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Abstract: Yunnan Province, China, has complex topography and geomorphology, many ravines and
valleys, and frequent landslide geological disasters and is of great significance in the assessment of
regional landslide geological disasters in Yunnan Province for disaster prevention and mitigation. In
this study, Yunnan Province was selected as the research area, and the average annual deformation
rate of radar line-of-sight in Yunnan Province over four years from 2018 to 2021 was obtained with
SBAS-InSAR technology, which was used as one of the index factors for the susceptibility evaluation
of Yunnan Province. The deformation rate reflects the slow movement of the land surface. In addition,
elevation, slope, aspect, lithological classification, geological structure, rainfall, distance from roads,
distance from rivers, topographic undulation, and NDVI were selected as evaluation index factors
and combined with the annual mean deformation rate. A random forest model was used to evaluate
and accurately analyze landslide geological disasters in Yunnan Province. The results showed that
as an important index factor, the annual mean deformation rate of Yunnan Province can be added
to the random forest model to improve the prediction accuracy. The area with high susceptibility
accounted for 10% of the entire province, and the number of landslides in the region accounted
for 68% of the province. Additionally, the results for prone zoning were highly correlated with the
landslide distribution. The accuracy of the random forest model prediction was 0.80, and the AUC
value was 0.87, indicating that the random forest model was a highly accurate and reliable evaluation
method for studying landslide geological disasters. It is very suitable for the evaluation of landslide
susceptibility in Yunnan Province.

Keywords: SBAS-InSAR; random forest; Yunnan Province; susceptibility assessment

1. Introduction

China’s Yunnan Province has a complex environment, many ravines and valleys,
and large terrain fluctuations, leading to a high incidence of geological disasters in the
country. Landslide disasters are the most frequent geological disasters in the region and
occur frequently in Yunnan Province, representing a great threat to people’s lives and
property [1].

As one of the most common disasters in Yunnan Province, China, landslides have
been studied many times. Research on landslide susceptibility mainly focused on two as-
pects: landslide susceptibility evaluation systems and landslide susceptibility methods. At
present, landslide disaster susceptibility methods mainly include empirical models (fuzzy
logic, analytic hierarchy, etc.) [2,3], statistical models (information quantity, determinis-
tic coefficients, etc.) [4,5], and machine learning models (neural networks, decision trees,
support vector machines, etc.) [6,7]. Among them, when analyzing and predicting large
areas at the provincial and municipal levels, the accuracy and applicability of empirical
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models and statistical analysis models were found to be low. Machine learning models
have the problems of weak explanatory value and overfitting of prediction results. With
the rapid development of machine learning, the random forest model is now commonly
used by scholars because of its unique advantages. A random forest model can not only
meet the problem of nonlinear features of landslides adapted to other machine learning
models but also introduce randomness, avoid overfitting the model, and improve predic-
tion accuracy [8]. Many studies have proved that the random forest model has a good
prediction effect and applicability in the study of landslide geological hazard susceptibility
assessment [8—11]. Therefore, in this study, the random forest model was used to evaluate
the vulnerability of landslide geological disasters in Yunnan Province, China, and obtain
more accurate landslide susceptibility zoning in Yunnan Province.

Regarding the study of landslide susceptibility evaluation factors, in 2018,
Reichenbach et al. [12] found that 596 landslide susceptibility index factors were iden-
tified in the previous research literature. However, topography, landform, hydroclimate,
and other landslide development conditions are different in different study areas, so many
researchers select only some of these conditions as index factors for their research according
to the actual situation in the study area [13-15]. For example, in 2022, for the investigation
and zoning of geological disasters in Helong City, Wang X.D. et al. [16] selected 13 disaster
factors including elevation, slope, aspect, curvature, lithology, distance from faults, rainfall,
distance from water systems, NDVI, soil texture, hydraulic erosion, population density,
and distance from roads. They evaluated the vulnerability of the study area based on the
investigation and zoning of geological hazards combined with the distribution law and
influencing factors of geological disasters and comprehensively considered five factors:
topography, geology, meteor hydrology, soil vegetation, and human engineering activities.
However, the impact of land surface deformation information on landslide disasters is
rarely considered in the above index factors. The land surface deformation rate can reflect
the development stage of the landslide. The surface deformation rate can also detect hid-
den landslide dangers that cannot be found using optical remote sensing images and can
evaluate the vulnerability of landslides more comprehensively, so it is very useful to add
the annual mean deformation rate as an index factor to the vulnerability evaluation.

