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Abstract: Extracting the peak value of the X-ray signal in the original magnetopause detection
method of soft X-ray imaging (SXI) for the SMILE satellite is problematic because of the unclear
interface of the magnetosphere system under low solar wind density and the short integration time.
Herein, we propose a segmentation algorithm for soft X-ray images based on depth learning, we
construct an SXI simulation dataset, and we segment the magnetospheric system by learning the
spatial structure characteristics of the magnetospheric system image. Then, we extract the maximum
position of the X-ray signal and calculate the spatial configuration of the magnetopause using the
tangent fitting approach. Under a uniform universe condition, we achieved a pixel accuracy of the
maximum position of the photon number detected by the network as high as 90.94% and contained
the position error of the sunset point of the 3D magnetopause below 0.2 RE. This result demonstrates
that the proposed method can detect the peak photon number of magnetospheric soft X-ray images
with low solar wind density. As such, its use improves the segmentation accuracy of magnetospheric
soft X-ray images and reduces the imaging time requirements of the input image.

Keywords: magnetopause detection; deep learning; image segmentation; DeepLabV3+; SMILE

1. Introduction

The Solar Wind Magnetosphere Ionosphere Link Explorer (SMILE) mission is a space
science satellite project jointly initiated by the Chinese Academy of Sciences and the
European Space Administration [1,2]. SMILE will, for the first time, achieve panoramic
real-time imaging of the Earth’s magnetopause and the aurora oval, observe the complete
chain of events driving space weather changes, and understand the driving factors of
space weather changes. This mission provides important scientific support for further
improving the physical understanding of the Earth’s magnetosphere and enhancing the
prediction capability of the space environment. A key scientific goal of the SMILE mission
is to detect the large-scale structure and fundamental modes of solar wind–magnetosphere
interactions, which relies on the detection of the magnetopause using soft X-ray imaging.

Magnetopause is the interface between the solar wind and the magnetosphere, which
separates the solar from the magnetospheric plasma and magnetic field [3,4]. Changes in
the position and shape of the magnetopause can reflect the influence of the upstream solar
wind conditions on Earth’s magnetic field. When the highly charged heavy ions (such as
C6+, O7+, O8+, Fe18+, and Mg12+) from the solar wind encounter ubiquitous neutral atoms
or molecules (such as H, H2O, OH) in the Earth’s space environment, the two collide and
interact, and the electrons are transferred from the neutral atoms and molecules to the
heavy ions. This process is known as the solar wind charge exchange (SWXC) process [5–9].
When heavy ions with high charge states from the solar wind decay to the ground state,
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the SWXC process will result in the emission of one or more photons in extreme ultraviolet
or soft X-ray bands, which will be detected by satellites [10–14]. The Soft X-ray Imager
(SXI) onboard SMILE is based on this imaging mechanism, which has a wide field of view
(FOV) and is expected to provide soft X-ray images of the large-scale magnetopause near
the subsolar region [15]. The satellite is expected to launch in 2025, and there are no real
data of the soft X-ray photon image of the observed magnetosphere system. However,
simulated images generated by the SXI simulation software are available. For example, Sun
(2019) [15] simulated the soft X-ray emissions from the Earth’s magnetosheath and cusp
regions under different solar wind conditions based on the PPMLR-MHD code. Samsonov
(2022) [16] used the two global MHD models, SWMF and LFM, and simulated artificial
and real events. This paper uses the same approach as Sun, using the simulation images
generated by PPMLR-MHD code and SXI simulation software [17].

To better understand the solar wind–magnetosphere interactions, the 3D position of
the magnetopause is required to be derived based on 2D image(s) of the magnetosphere.
At present, there are four main methods for tracing the 3D magnetopause structure from
2D images, and each method has its own application. The first method is the boundary
fitting approach (BFA) proposed by Jorgensen et al. (2019a, 2019b) [18,19]. This method
is based on the magnetohydrodynamic (MHD) simulation results assuming magne-
topause and bow shock with variable parameters and the distribution function of X-ray
emissivity. A series of simulation images was generated by adjusting the relevant
parameters. Then, the simulated image was compared with the observed image to
find the group with the highest matching degree, and the relevant parameters and
hypothesis functions of the magnetopause position were determined to obtain the 3D
structure of the magnetopause. The BFA can be used in the case of rapid changes in
solar wind conditions; however, the initial guess should be carefully chosen to avoid
false minima in the fitting procedure.

