistic model showed a more comprehensive understanding of the
physical relationship between NDVI and wildfire. However, the other two baseline models
demonstrated partial alignment with the scenarios.
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