Minor surface deformation information will be observable before landslides occur,
and the land surface deformation information can be obtained with temporal InNSAR
(Interferometric Synthetic Aperture Radar) technology. INSAR technology has the ability
to obtain a large range of small deformation information and has a good monitoring
effect on the area undergoing deformation. This method has achieved many fruitful
applications in landslide monitoring [17-20]. InNSAR technology is not affected by weather
and has a wide coverage, which is very suitable for long-term observations and geological
disaster investigations over a large area [20]. Yunnan Province is an alpine and hilly area.
SBAS-InSAR (Small Baseline Subset-Interferometric Synthetic Aperture Radar) technology
uses a small baseline set to obtain the deformation rate, which can effectively avoid the
problem of temporal and spatial coherence, and it is an effective method to monitor the
surface deformation in mountainous areas. To date, few scholars have used annual mean
deformation rate results obtained with InNSAR technology as landslide susceptibility factors,
and no researchers have applied annual average deformation rate results as influencing
factors to random forest models for susceptibility evaluation studies. To fill these gaps, in
the present study, results for the annual mean deformation rate obtained using time-series
InSAR technology are introduced into a random forest model as the influencing factors to
evaluate the susceptibility of landslide geological disasters in Yunnan Province.

2. Methods
2.1. SBAS-InSAR Method and Deformation Result Acquisition
2.1.1. SBAS-InSAR Method

The SBAS-InSAR method, proposed by Berardino et al., divides SAR (Synthetic Aper-
ture Radar) images obtained in the same range that meet selected conditions into several
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small baseline sets by selecting short time and space baselines for differential interference
processing. The small spatial and temporal baselines in the SAR images from each small set
that meet the relevant conditions can improve the coherence of image pairs and increase
the number of differential interferograms. Then, we calculate the phase changes in each
baseline set using the least squares method to obtain the desired surface deformation
information. Since the SBAS method introduces multiple images as the main image in the
process of realizing differential interference, matrix B is more prone to rank loss. There-
fore, it is necessary to solve the minimum norm of the matrix with the SVD (Singular
Value Decomposition) method. Then, by differentiating the deformation velocity values
in different time periods, the shape variables generated in different time periods can be
obtained [21-24].

2.1.2. Deformation Result Acquisition

In this paper, SBAS-InSAR technology is used to obtain the annual average deforma-
tion rate results in Yunnan province, and the results are used as an index factor to evaluate
the susceptibility. Sentinel-1A ascending track data for four years, from January 2018
to December 2021, were reviewed and selected according to the regional size of Yunnan
Province. Sentinel-1A data is freely available. With a short period and C-band, it can obtain
small deformation results on a wide range of surfaces. Due to the large area of Yunnan
Province, the Sentinel-1A data contained four tracks, and the image data on each track
basically covered the area of Yunnan Province. Table 1 includes the number of tracks, the
number of images, and the number of baselines selected for data processing.

Table 1. Image data from Sentinel-1A in Yunnan Province.

Track Number Number of Images Interfere Pairs/Piece
26 120 237
99 116 229
128 121 239
172 117 231

The main process for Sentinel-1A data processing in Yunnan Province was as follows:
(1) The first scene image of each track is selected as the main image, and the other images
are used as auxiliary images. Baseline selection is carried out using the triangulation
locking method because there are a large number of images in each track. If selection is
carried out using the time and space baseline threshold, unsatisfied baselines need to be
eliminated for areas with poor coherence, which is very difficult to complete. Finally, M
image pairs are obtained for each track. (2) The auxiliary image on each track is registered
with the corresponding main image; that is, all the auxiliary image data are resampled to
the main image space, and then the M image pairs are interfered according to the baseline
map to obtain the required interference map. Next, an 8:2 multiple view ratio is used to
suppress the speckle noise from the interferogram and improve the pixel signal-to-noise
ratio. The terrain phase in Yunnan Province is simulated using the external SRTM (Shuttle
Radar Topography Mission) DEM (Digital Elevation Model) with a resolution of 30 m.
Different processing is carried out with the interferogram, and the obtained differential
interferogram is used to remove the terrain phase. A Gaussian filter is used to filter
the differential interferogram to further reduce the signal noise. After setting a certain
coherence threshold, the pixels whose coherence is higher than the threshold are selected
for phase disentanglement processing. (3) We select a control point with high coherence,
estimate the residual phase in the initial disentanglement phase according to the phase
information on the selected control point, and remove the residual terrain phase. (4) The
singular value decomposition method is used to transform the differential interference
results into the same reference target, and then high-pass filtering in the time domain and
low-pass filtering in the space domain are used to remove the influence of the atmosphere.
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From these processes, the final results for the annual average deformation rate for the
ascending orbit in Yunnan Province are obtained [21-24].

The results for the annual average deformation rate of the ascending orbit in Yunnan
Province are shown in Figure 1. Here, the positive and negative maximum annual average
deformation rates in Yunnan province are —25.6 and 19.0 cm/y, respectively.
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Figure 1. Classification of annual average deformation rate results in Yunnan Province.