The second method is the tangential direction approach (TDA) proposed by Collier and
Connor (2018) [20]. By analyzing the global MHD results under low and high solar wind
fluxes, this method draws the conclusion that the peak of the X-ray intensity corresponds
to the tangential direction of the magnetopause. Based on this conclusion, the tangential
direction of the magnetopause is first extracted from an image, and then the tangent point
of the magnetopause is derived from the adjacent images under the same solar wind
conditions to reconstruct the three-dimensional magnetopause. Because adjacent images
must be detected under the same solar wind conditions, TDA can be applied to the case of
stable solar wind conditions.

The third method is the Computed Tomography Approach (CTA) proposed by Jor-
gensen et al. (2022). The CTA method observes the magnetosphere system from multiple
angles through satellites to obtain multi-angle observation images of the magnetosphere
system and finally reconstructs a three-dimensional configuration from a large amount of
two-dimensional imaging data. Its advantage is that it does not require the assumption
of a variable-parameter magnetopause shape such as TFA, but it requires that the solar
wind conditions remain constant. As it is difficult to maintain a stable solar wind condition
for a long time, the practical application of CTA will adopt a collection and classification
reconstruction method, which first obtains a large number of observation images, divides
them according to the solar wind conditions, and then reconstructs the images for each
solar wind condition.

The fourth method is the tangent fitting approach (TFA) proposed by Sun et al.
(2020) [21]. Similarly, based on the conclusion that the peak of the X-ray intensity cor-
responds to the tangent direction of the magnetopause, TFA only requires one X-ray image
to derive the 3D magnetopause position. Using a parametrized magnetopause model, a
series of magnetopause configurations was obtained. The tangent direction is calculated
for various possible configurations. The magnetopause configuration that best matches the
true tangent direction is determined, which is then used as the inversion result of the 3D
magnetopause. TFA requires fewer fitting parameters and assumes fewer conditions than
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BFA does. Previous studies based on the ideal MHD simulation of X-ray intensity images
and SXI simulation of photon counts images have verified the effectiveness of TFAs [22,23].
However, for the photon count image with a low solar wind density such as N = 5 cm−3,
owing to the weak signal strength, the imaging is greatly affected by noise. There will be
large errors while finding the tangent directions, which makes it impossible to derive the
magnetopause configuration [22].

To find the tangent direction, i.e., the peak photon number, in the SXI simulation image
under low solar wind density, this study converts the detection of the peak photon number
into the problem of image semantic segmentation and extracts the target pixel region by
learning the characteristics of the SXI simulation image.

Traditional semantic segmentation methods include the threshold segmentation, re-
gion growing, and edge segmentation methods. These segmentation methods apply to
images with obvious property differences between the target classes. They all need to be
segmented manually from the design features of the image’s gray level, contrast, texture,
and other information. They are significantly affected by noise, and their segmentation
accuracy and accuracy cannot meet expectations.

With the development of deep learning, semantic segmentation methods based on
deep learning have become capable of making full use of the semantic information of
images to extract features in a high-dimensional space, thereby improving their accuracy.
Using a convolutional neural network, computer equipment can efficiently process a large
amount of soft X-ray photon number data from the magnetospheric system. At present,
commonly used semantic segmentation based on deep learning includes the FCN [24],
U-Net [25], SegNet [26], PSPNet [27], Mobilenet [28,29], and DeepLab series. The DeepLab
series of semantic segmentation algorithms proposed by the Google team is widely used
in various image segmentation scenarios. In 2014, Chen et al. proposed DeepLab v1 [30]
to increase the receptive field based on VGG [31] using Atrous Convolution and Fully
Connected Conditional Random Field (CRF). In 2017, in DeepLab v2 [32], the Atrous
Spatial Pyramid Pooling (ASPP) module was proposed to achieve multi-scale feature
extraction. Subsequently, ASPP was further optimized in DeepLab v3 [33], including adding
1 × 1 convolution and BN operation to solve the problem of loss of image global field-of-
view information. After continuous optimization and improvement, DeepLabV3+ [34]
was proposed in 2018. It uses the encoder–decoder structure, with DeepLab v3 as the
encoder, and fuses the shallow and deep semantic information in the decoder, improving
segmentation while focusing on the boundary information. DeepLabV3+ is widely used
in CT semantic segmentation in the medical field, with good detection results [35–37].
However, through previous experiments, we found that DeepLabV3+ struggles to extract
the peak positions of photon counts under low solar wind density conditions and may also
miss detections under general conditions.

