Mapping Insect-Proof Screened Citrus Orchards Using Sentinel-2 MSl Time-Series Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Sentinel-2
2.2.2. Landsat-8
2.2.3. SRTM
2.2.4. Land Cover Reference Data
2.3. Methods
2.3.1. Classification Feature Extraction
- (1)
- Conventional index features
- (2)
- Red-edge index features
- (3)
- Texture features
- (4)
- Topographic-temperature features
2.3.2. Random Forest
2.3.3. Feature Optimization
2.3.4. Accuracy Assessment
3. Results
3.1. Single Feature Group Optimization Analysis
3.2. Combinatorial Feature Optimization Analysis
3.3. Optimal Classification Maps of Citrus Orchards
4. Discussion
4.1. Recommendations for Classifying Citrus Orchards Based on Feature Optimization
4.2. Discussion of Different Citrus Orchard Recognition Methods
4.3. Importance and Application of Identify IPS
4.4. Limitations and Future Work
5. Conclusions
- (1)
- The reflectance of IPS-covered orchards in the visible band is significantly higher than that of uncovered orchards. Classification and extraction of different orchards in different regions are thus feasible when exploiting these spectral differences.
- (2)
- The seasonal spectral bands showed the most significant advantage in single feature classification after feature optimization, with an OA of 86%.
- (3)
- The combination of seasonal spectral bands + conventional spectral index + topographic–temperature factors showed the best performance of combined features. This combination can improve OA by 6% and increase the UA and PA of IPS by about 10% over single-feature approaches.
- (4)
- In 2021, the citrus orchard area in Xunwu County was 460 km2. Approximately 88 km2 of those citrus orchards are covered with IPS, accounting for 19% of the total.
- (5)
- The distribution of citrus planting areas in Xunwu County is predominantly concentrated in the central and northern hilly regions, with the density of IPS coverage being higher in the northern citrus orchards. The reason for this difference in distribution is likely due to a combination of topography and human activities.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAQ. Food and Agriculture Organization. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 13 February 2023).
- Bove, J.M. Huanglongbing: A destructive, newly-emerging, century-old disease of citrus. J. Plant Pathol. 2006, 88, 7–37. [Google Scholar]
- Xiong, M.Q.; Sun, R.H.; Chen, L.D. A global comparison of soil erosion associated with land use and climate type. Geoderma 2019, 343, 31–39. [Google Scholar]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Change Biol. 2002, 8, 345–360. [Google Scholar]
- Xu, H.; Qi, S.; Li, X.; Gao, C.; Wei, Y.; Liu, C. Monitoring three-decade dynamics of citrus planting in Southeastern China using dense Landsat records. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102518. [Google Scholar] [CrossRef]
- Ye, S.; Rogan, J.; Sangermano, F. Monitoring rubber plantation expansion using Landsat data time series and a Shapelet-based approach. ISPRS J. Photogramm. Remote Sens. 2018, 136, 134–143. [Google Scholar]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Sicre, C.M.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Li, H.; Hong, L. Spatio-temporal land use/land cover dynamics and its driving forces in the Mekong Basin using Landsat imageries from 1988 to 2017. Geocarto Int. 2022, 37, 14676–14698. [Google Scholar]
- Xu, H.; Liu, C.; Wang, J.; Qi, S. Study on Extraction of Citrus Orchard in Gannan Region Based on Google Earth Engine Platform. Geo. Inf. Sci. 2018, 20, 396–404. [Google Scholar]
- Morell-Monzó, S.; Estornell, J.; Sebastiá-Frasquet, M.-T. Comparison of Sentinel-2 and High-Resolution Imagery for Mapping Land Abandonment in Fragmented Areas. Remote Sens. 2020, 12, 2062. [Google Scholar]
- Silva, A.F.; Barbosa, A.P.; Zimback, C.R.L.; Landim, P.M.B. Geostatistics and remote sensing methods in the classification of images of areas cultivated with citrus. Eng. Agric. 2013, 33, 1245–1256. [Google Scholar] [CrossRef]
- Wang, S.; Chen, Y.L. The information extraction of Gannan citrus orchard based on the GF-1 remote sensing image. IOP Conf. Ser. Earth Environ. Sci. 2017, 57, 012001. [Google Scholar] [CrossRef]