According to the deformation rate results for Yunnan Province and the analysis of the
deformation rate for hidden landslide dangers, the deformation rate results are manually
divided into the following seven levels according to a certain level in the ArcGIS software:
—0.256~—0.050, —0.050~—0.010, —0.010~—0.005, —0.005~0.005, 0.005~0.010, 0.010~0.050,
and 0.050~0.180 m.

2.2. Random Forest Model
2.2.1. Random Forest Model Method

In 2001, Breiman built the random forest (RF) model by assembling many classified
trees [25]. The principle of the random forest model is to extract k samples from the total
sample as training samples. The number of decision trees to be trained is then determined
using the number of training samples drawn, thereby generating k decision trees to form a
random forest model. Each decision tree acts as a classifier to produce a classification result,
and the final classification prediction is made by voting [12]. For random forest models, the
number of training samples selected is generally two-thirds the total number of samples,
and the other one-third is used as test samples to test model performance. In recent years,
sufficient experimental and theoretical studies have verified that this model is superior to
other susceptibility evaluation models because the random forest model not only improves
the accuracy of prediction but also has good tolerance for errors such as noise; thus, RF is
the best susceptibility evaluation model that can be selected [13]. The prediction flow in
the random forest model is shown in Figure 2.
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Figure 2. Flowchart showing predictions under the random forest model.

2.2.2. Model Training

In this paper, the landslide interpretation and identification of Yunnan Province are car-
ried out using visual interpretation, and 1385 hidden landslide danger points with obvious
deformation characteristics are delineated. These points are used here as positive data sets,
and the same number of random points are randomly created with the ArcGIS software as
negative data sets. A total of 2770 points are used in the susceptibility assessment. Thirty
percent of the data for the entire sample is selected as the model training set, and the rest
of the data are selected as the model test sample. The training set for the random forest
model measures the fitting ability of the model, while the test set reflects the generalization
ability of the model. Thus, the performance of the model should be evaluated using both
the training set and the test set.

3. Study Area and Data Sources
3.1. Study Area

Yunnan Province is located in the hilly area of the Qinghai-Tibet Plateau, located
between 21°8/32"-29°15'8" northern latitude and 97°31'39”-106°11'47" eastern longitude.
The elevation gradually decreases from north to south, where the southeast region is
lower than the northwest region, and the highest point is distributed on the main peak
of Meili Snow Mountain. The province mainly contains basins, mountains, and plateaus,
of which basins occupy a minimal area, while mountains and plateaus account for 94%
of the area in the province, including canyons and deep mountains. Yunnan Province
features more ravines with a large height difference, and the terrain is more undulating
than that in other regions. Yunnan Province is located at the junction of the Eurasian plate
and the Indian plate, and the new and old structural geology is quite complex, mainly
based on faults. Fault zones are distributed throughout the province, providing essential
materials and energy for the development of geological disasters. River systems passing
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through the province mainly include the Nan Pan River, the Nu River, the Irrawaddy River,
the Red River, the Lancing River, and the Jinsha River. Most rivers are representative of
mountainous rivers, which are characterized by rapid water flow and large drops. The
rivers are mainly distributed along the valley such that the valley slopes on both sides are
steep, thereby providing the main breeding area for mountain disasters [1]. Figure 3 shows
the distribution map of historical landslide points in Yunnan Province.

25°0'N+

Distribution of landslides in Yunnan Province
20°0'Nd © Landslide points
Provincial boundary of Yunnan Province

100°0'E 105°0'E

Figure 3. Distribution map showing administrative boundaries and landslide hazard points in
Yunnan Province.

3.2. Data Sources

The occurrence of landslide disasters is closely related to topography, hydrometeo-
rology, human activities, and other factors and is affected by the external environment of
the landslide and the slope’s own conditions. Additionally, the formation mechanism is
complex [26]. On the basis of previous research [27,28], combined with the development
characteristics and geological environmental conditions of landslide geological disasters in
Yunnan Province, as well as the difficulty and operability of obtaining influencing factors,
the following influencing factors were selected for the risk assessment of landslide geolog-
ical disasters in Yunnan Province: slope, aspect, elevation, and topographic undulation
factors were selected from the topography and geomorphology; fault and lithology factors
were selected from the geological structure; river and rainfall factors were selected from
meteorological hydrology; the road factor was selected from human activity; the NDVI
factor was selected from the vegetation cover degree; and the annual average deformation
rate factor. An index system for evaluating the risk of landslide geological disasters in
Yunnan Province was then established. The landslide disaster data used in this paper are
composed of geological disaster data with obvious landslide signs on optical images, and
other index factor data sources are shown in Table 2.
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Table 2. Data sources.