Considering that the magnetopause interface is unclear in soft X-ray imaging and,
thereby, difficult to extract effectively under low solar wind density, this paper proposes an
image segmentation network based on deep learning by learning the spatial structure char-
acteristics of the magnetosphere image, segmenting the magnetopause system, extracting
the position of the maximum value of the number of photons in the tangent direction, and
then deriving the spatial position of magnetopause through TFA. DeepLabV3+ was used
as the basic structure of the image segmentation network. In the encode phase, feature
extraction is first performed through the MobileNetV2 backbone network and then the
network localization capability is enhanced by the spatial attention module. The feature
map extracted from the last layer of the backbone network is sent to the multi-branch
feature fusion module for deep feature extraction. The shallow feature map output
from the middle layer of the backbone is sent to the decoder. In the decode stage, the
shallow feature maps are stacked with the high-level semantic features output by the
multi-branch feature fusion module. The size of the feature image is then gradually
restored through upsampling and other operations to complete the extraction of the
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maximum photon intensity of the magnetospheric system X-ray image and achieve the
detection of the magnetopause.

2. Materials and Methods
2.1. Data

The data used in this study were derived from the simulated X-ray image of the Earth’s
magnetosphere detected using a hypothetical telescope on a candidate orbit of SMILE. The
dataset was produced as follows. First, the global PPMLR (extended Lagrangian version of
the piecewise parabolic method) MHD (magnetohydrodynamic) simulation program [38]
was used to build a 3D model of the X-ray intensity of the solar wind magnetosphere
system. In all of the experimental data in this paper, assuming that the solar wind speed,
thermal pressure, and IMF conditions are constant, Vx = 400 km s−1, P = 0.0125 nPa,
Bz = −5 nT, with a satellite position at (5.33, 0.93, 18.93) RE and SXI aiming point (8.5, 0, 0)
RE. Varying the solar wind density, a 2D integral map of X-ray intensity under different
solar wind densities can be obtained. SXI simulation software was used to generate the
photon count map. Finally, the maximum of SXI photons from the MHD 2D integral map
was selected as the label under the same conditions, and the simulation dataset of the
magnetospheric system was constructed.

2.1.1. MHD Simulation

X-ray intensity (IX) is related to the solar wind flux [39,40]. For the specified line of
sight (LOS), the X-ray intensity of coronal SWCX radiation can be obtained by integrating
the three-dimensional X-ray emissivity (PX) along the direction of the field of view [41], as
shown in Formula (1):

IX =
1

4π

∫
PXdr =

1
4π

∫
αXnHnsw

√
u2

sw + u2
thdr (1)

where αX is the efficiency factor related to the ion species of the emission line.
Cravens et al. (2001) simulated the current average solar wind speed of 400 km/s and

energy band of around 100 eV to 1 keV, αX approximation as 1.0 × 10−15 eVcm2 [42]; nH is
the density of the number of particles in the exospheric hydrogen, which can be expressed
as nH = n0 (10RE/R) 3 cm−3, where n0 = 25 [42], nsw is the solar wind proton number
density, usw is the solar wind speed, uth is the particle thermal speed, and the unit of X-ray
intensity is keVs−1cm−2sr−1. The three parameters nsw, usw, and uth are calculated using
the PPMLR-MHD model [43].

In the field of view, r is integrated from the observation point to 80 RE (RE = 6371 km;
the emission beyond 80 RE is negligible) [43,44] to obtain the two-dimensional X-ray
intensity in the field of view and a 2D X-ray image. The horizontal and vertical coordinates
of the 2D X-ray images in this study are θ and ϕ, respectively. θ and ϕ are the angles in
the field-of-view coordinates. The θ angles range from −8◦ to 8◦, with an accuracy of 0.1◦.
ϕ angles range from −13.5◦ to 13.5◦, with an accuracy of 0.1◦. Figure 1 shows 2D MHD
integral diagrams with solar wind densities of N = 5 cm−3, N = 12 cm−3, N = 20 cm−3,
N = 30 cm−3, and the subsolar point distances (r0) of the magnetopause are: 10.1RE, 9.1RE,
8.2RE, and 7.4RE, respectively.
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Figure 1. MHD 2D integral diagrams: (a) N = 5 cm−3 ; (b) N = 12 cm−3 ; (c) N = 20 cm−3 ;
(d) N = 30 cm−3.

2.1.2. SXI Simulation

The SXI field of view is 16◦ × 27◦, every 0.5◦ in the horizontal and vertical directions,
each image is from 271 × 161 point groups, a total of 271 × 161 MHD intensity values, and
each intensity value represents the X-ray intensity of a grid of 0.5◦ × 0.5◦.