- Morell-Monzó, S.; Sebastiá-Frasquet, M.-T.; Estornell, J. Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information. Remote Sens. 2021, 13, 681. [Google Scholar] [CrossRef]
- Reis, S.; Tasdemir, K. Identification of hazelnut fields using spectral and Gabor textural features. ISPRS J. Photogramm. Remote Sens. 2011, 66, 652–661. [Google Scholar] [CrossRef]
- Chang, N.-B.; Bai, K. Multisensor Data Fusion and Machine Learning for Environmental Remote Sensing; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Li, M.; Ma, L.; Blaschke, T.; Cheng, L.; Tiede, D. A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 87–98. [Google Scholar] [CrossRef]
- Lu, L.; Di, L.; Ye, Y. A Decision-Tree Classifier for Extracting Transparent Plastic-Mulched Landcover from Landsat-5 TM Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4548–4558. [Google Scholar] [CrossRef]
- Novelli, A.; Tarantino, E. Combining ad hoc spectral indices based on LANDSAT-8 OLI/TIRS sensor data for the detection of plastic cover vineyard. Remote Sens. Lett. 2015, 6, 933–941. [Google Scholar] [CrossRef]
- Zhao, G.X.; Li, J.; Li, T.; Yue, Y.D.; Warner, T. Utilizing landsat TM imagery to map greenhouses in Qingzhou, Shandong Province, China. Pedosphere 2004, 14, 363–369. [Google Scholar]
- Zhang, P.; Du, P.; Guo, S.; Zhang, W.; Tang, P.; Chen, J.; Zheng, H. A novel index for robust and large-scale mapping of plastic greenhouse from Sentinel-2 images. Remote Sens. Environ. 2022, 276, 113042. [Google Scholar] [CrossRef]
- Yang, D.; Chen, J.; Zhou, Y.; Chen, X.; Chen, X.; Cao, X. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index. ISPRS J. Photogramm. Remote Sens. 2017, 128, 47–60. [Google Scholar] [CrossRef]
- Perillo, A.C.; Kucharik, C.J.; Meehan, T.D.; Serbin, S.P.; Singh, A.; Townsend, P.A.; Whitney, K.S.; Gratton, C. Use of insect exclusion cages in soybean creates an altered microclimate and differential crop response. Agric. For. Meteorol. 2015, 208, 50–61. [Google Scholar] [CrossRef]
- Yang, G.; Guo, Z.; Ji, H.; Sheng, J.; Chen, L.; Zhao, Y. Application of insect-proof nets in pesticide-free rice creates an altered microclimate and differential agronomic performance. PeerJ 2018, 6, e6135. [Google Scholar] [CrossRef]
- Wu, L.; Sun, G.; Miao, Z.; Zhang, A.; Feng, H.; Hu, J.; Yang, Z.; Wang, W.; Chen, B.; Tang, Y. On subtropical remote sensing in China:Research status, key tasks and innovative development approaches. J. Remote Sens. 2022, 26, 1483–1503. [Google Scholar]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci. 2017, 5, 1–10. [Google Scholar] [CrossRef]
- Li, S.; Zhou, X.; Yin, J.; Xiao, J. Comprehensive Division of Navel Orange Planting Region in Xunwu County by Climatic, Soil and Landform Conditions. Acta Agric. Jiangxi 2007, 5, 40–43. [Google Scholar]
- Xunwu County Government. Xunwu County Government Information Disclosure Website. Available online: http://www.xunwu.gov.cn/xwxxxgk/zfxxgkzn/xxgk_tt.shtml (accessed on 20 May 2023).
- Ding, L.R.; Zhou, J.; Li, Z.L.; Ma, J.; Shi, C.X.; Sun, S.; Wang, Z.W. Reconstruction of Hourly All-Weather Land Surface Temperature by Integrating Reanalysis Data and Thermal Infrared Data From Geostationary Satellites (RTG). IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar]
- Dash, J.; Curran, P.J. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv. Space Res. 2007, 39, 100–104. [Google Scholar] [CrossRef]
- Navarro, G.; Caballero, I.; Silva, G.; Parra, P.-C.; Vazquez, A.; Caldeira, R. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 97–106. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar]
- Henebry, G.M.; Rieck, D.R. Applying principal components analysis to image time series: Effects on scene segmentation and spatial structure. Int. Geosci. Remote Sens. Symp. 1996, 1, 448–450. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Texture Features for Image Classification; IEEE: New York, NY, USA, 1975. [Google Scholar]