Data Source Data Name Type Scales
DEM Raster 30 m
I Slope Raster 30 m
Geo-monitoring cloud platform Aspect Raster 30m
Rainfall Vector 1000 m
Road Vector 1:100,000
River Vector 1:100,000
Resource Science Data Center, Fault Vector 1:100,000
Chinese Academy of Sciences Lithology Vector 1:10,000
NDVI Raster 30m
Terrain undulation Raster 90 m
Optical image sketching Landslide disaster points Vector
Annual average deformation rate Sentinel-1 data

4. Indicator Factor Data Processing

This paper uses a variety of classification and grading methods to study the classifi-
cation and grading of index factors. According to the characteristics of the selected index
factors, such as elevation, slope, annual average rainfall, annual mean deformation rate,
and NDVI five factors, we used a manual method to divide the grades, making the land-
slide distribution more concentrated and reasonable. The aspect indicator was graded by
direction. For the fault, road, and river index factors, the GIS software buffer was used for
grading with a buffer step size of 400 m. We divided the different types of rocks according
to the qualitative division table of the hardness of the rocks [29]. According to the degree of
topographic undulation in the study area, the terrain undulation degree was also divided
into 7 common types.

4.1. Topography and Landform
4.1.1. DEM

Landslide disasters in Yunnan Province are affected by altitude and other factors, and
elevation is closely related to these factors. There are great differences in altitude among
various areas in Yunnan Province, and the difference between the north and the south
reaches 6000 m. Altitude affects the potential energy of the slope body, which indirectly
affects the disaster degree of the landslide. Therefore, elevation is regarded as one of the
most important evaluation factors in the process of landslide susceptibility evaluation [30].

The overall elevation of Yunnan Province shows that the northwest region is higher
than the southeast region. Here, the manual grading method was used to classify the 30 m
resolution NASA DEM, and the elevation was statistically analyzed according to five levels:
0-1000, 1000-2000, 2000-3000, 3000—4000, and 4000-6700 m. Table 3 shows the number and
proportion of landslides at all levels of elevation in Yunnan Province. Figure 4 shows the
distribution of landslides in Yunnan Province. As shown in Table 3, landslide disasters
mainly occur at elevations of less than 3000 m.

Table 3. The number and proportion of landslides distributed at each grade of elevation.

. Number of Landslide Proportion of Total
DEM Grading (m) Disasters Disasters (%)
0-1000 213 15
1000-2000 846 61
2000-3000 229 17
3000-4000 70 5

4000-6700 27 2
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Figure 4. Distribution of landslides based on the DEM in Yunnan Province.

4.1.2. Slope

Slope refers to the steepness of the slope body, which has a direct impact on the
stability of the slope body. When a landslide occurs, it requires a certain effective landing
surface, and there is also a large correlation between the slope and landing surface [31].

Using ArcGIS software to analyze the slope of DEM with a resolution of 30 m in
Yunnan Province, the slope distribution range in Yunnan Province was obtained. The
statistics found that the probability of landslides occurring on relatively gentle slopes less
than 10°, and greater than 50° was very low, so the slopes were divided into six intervals
based on a grade of 10°: <10°, 10-20°, 20-30°, 30-40°, 40-50°, and >50°. Table 4 shows the
number and proportion of landslides for all slope grades in Yunnan Province. Figure 5
shows the distribution of landslides in Yunnan Province. According to Table 4, landslides
mainly occur on slope bodies with slopes less than 50°.

Table 4. The number and proportion of landslides distributed under each grade of slope.

. o Number of Landslide Proportion of Total
Slope Grading (*) Disasters ]ID)isasters (%)
<10 69 5
10-20 282 21
20-30 438 32
3040 411 30
40-50 131 10

>50 23 2
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Figure 5. Distribution of landslides in Yunnan Province based on slope.

4.1.3. Aspect

Aspect is the basic element of terrain composition, and different aspects will cause
differences in sunshine, vegetation growth, surface water flow, and surface temperature.
This is indirectly related to the safety of the slope. Therefore, aspect is regarded as one of
the most important evaluation factors in the process of landslide susceptibility evaluation.

In this paper, ArcGIS software is used to analyze the aspects of the DEM in Yunnan
Province, with the aspects graded based on the direction to obtain the aspect distribution
range in Yunnan Province. The slope direction in the study area was divided into nine
grades: plane (—1), north (337.5-22.5), northeast (22.5-67.5), east (67.5-112.5), southeast
(112.5-157.5), south (157.5-202.5), southwest (202.5-247.5), west (247.5-292.5), and north-
west (292.5-337.5). Table 5 presents the number and proportion of landslides under each
grade of slope in Yunnan Province, while Figure 6 shows the distribution of landslides in
Yunnan Province. As shown in Table 5, landslides are not likely to occur on a flat surface,
and landslides are most commonly distributed in the southeast direction.