In the simulation, each data point can be input as a point light source, and the amount
of light emitted by each point light source N is proportional to the X-ray intensity value
under the MHD simulation. The specific value can be calculated by:

N =
Ipoint·Spoint·T·Ω

E0
(2)

where Ipoint is the intensity of the corresponding grid point, Spoint is the area of the grid
point, T is the integration time simulated by the SXI instrument (integration time), E0 is the
energy of each light, and the average energy of the X-rays is 0.5 keV. Ω is the solid angle
that covers the geometric light-set area of the point light source.

Using MHD simulation, the 2D X-ray intensity image of the magnetosheath was
obtained, and it was used as the input light source of the SXI. Through the upper SXI
simulation, the corresponding photon number images were obtained, as shown in Figure 2.
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An SXI simulation image with an integration time of 60 s can be obtained by adding
any two SXI simulation images with an integration time of 30 s taken from the same
MHD input. Using a similar approach, SXI simulation images with integration times T of
120 s, 180 s, 240 s, and 300 s can be obtained. As shown in Figure 3, the first row shows
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four images with an integration time of 30 s. Solar wind density is N = 5 cm−3, N = 12 cm−3,
N = 20 cm−3, and N = 30 cm−3 from left to right, and the second row shows four images
with an integration time of 60 s obtained via the superposition of data with an integration
time of 30 s. The third row contains four images with an integration time of 120 s, which
are obtained via the superposition of data with an integration time of 60 s. The fourth
row shows four images with an integral time of 240 s superimposed on the data with an
integration time of 120 s.
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2.1.3. Noise Analysis

Two sources of noises were considered in the simulated images. One is instrument
noise, which is included in the SXI simulation software, and the other is the cosmic back-
ground noise. The average cosmic background X-ray intensity was considered to be
50 keVs−1cm−2sr−1 [22]. Ideal uniform cosmic background noise was obtained by adding
50 to the radiation intensity of each pixel of the MHD binary integral map. However,
for non-uniform cosmic background noise, owing to the varied changes in the cosmic
background X-ray intensity, this paper only studies the cosmic background noise that
has a Gaussian shape with an average of 0 keVs−1cm−2sr−1, the highest center position
intensity, and the range of decreasing edges. The MHD images and SXI simulation images
with uniform cosmic background noise and non-uniform cosmic background noise are
superimposed, as shown in Figure 4. The integration time for all SXI simulated images is
120 s, and the solar wind number density is N = 5 cm−3, N = 12 cm−3, N = 20 cm−3, and
N = 30 cm−3 from left to right.
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2.1.4. Target Annotation

Because the X-ray radiation intensity is proportional to the photon counts [17], the
pixel with the maximum gray value in each row of the MHD 2D integral image constitutes
the X-ray radiation intensity maximum area, which is used as the label of the photon counts
maximum in the corresponding SXI simulation image.

Figure 5 shows the label for maximum photon counts at solar wind densities of
N = 5 cm−3, N = 12 cm−3, N = 20 cm−3, and N = 30 cm−3, respectively, in a uniform cosmic
context. From Equation (2), the integration time is proportional to the number of photons,
other conditions remain the same, and increasing the integration time also increases the
number of photons per position proportionally. Because the SXI simulation images with
the same solar wind density and different integration times are calculated from the MHD
images with the same solar wind density as the input, the integration time does not affect
the location of the maximum X-ray photon counts; therefore, the target annotation results
are the same for different integration times, as shown in Figure 5.
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the integration time, 100 sets of data were obtained for 30 s, 60 s, 120 s, and 240 s, respec-
tively, totaling 13,500 sets of data. According to the ratio of 8:1:1, it was randomly divided 
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2.2. Methodologies

We first constructed a simulation dataset of the solar wind–magnetosphere system
marked with the peak photon counts, and then we designed an image segmentation
network based on deep learning and imported the training set into the network for training.
Next, the position of the maximum SXI photon number was detected using the test set for
the trained network. Finally, the detection results were input into the TFA to calculate the
configuration of the magnetopause. The overall magnetopause detection process is shown
in Figure 6.
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2.2.1. Training Dataset

The training samples for the simulation of the magnetosphere system included three
cases: no cosmic background noise, uniform cosmic background noise, and non-uniform
cosmic background noise. The spacecraft viewing geometry remained unchanged, and the
solar wind density ranged from 5 cm−3 to 30 cm−3, including the pure background. At the
integration time, 100 sets of data were obtained for 30 s, 60 s, 120 s, and 240 s, respectively,
totaling 13,500 sets of data. According to the ratio of 8:1:1, it was randomly divided into
training, validation, and test sets. The data allocation is shown in Table 1. To ensure the
accuracy of detection, the input was the original mat data, and the image displayed in the
input and output of this study was a data visualization image.