Table 5. The number and proportion of landslides distributed in each grade of aspect.

. o Number of Landslide Proportion of Total
Aspect Grading (°) Disasters ]gisasters (%)

-1 1 0
337.5-22.5 141 11
22.5-67.5 123 9
67.5-112.5 180 13
112.5-157.5 258 19
157.5-202.5 190 14
202.5-247.5 191 14
247.5-292.5 140 11

292.5-337.5 125 9
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Figure 6. Distribution of landslides in Yunnan Province based on aspect.

4.1.4. Terrain Undulation

Terrain undulation is the geomorphological characteristic of the difference between
the altitude of the highest point and the lowest point in a certain area. Terrain undulation
is related to the stress distribution and size inside the slope body, and as its value increases,
the stability of the slope becomes worse. Therefore, terrain undulation is regarded as one
of the evaluation factors in the process of landslide susceptibility evaluation.

According to the degree of terrain undulation, we divide the topographic undulations
of Yunnan Province into seven categories: plains, terraces, hills, small undulating moun-
tains, medium undulating mountains, large undulating mountains, and extremely large
undulating mountains. Topographic undulation can be used as an important reference
index for dividing geomorphological morphology. Table 6 presents the number and pro-
portion of landslides for each level of topographic undulation in Yunnan Province, and
Figure 7 shows the distribution of landslides in Yunnan Province. As shown in Table 6, the
number of landslides is high on medium undulating mountains.

Table 6. The number and proportion of landslides for each grade of terrain undulation.

. Number of Landslide Proportion of Total
NDVI Grading Disasters Disasters (%)

Plain 6 0

Mesa 10 1

Hilly 29 2

Small undulating mountains 210 15
Medium undulating mountains 709 52
Large undulating mountains 372 27
Extremely large undulating 36 3

mountains
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Figure 7. Distribution of landslides in Yunnan Province based on terrain undulation.

4.2. Geological Structure
4.2.1. Distance from the Fault

Faults have a direct impact on the regional characteristics of landslides. Faults affect
surface infiltration, internal structure, and the stress of rock and soil. Therefore, faults are
regarded as one of the evaluation factors in the process of landslide susceptibility evaluation.

In this study, we used the buffer analysis tool in ArcGIS software to buffer the data
according to a distance of 400 m, which was divided into seven grades: 0400, 400-800,
800-1200, 1200-1600, 1600-2000, 2000-2400, and more than 2400 m. However, the range of
Yunnan Province is very large, and most landslides are distributed at a distance greater
than 2400 m. Table 7 presents the distribution and proportion of landslides at each distance
from the fault in Yunnan Province, and Figure 8 shows the distribution of landslides in
Yunnan Province based on fault distances.

Table 7. The number and proportion of landslide distribution at each grade based on fault distance.

Distance from Fault Number of Landslide Proportion of Total
Classification (m) Disasters Disasters (%)

0-400 31 2
400-800 31 2
800-1200 33 2
1200-1600 39 3
1600-2000 22 2
2000-2400 26 2

>2400 1202

x
N
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Figure 8. Distribution of landslide distances from faults in Yunnan Province.

4.2.2. Lithological Classification

The hardness, type, structure, etc., of rocks all determine the stability and integrity
of the slope. Lithology plays a decisive role in the resistance of the slope to erosion,
weathering, and fragmentation. Therefore, lithology is regarded as one of the evaluation
factors in the process of landslide susceptibility evaluation.

Here, we divided the different types of rocks according to the qualitative division table
of the hardness of rocks [29]. The geological rock group was divided into ten categories:
harder rock sandwiching soft rock, harder rock, harder rock sandwiching softer rock, loose
hard rock sandwiching softer rock, hard rock, hard rock sandwiching soft rock, softer
rock, loose body, water body, and soft rock. Table 8 shows the number and proportion of
landslides for each grade of the annual lithology classification in Yunnan Province, and
Figure 9 shows the distribution of landslides based on the lithology classification of Yunnan
Province. Table 8 shows that harder rocks sandwiching softer rock are common in areas
with the greatest landslide distribution.

Table 8. The number and proportion of landslides for each grade of lithological classification.

. . e . Number of Landslide Proportion of Total
Lithological Classification Grading Disasters Disasters (%)
Harder rock sandwiching 232 17

soft rock
Harder rock 180 13
Harder rock sandwiching softer rock 360 26
Loose hard rock sandwiching softer rock 19 1
Hard rock 214 16
Hard rock sandwiching soft rock 158 12
Softer rock 27 2
Loose body 11 1
Water body 0 0

Soft rock 158 12
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Figure 9. Distribution of landslides in Yunnan Province based on lithological classification.

4.3. Meteorological Hydrology
4.3.1. Distance from Rivers

The river cutting depth and river erosion in Yunnan Province has a certain role in
promoting the formation of landslides. The erosion of the river can increase the effective
empty surface of the slope, which in turn reduces the stability of the rock and soil mass.
Therefore, rivers are regarded as one of the evaluation factors in the process of landslide
susceptibility evaluation.

Using the buffer analysis tool in ArcGIS software, the distance between the study area
and a river was buffered according to a distance of 400 m, which was divided into seven
grades: 0-400, 400-800, 800-1200, 1200-1600, 1600-2000, 2000-2400, and more than 2400 m.
However, the range of Yunnan Province is very large, and most landslides are distributed
at a distance greater than 2400 m. Table 9 presents the distribution and proportion of
landslides at each level of distance from rivers in Yunnan Province, and Figure 10 shows
the distribution of landslides in Yunnan Province based on river distances.

Table 9. The number and proportion of landslides distributed at each grade based on river distance.

Distance from River Number of Landslide Proportion of Total
Classification (m) Disasters Disasters (%)

0-400 94 4
400-800 63 3
800-1200 54 2
1200-1600 43 3
1600-2000 46 2
2000-2400 47 2
>2400 1037 86
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Figure 10. Distribution of landslide distances from rivers in Yunnan Province.

4.3.2. Average Annual Rainfall

An increase in rainfall increases the weight of a slope itself, weakens its shear resis-
tance, and is the trigger factor that causes rock and soil mass to lose balance. Therefore,
rainfall is regarded as one of the important evaluation factors in the process of landslide
susceptibility evaluation.

In this paper, the average annual rainfall in the study area was graded using the
manual grading method and divided into the following six levels: 1.3-2.0, 2.0-3.0, 3.0-4.0,
4.0-5.0, and >5.0 m. Table 8 presents the distribution and proportion of landslides for each
grade of average annual rainfall in Yunnan Province, and Figure 11 shows the distribution
of landslides in Yunnan Province. As shown in Table 10, landslides are mainly distributed
in areas with an average annual rainfall of 2-5 m.
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Figure 11. Distribution of landslides in Yunnan Province based on average annual rainfall.
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Table 10. The number and proportion of landslides for each grade of average annual rainfall.

Average Annual Rainfall Number of Landslide Proportion of Total
Grading (m) Disasters Disasters (%)
1.3-2.0 112 8
2.0-3.0 565 41
3.04.0 385 28
4.0-5.0 279 21
>5.0 29 2

4.4. Human Activity
Distance from Roads

The construction of a road directly affects the balance of a slope, destroys the stability of
the slope body, and makes the effective empty surface steeper. Therefore, roads are regarded
as one of the evaluation factors in the process of landslide susceptibility evaluation.

Using the buffer analysis tool in ArcGIS software, the roads in the study area were
analyzed according to a distance of 400 m, which was divided into seven grades: 0—400,
400-800, 800-1200, 1200-1600, 1600-2000, 2000-2400, and more than 2400 m. However, the
range of Yunnan Province is very large, and most landslides are distributed at a distance
greater than 2400 m. Table 11 presents the number and proportion of landslides at each
level of distance from roads in Yunnan Province, and Figure 12 shows the distribution of
landslides in Yunnan Province based on road distance.

Table 11. The number and proportion of landslide distribution at each grade based on road distance.

Distance from River Number of Landslide Proportion of Total
Classification (m) Disasters Disasters (%)

0-400 56 4
400-800 41 3
800-1200 29 2
1200-1600 26 3
1600-2000 22 2
2000-2400 25 2
>2400 1185 86

25°0'NH4

Distribution of landslides in road/m
20°0'N«4 - Landslide points £3400 - 800 E31600 - 2000
= 2400 3800 - 1200 ==2000 - 2400
=0 - 400 £31200 - 1600

100°0'E 105°0'E

Figure 12. Distribution of landslide distances from roads in Yunnan Province.
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4.5. The Degree of Vegetation Cover

The root system of vegetation is directly related to the ability of rock and soil to retain
water. The recharge and transpiration of vegetation groundwater play an important role in
affecting the shear resistance of slopes. Therefore, NDVI is regarded as one of the evaluation
factors in the process of landslide susceptibility evaluation.

According to the characteristics of vegetation cover, the NDVI in the study area was
divided into the following seven categories: —0.06-0.3, 0.3-0.4, 0.4-0.5, 0.5-0.6, 0.6-0.7,
0.7-0.8, and 0.8-0.9. Table 10 presents the number and proportion of landslides at each
grade of NDVI in Yunnan Province, and Figure 13 shows the distribution of landslides in
Yunnan Province based on the NDVI. As shown in Table 12, the main distribution range of
landslides is 0.5-0.8.