Remote Sens. 2023, 15, 2771 10 of 23

To expand the data, the SXI simulation image was translated, and Gaussian noise
was added. Owing to the fixed orbit of the satellite and the limited angle of the image
taken, data enhancement processing methods, such as turning, rotating, scaling, length,
and width distortions, are not considered.

Table 1. Magnetospheric System Simulation Dataset.

Solar Wind
Density

Intergration
Time T = 30 s

Intergration
Time T = 60 s

Intergration
Time T = 120 s

Intergration
Time T = 240 s

5 100 200 100 100
6 100 200 100 100

. . . . . .

29 100 200 100 100
30 100 200 100 100

Pure
Background 100 200 100 100

2.2.2. Detection of the Photon Count Peak Position
Detection Network of the Photon Count Peak Position

We first used the DeeplabV3+ network to detect the position of the peak photon
number in the magnetospheric system of soft X-ray images.

The DeeplabV3+ network includes two stages: encoding and decoding. In the encode
phase, feature extraction is first performed through the Xception backbone network. The
feature maps extracted from the last layer of the backbone network are sent to the ASPP
module for deep feature extraction. The shallow feature map output from the middle
layer of the backbone network retains more original feature information and is sent to
the decoder. In the decoding stage, a shallow layer was introduced into the feature map
through a group of 1 × 1. The convolution is resized and then stacked with a high-level
semantic feature output by the ASPP module. After 3 × 3 convolution, the merged feature
image was again upsampled four times to output the segmentation result with the same
resolution as the original image.

However, in the Encode stage of the DeepLabv3+ semantic segmentation network,
the spatial dimension of the target feature map is gradually reduced during the model
training process, resulting in the loss of some target features, and detailed recovery cannot
be achieved in the decode stage.

We propose a semantic segmentation network model for the magnetospheric system of
soft X-ray images based on DeeplabV3+. The improved content includes the following: the
backbone network is replaced by the improved network of MobileNetv2, the CA attention
module is introduced [45], and ASPP is changed into a multi-branch feature fusion module,
introduces deformable convolution, and changes the dilation rate of Atrous Convolution.
The improved network structure is shown in Figure 7.

The backbone network was improved by MobileNetv2, including one conv-2D, seven
inverted-Rsblock modules, and one CA attention module. The inverted Rsblock module is
composed of three conv-2D, two ReLU, and one residual connection, as shown in Figure 8.
The size of the convolution kernel is 3 × 3, the padding is 1, and the step size is 1. First,
a 1 × 1 convolution is used to increase the dimension of the input feature map, and then
a 3 × 3 depthwise convolution is used to perform the convolution operation. Finally,
a 1 × 1 convolution operation is used to reduce its dimensions. Instead of using the ReLU
activation function, we used a linear activation function to retain more feature information
and ensure the expression ability of the model.
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The CA module aggregates features from two dimensions of height and width to
enhance the positioning of the maximum photon number in the Mobilenetv2 network,
obtaining high-level and low-level semantic features of the input feature map. Deep
semantic information (30 × 30 × 320) transmits to the feature fusion module, shallow
semantic information (128 × 128 × 24) with rich target edge feature information, which
is transmitted to the encode stage to retain more global information and is conducive to
improving the segmentation accuracy. The CA module structure is shown in Figure 9.
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The feature depth was extracted using a multi-branch feature fusion module. It
includes one 1× 1 convolution and three atrous convolutions with dilation rates of 4, 8, and
12, respectively, to obtain different receptive fields and capture multi-scale information. The
experiment shows that dilation rates of 4, 8, and 12 are more suitable for feature extraction
of the maximum value of the SXI photon number without changing the other conditions.
In the ASPP module of the DeepLabv3+ network, the atrous convolution method used in
the network increases the receptive field of the input feature map of the backbone network,
which is ideal for the extraction of large-size targets, but the extraction effect of small target
features such as the maximum photon intensity becomes worse. To improve the expression
ability of the model for small targets, in addition to adjusting the dilation rate, a deformable
convolution is also introduced to adjust the bias of the sampling position of the feature
map according to the current content of the feature map, such that the network is more
sensitive to the position of the peak photon number, and targets with small solar wind
density can be detected and segmented more accurately. Finally, a global average pooling
module is used to overcome the problem of effective weight reduction at long distances.
We then stacked the characteristic diagrams of each branch, as shown in Equations (3)–(9).
Subsequently, through a 1 × 1 convolution integration feature, we obtained a feature map
with a size of 32 × 32 × 256.

X1 = conv1× 1(x) (3)

X2 = conv3× 3_1(x) (4)

X3 = conv3× 3_2(x) (5)

X4 = conv3× 3_3(x) (6)

X4 = DeformConv(x) (7)

X5 = Global_feature(x) (8)

x = X1 + X2 + X3 + X4 + X5 (9)

where x is the input signal, X is the final output feature map of the multi-branch feature
fusion module, X1 is the characteristic diagram of the 1 × 1 convolution branch output,
X2 is the characteristic diagram of the atrous convolution branch output with a dilation
rate of 4, X3 is the characteristic diagram of the atrous convolution branch output with a
dilation rate of 8, X4 is the characteristic diagram of the atrous convolution branch output
with a dilation rate of 12, and conv3× 3_1(x), conv3× 3_2(x), and conv3× 3_3(x) represent
void convolution operations with void rates of 4, 8, and 12, respectively.
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Loss Function

The loss function uses the binary cross-entropy loss function, as shown in Equation
(10), where N is the number of samples, yi is tag 0 or 1, and pi is the predicted value.

Loss = −
N

∑
i=1

(yilgpi + (1− yi)lg(1− pi)) (10)

Model Training

The training process included two stages: freezing and thawing. During the freezing
stage, the backbone of the model was frozen, the feature extraction network did not change,
and the occupied video memory was small. Only the network was fine-tuned. The batch
size was eight, and the epoch was 50. In the unfreezing stage, the backbone of the model is
not frozen and the feature extraction network changes. The batch size was four, and the
total epoch was 100.

Accuracy Evaluation Metrics

In this study, the pixel accuracy (PA) was taken as the evaluation index, as shown
in (11).

Pixel Accuracy =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij

(11)

where k is the category, pii is the number of correctly predicted pixels, and pij is the total
number of pixels. The average pixel accuracy is used to calculate the proportion of the
number of correctly classified pixels of each class separately and then accumulated to
calculate the average.

2.2.3. Magnetopause Position Detection
TFA Calculation Model

In this study, the tangent fitting approach (TFA) was used to retrieve the 3D magne-
topause position from 2D images. The TFA flow is shown in Figure 10. Previous studies
have shown that the tangent to the magnetopause is at the maximum X-ray intensity [20]
or located between the maximum X-ray intensity gradient and the maximum emissivity,
probably closer to the maximum X-ray intensity gradient [23]. New research shows that
the maximum soft X-ray intensity gradient tends to be the tangent of the magnetopause’s
inner boundary, while the maximum soft X-ray intensity tends to be the tangent of the
magnetopause’s outer boundary [46]. This paper assumes that the location of the maximum
pixel point of X-ray intensity corresponds to the tangential direction of the magnetopause
in order to simplify the calculation.

Then, the magnetopause boundary model was constructed, and the expression of the
magnetopause boundary model in the solar magnetospheric coordinate system (GSM) was
as follows:

r(θ,φ) =
ry(θ)rz(θ)√

[rz(θ) cosφ]2 +
[
ry(θ) sinφ

]2 (12)

where θ is the angle between the r and x axes, and φ is the rotation angle between the y axis
and the projection of r in the y-z plane. The expressions for ry and rz are:

ry(θ) = r0

(
2

1 + cos θ

)αy

(13)

rz(θ) = r0

(
2

1 + cos θ

)αz

(14)

By changing the variable parameters r0, αy, and αz, we obtained a series of magne-
topause configurations, calculated the tangential directions of each possible configuration,
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and compared them with the tangential directions obtained from the X-ray image to find
the most matching set of parameters. Finally, the configuration of the 3D magnetopause
was obtained via inversion of the most matched set of parameters.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 24 
 

 

rሺθ, ϕሻ = r୷ሺθሻrሺθሻටሾrሺθሻcosϕሿଶ  ൣr୷ሺθሻsinϕ൧ଶ (12) 

where θ is the angle between the r and x axes, and ϕ is the rotation angle between the y 
axis and the projection of r in the y-z plane. The expressions for ry and rz are: r୷ሺθሻ = r ൬ 21  cosθ൰౯ (13) 

rሺθሻ = r ൬ 21  cosθ൰ (14) 

By changing the variable parameters r0, αy, and αz, we obtained a series of magneto-
pause configurations, calculated the tangential directions of each possible configuration, 
and compared them with the tangential directions obtained from the X-ray image to find 
the most matching set of parameters. Finally, the configuration of the 3D magnetopause 
was obtained via inversion of the most matched set of parameters. 