25°0'N+

0 50 100 200 Miles
I I I

Distribution of landslides in NDVI
20°0'N1 - Landslide points m30.3 - 0.450.5 - 0.6880.7 - 0.8
m-0.06 - 0.3 £30.4 - 0.58m0.6 - 0.7880.8 - 0.9

100°0'E 105°0'E

Figure 13. Distribution of landslides in Yunnan Province based on NDVI.

Table 12. The number and proportion of landslides for each grade of NDVL

Number of Landslide Proportion of Total
NDVI Grade Disasters Disasters (%)
—0.06-0.3 6 0
0.3-0.4 35 3
0.4-0.5 73 5
0.5-0.6 193 14
0.6-0.7 489 36
0.7-0.8 536 39
0.8-0.9 37 3

5. Results and Discussion
5.1. Model Parameter Settings and Accuracy Verification

In this paper, 70% of the training samples were used for model establishment and
training, and the accuracy in the remaining sample size classification results was veri-
fied. Compared to other prediction models, the random forest model has relatively few
parameters. In this article, we mainly adjusted the following parameters: n_estimators,
max_features, max_depth, min_samples_split, and min_samples_leaf. GridSearchCV was
used for searching, and the parameter setting process is shown in Table 13.
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Table 13. Model parameter adjustment.

Parameter Settings Mean Square Error Accuracy Area under Curve
Default parameters 0.23 0.77 0.85
n_estimators = 86, max_features = 3, max_depth = 10 0.20 0.80 0.87

n_estimators = 86, max_features = 2, max_depth = 10,

0.21 0.79 0.86

min_samples_split = 20, min_samples_leaf = 2

Table 13 shows that when only the grid search method is used to set the n_estimators,
max_features, and max_depth parameters, the accuracy indicators are better, so the following
article parameters are used: n_estimators = 86, max_features = 3, and max_depth = 10.

To validate the random forest model, this paper uses the out-of-bag score to verify
the model. Because data sampling uses put-back sampling, about 30% of the samples are
not selected. We sought to use the data that were not sampled (OOB) as a validation set to
verify the correctness of the training set. Here, the oob_score = 0.783, and the acc = 0.90 for
the training set, indicating that the random forest model offers good verification accuracy,
which is suitable for a vulnerability evaluation of the study area in this paper.

For the performance metrics of the random forest model, we select a confusion matrix
to evaluate the model performance and the MSE (mean square error), acc (accuracy), and
AUC (area under curve) indicators to determine the evaluation accuracy. The first two
parameters are based on statistical indicators used to measure the fit degree of the model
and the proportion of samples that are accurately classified, respectively. MSE as a statistical
parameter is the mean of the sum of squares for the corresponding point errors from the
predicted data and the original data and represents a good or bad degree of data fitting.
The value of MSE = 0.2 indicates that the model fits well. Accuracy is the simplest and most
intuitive evaluation index for classification problems and can reflect the correct proportion.
Here, the acc of the training set and the test set are 0.90 and 0.80, respectively, and accuracy
is 0.8 and over, indicating that the model is reasonable and accurate for the evaluation
of vulnerability in Yunnan Province. The AUC parameter represents the area under the
ROC (receiver operating characteristic) curve, which is calculated using the specificity and
sensitivity under a series of different assumptions. The ROC curve, which is the receiver
working characteristic curve, is an effective method to evaluate the effect of the binary
classification algorithm, reflecting the relationship between the predicted value and the
sample value. The AUC value is between 0.5 and 1, where the closer the AUC valueisto 1,
the higher the prediction accuracy of the model becomes. Here, the value of AUC = 0.87
indicates that the random forest model offers the best prediction accuracy for landslides
in Yunnan Province. The above three parameters are commonly used as representative
indicators. Figure 14 and Table 14 show the area under the ROC curve and the confusion
matrix, respectively. The test results indicate that the random forest model offers high
accuracy in the spatial prediction of landslide geological hazard susceptibility in Yunnan
Province, good prediction performance, and no overfitting problems.

Table 14. Confusion matrix.