 
Figure 10. TFA flow chart. 

Accuracy Evaluation Metrics 
In this study, we use the position error ∆r of the subsolar point of the magneto-

pause as the evaluation index for magnetopause detection. 

 ∆r = |rᇱ െ r| (15)
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Accuracy Evaluation Metrics

In this study, we use the position error ∆r0 of the subsolar point of the magnetopause
as the evaluation index for magnetopause detection.

∆r0 =
∣∣r′0 − r0

∣∣ (15)

where r′0 is the position of the subsolar magnetopause calculated from the SXI image and r0
is the position of the subsolar magnetopause calculated from the MHD image.

3. Results
3.1. Detection of the Photon Count Peak Position

Figure 11 shows the detection results of the maximum photon counts of the SXI
simulation image with an integration time of 30 s under a uniform cosmic background
using the traditional method, the MHD, and our network. The maximum value of the
MHD intensity is the source of the data untag and can be used as a reference for “true
value”. The traditional method involves obtaining the maximum value for each row of the
SXI simulation image. The smaller the solar wind density, the more scattered the detection
results are. When the solar wind density N = 5 cm−3, the detection results spread all over
the entire image. The network detection results proposed in this study were concentrated
and fit well with the maximum value of the MHD radiation intensity.
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Figure 12 shows the detection efficiency of the network on three types of noise back-
ground with integration times of 30, 60, 120, and 240 s, respectively. The data without
background noise showed the lowest accuracy of 86.28% at the lowest integration time of
30 s and the highest accuracy of 94.44% at 240 s. Similarly, when testing data with uniform
and non-uniform cosmic background noise, the detection accuracy is lowest at the shortest
integration time and highest at the minimum integration time. The PA of SXI simulation
images with uniform cosmic background noise and integration times of 30, 60, 120, and
240 s was 78.87%, 92.3%, 95.31%, and 95.85%, respectively.
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Figure 13 shows the detection efficiency of the network on three noise backgrounds
with solar wind density 5 cm−3, 12 cm−3, 20 cm−3, and 30 cm−3. The data without
background noise showed the lowest accuracy of 92.8% at the lowest solar wind density
N = 5, and the highest accuracy at N = 30 at 95.47%. Similarly, the data of uniform cosmic
background noise have the lowest accuracy at the minimum solar wind density and the
highest accuracy at the maximum solar wind density. The PA of SXI simulation images
with uniform cosmic background noise and solar wind number density of 5 cm−3, 12 cm−3,
20 cm−3, and 30 cm−3 was 78.87%, 92.3%, 95.31%, and 95.85%, respectively.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 24 
 

 

 
Figure 12. Detection results of different integration times. 

 
Figure 13. Detection results of different solar wind densities. 

We also compared the detection efficiency before and after the network improvement 
and the detection result of the SXI image with uniform cosmic background noise. The PA 
increased from 56.9% to 90.94%. Compared with the original network deeplabv3+, the 
network proposed in this paper improves the deep feature extraction method of the target 
in the Encode stage and improves the detection ability of the network for the maximum 
photon intensity of the magnetospheric system with low solar wind density. 

3.2. Magnetopause Position Detection 
Taking the detection result of the maximum photon intensity of the magnetosphere 

system as the input to TFA, the calculation result of TFA is as shown in Figure 14. Using 
the calculation results of the MHD as a reference, the magnetopause configuration ob-
tained using the traditional method does not match the MHD calculation results at the 
solar wind density N = 5 cm−3 and N = 12 cm−3 for all the considered exposure time, and 
the magnetopause configuration is similar to the MHD when the solar wind density N = 

Figure 13. Detection results of different solar wind densities.

We also compared the detection efficiency before and after the network improvement
and the detection result of the SXI image with uniform cosmic background noise. The PA
increased from 56.9% to 90.94%. Compared with the original network deeplabv3+, the
network proposed in this paper improves the deep feature extraction method of the target
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in the Encode stage and improves the detection ability of the network for the maximum
photon intensity of the magnetospheric system with low solar wind density.

3.2. Magnetopause Position Detection

Taking the detection result of the maximum photon intensity of the magnetosphere
system as the input to TFA, the calculation result of TFA is as shown in Figure 14. Using the
calculation results of the MHD as a reference, the magnetopause configuration obtained
using the traditional method does not match the MHD calculation results at the solar
wind density N = 5 cm−3 and N = 12 cm−3 for all the considered exposure time, and
the magnetopause configuration is similar to the MHD when the solar wind density
N = 20 cm−3 and N = 30 cm−3 but there are certain errors with shorter exposure time. The
magnetopause configuration obtained using our method can be approximately the same as
that of the MHD, even when the solar wind density is N = 5 cm−3.
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4. Discussion

The proposed method is beneficial in SXI image detection with different integration
times and solar wind densities. The longer the integration time and the larger the solar
wind number density is, the better the detection efficiency of the photon number maximum
position will be. Because the network learns more spatial features and improves the
sensitivity to weak signals, the detection of shorter integration times and lower solar wind
number density is significantly improved compared with traditional methods. In fact, after
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processing, the final magnetopause configuration was close to the “truth”, and the position
error of the subsolar magnetopause was within the instrument error range. The specific
analysis is as follows.

4.1. SXI Images Detection for Different Integration Times

As shown in Figure 13, under the test set with different background noises, PA
increased as the integration time increased. When the integration time was 30 s, the
network had the best detection efficiency on the test set with no background noise, and the
PA reached 86.28%. When the integration time was 60, 120, and 240 s, the network had a
slightly higher detection efficiency on the test set with uniform noise than on the test set
with no background noise and the test set with non-uniform background noise. This is
because the signal strength is low when the integration time is short, the background noise
is equivalent to the target signal strength, and the background noise has a significant impact
on the detection performance. As the integration time increases, the target signal strength
increases and the influence of background noise decreases, so the detection efficiency of the
network on the three types of backgrounds is not different.

4.2. SXI Image Detection for Different Solar Wind Densities

It can be seen from Figure 13 that, for all kinds of background noise test sets, PA
increases with an increase in solar wind density. When the solar wind density is 5cm−3, the
network had the best detection efficiency on the test set with no background noise, with a
PA of 92.8%. When the solar wind density was 20 cm−3 and 30 cm−3, the network had a
slightly higher detection efficiency on the test set with uniform noise than on the test set
with no background and with nonuniform background noise. This is because solar wind
density is proportional to the target signal intensity. When the solar wind particle number
density is small, the X-ray radiation rate is not large enough, and the light source that can
be detected by the instrument is not strong enough, resulting in the amplification of the
impact of cosmic background and instrument noise on the results. With the increase in
the number density of solar wind particles and the increase in the X-ray radiation rate, the
instrument can detect more light sources and reduce the impact of noise, so the detection
efficiency of the network on the three types of background was not different.

4.3. Magnetopause Position Detection

Because the pixel size of SXI is approximately 0.5◦, it corresponds to a spatial accuracy
of approximately 0.2RE on a spatial scale [22]. The calculation results of TFA in 3.2 show
that the traditional method of detecting the position of the magnetopause is closer to the
‘true value’ with the increase in the integration time, but the noise effect is too large when
the solar wind density is small, and the increase in the integration time cannot completely
compensate for the noise of the film and television. When N = 5 cm−3, ∆r0 is always
greater than 1. The results of this research method, ∆r0, for different integration times
and different solar wind density ranges did not exceed the instrument error and met the
detection requirements.

5. Conclusions

We proposed a detection network of maximum photon counts in the magnetospheric
system based on deep learning, which was used to detect the pixel position of the maxi-
mum magnetospheric system photon intensity, and then obtained the magnetopause 3D
configuration through TFA calculation. Taking the MHD integral image and SXI simula-
tion image of the magnetosphere system as the data source, we extracted the position of
the maximum photon intensity pixel of the magnetosphere system under different solar
wind densities from the improved network of deeplabv3+ and obtained the position of
the magnetopause via TFA. Comparing the detection results of the SXI simulation image
with the traditional method, the results show that our model can detect the maximum pixel
position of photon intensity in the absence of cosmic background noise and the presence of
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cosmic background noise, especially in the magnetospheric system with low solar wind
density that the traditional method cannot achieve. The minimum exposure time required
for a single test is only 30 s, which is ten-times shorter than the traditional method. At the
same time, compared to the “true value” of the magnetopause configuration calculated
via TFA using the detection results as input, our method has a smaller error than that of
the traditional method. However, the real-time performance of our model requires further
improvement. Future work will focus on the comprehensive consideration of accuracy,
complexity, and reasoning speed, so that the model can consider high accuracy, light weight,
and effectiveness at the same time.
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