True Value
RF Prediction Recall
Landslide Non-Landslide
Landslide 343 72 0.83
Non-landslide 95 321 0.77

Precision 0.78 0.82
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5.2. Susceptibility Assessment Results

In this paper, the random forest model was used to predict the spatial susceptibil-
ity of landslide disasters in the study area according to the characteristics of landslide
disasters and geological environment data in Yunnan Province. According to previous
research experience [32,33], we used the natural discontinuity method to divide landslide
susceptibility in Yunnan Province. The natural discontinuity method is a classification and
grading method in GIS software based on the principle of numerical statistics, which can
maximize the difference between each category. This method is often used to divide suscep-
tibility into the following five levels: low-susceptibility areas (0-0.162), lower-susceptibility
areas (0.162-0.32), medium-susceptibility areas (0.32-0.498), higher-susceptibility areas
(0.498-0.691), and high-susceptibility areas (0.691-0.984). The landslide susceptibility grade
and landslide susceptibility zone map for Yunnan Province are presented, respectively, in
Table 15 and Figure 15. The natural discontinuity point classification method can decrease
the number of landslides in low- and lower-susceptibility areas and increase the area. Here,
most of the landslides fall into higher- and high-susceptibility areas. The density of disaster
points corresponds to the ratio of the number of disaster points in each interval to the area
of the interval. The density method can intuitively reflect the difference in the number
and area of landslides based on the vulnerability level of the model. Based on statistical
data, with an increase in susceptibility within the prone zones divided by the model, the
density of landslide hazard points in each grade increases, and the density of landslide
hazard points in high-susceptibility areas reaches the maximum. The random forest model
is densely distributed in areas with high susceptibility. Ultimately, the model results are
more consistent with the actual distribution characteristics of disaster points and offer
higher accuracy.
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Table 15. Landslide susceptibility zoning table for Yunnan Province.

Hazard Points

Degrecorsuseuty  Nmerol | Popenionof, - Zoung, - Propotonal Py
Place/10,000 km'
Low-susceptibility areas 13 1 130,066 34 1
Lower-susceptibility areas 36 3 90,291 23 4
Medium-susceptibility areas 131 9 76,607 20 16
Higher-susceptibility areas 264 19 49,536 13 53
High-susceptibility areas 941 68 37,317 10 235
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Figure 15. Susceptibility map of Yunnan Province: (a) sensitivity probability and (b) landslide
susceptibility level.

It can be seen from the zoning map that the high- and higher-susceptibility areas of
landslide disasters are mainly distributed in linear clusters on both sides of the valley
and near mountainous areas, on both sides of rivers and both sides of roads, and in other
areas with large slope differences. The terrain in the high- and higher-susceptibility areas
is complex, with complex geomorphological conditions and longitudinal and horizontal
ravines. Additionally, the erosion capacity of the rivers is strong, and the vegetation
coverage is low, resulting in serious soil erosion. Steep river valleys also provide an
effective surface for landslide development. The moderate- and lower-susceptibility areas
of landslides are mainly distributed in areas of thick vegetation cover and valley-to-valley
junctions with a gentle regional transition. The low-susceptibility areas for landslides are
mainly located in the middle region of Yunnan Province, which belongs to the alpine plain.
Here, the slope is small, and the overall distribution is blocks. Additionally, the area is
large, which is not suitable for the development and occurrence of landslides and conforms
to the characteristics of landslide development.

5.3. Impact Factor Importance Analysis

The importance of landslide susceptibility factors covered in this paper is ranked
based on Gini impurity, as shown in Figure 16. It can be seen from Figure 16 that the
slope direction, lithology, slope, and annual mean deformation rate of the key variables
leading to landslide occurrence are the most important elements affecting the development
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of landslides. This result also shows that the annual mean deformation rate index factor
added in this paper has an important impact on the prediction of landslide susceptibility
and that the addition of this index factor can improve the prediction accuracy of landslide
susceptibility in Yunnan Province to a certain extent.
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Figure 16. Ranking of impact factor importance.

6. Conclusions

In this paper, the land surface deformation in the entire Yunnan Province was obtained
using SBAS-InSAR technology. The annual mean deformation rate was added as an index
factor to the landslide susceptibility evaluation study in Yunnan Province, and its impor-
tance as an index factor was explored. We found that the annual mean deformation rate
was the most important index factor in addition to aspect, lithology, and slope, indicating
that it had an important indicative effect on the evaluation of landslide susceptibility. Thus,
the addition of the annual mean deformation rate index factor improved the prediction
accuracy of landslide susceptibility in Yunnan Province to a certain extent.

When studying the application of the random forest model to landslide susceptibility
evaluation in Yunnan Province, we calculated MSE = 0.20, acc = 0.80, and AUC = 0.87. The
obtained landslide susceptibility results also coincided with the actual landslide distribu-
tion, which further demonstrates the reliability of the results in this paper. Therefore, the
landslide susceptibility evaluation results obtained in this paper can provide a basis for
disaster prevention and mitigation in Yunnan Province.

In the study area, the area proportion of the low- and lower-susceptibility areas
was 57%, and the landslide proportion was 4%. The area proportion of the higher- and
high-susceptibility areas was 23%, and the landslide proportion was 87%. The statistical
results showed that most of the landslide hazard points were located in higher- and high-
susceptibility areas, which is in line with the characteristics for the concentrated distribution
of hidden landslide dangers in high- and higher-susceptibility areas.
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