- Duguay-Tetzlaff, A.; Bento, V.A.; Goettsche, F.M.; Stoeckli, R.; Martins, J.P.A.; Trigo, I.; Olesen, F.; Bojanowski, J.S.; da Camara, C.; Kunz, H. Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties. Remote Sens. 2015, 7, 13139–13156. [Google Scholar]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.-M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Smith, A. Image segmentation scale parameter optimization and land cover classification using the Random Forest algorithm. J. Spat. Sci. 2010, 55, 69–79. [Google Scholar]
- Ma, Y.; Jiang, Q.; Meng, Z.; Li, Y.; Wang, D.; Liu, H. Classification of land use in farming area based on random forest algorithm. Trans. Chin. Soc. Agric. Mach. 2016, 47, 297–303. [Google Scholar]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Fan, D.; Wang, F.; Yang, D.; Lin, S.; Chen, X.; Lan, Y.; Deng, X. Citrus Huanglongbing Detection Based on Multi-Modal Feature Fusion Learning. Front. Plant Sci. 2021, 12, 809506. [Google Scholar]
- Valdés, R.A.; Ortiz, J.C.D.; Beache, M.B.; Cabello, J.A.; Chávez, E.C.; Pagaza, Y.R.; Fuentes, Y.M.O. A review of techniques for detecting Huanglongbing (greening) in citrus. Can. J. Microbiol. 2016, 62, 803–811. [Google Scholar] [CrossRef]
- Moriya, É.A.S.; Imai, N.N.; Tommaselli, A.M.G.; Berveglieri, A.; Honkavaara, E.; Soares, M.A.; Marino, M. Detecting citrus huanglongbing in brazilian orchards using hyperspectral aerial images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1881–1886. [Google Scholar] [CrossRef]
- Deng, X.; Zhu, Z.; Yang, J.; Zheng, Z.; Huang, Z.; Yin, X.; Wei, S.; Lan, Y. Detection of Citrus Huanglongbing Based on Multi-Input Neural Network Model of UAV Hyperspectral Remote Sensing. Remote Sens. 2020, 12, 2678. [Google Scholar] [CrossRef]
Season | Number of Images | Path/Row | Image Acquisition Date |
---|---|---|---|
Winter | 14 | T50RLP | 22 December 2020, 27 December 2020, 1 January 2021, 21 January 2021, 31 January 2021, 15 February 2021, 20 February 2021 |
T50RLN | 22 December 2020, 27 December 2020, 1 January 2021, 31 January 2021, 5 February 2021, 15 February 2021, 20 February 2021 | ||
Spring | 2 | T50RLP | 16 April 2020 |
T50RLN | 16 April 2020 | ||
3 | T50RLP | 17 March 2021 | |
T50RLN | 1 April 2021, 21 April 2021 | ||
Summer | 2 | T50RLP | 29 August 2020 |
T50RLN | 29 August 2020 | ||
5 | T50RLP | 25 July 2022, 30 July 2022, 24 August 2022 | |
T50RLN | 30 July 2022, 24 August 2022 | ||
Autumn | 6 | T50RLP | 18 September 2021, 28 September 2021, 3 October 2021, 27 November 2021 |
T50RLN | 12 November 2021, 27 November 2021 |
Season | Number of Images | Path/Row | Image Acquisition Date |
---|---|---|---|
Winter | 7 | 121,042 | 9 December 2019, 10 January 2020, 27 February 2020, |
121,043 | 9 December 2019, 25 December 2019, 10 January 2020, 27 February 2020 | ||
12 | 121,042 | 11 December 2020, 27 December 2020, 12 January 2021, 13 February 2021, 14 December 2021 | |
121,043 | 11 December 2020, 27 December 2020, 12 January 2021, 28 January 2021, 13 February 2021, 14 December 2021, 30 December 2021 | ||
Spring | 8 | 121,042 | 14 March 2020, 15 April 2020, 1 May2020, 17 May 2020 |
121,043 | 14 March 2020, 15 April 2020, 1 May2020, 17 May2020 | ||
6 | 121,042 | 1 March 2021, 17 March 2021, 2 April 2021 | |
121,043 | 1 March 2021, 17 March 2021, 2 April 2021 | ||
Summer | 7 | 121,042 | 4 July 2020, 20 July 2020, 5 August 2020, 21 August 2020 |
121,043 | 2 June 2020, 18 June 2020, 21 August 2020 | ||
7 | 121,042 | 23 July 2021, 8 August 2021, 24 August 2021 | |
121,043 | 5 June 2021, 23 July 2021, 8 August 2021, 24 August 2021 | ||
Autumn | 5 | 121,042 | 24 October 2020 |
121,043 | 6 September 2020, 22 September 2020, 24 October 2020, 25 November 2020 | ||
12 | 121,042 | 9 September 2021, 25 September 2021, 11 October 2021, 27 October 2021, 12 November 2021, 28 November 2021 | |
121,043 | 9 September 2021, 25 September 2021, 11 October 2021, 27 October 2021, 12 November 2021, 28 November 2021 |
Impervious | Forest | Water | Cropland | Citrus | Bush | Bare land | IPS | Total | |
---|---|---|---|---|---|---|---|---|---|
Number | 175 | 787 | 131 | 452 | 357 | 283 | 137 | 250 | 2572 |
Feature Type | Feature Name | Abbreviation | Formula | References |
---|---|---|---|---|
Spectral bands | Aerosols | B1 | ||
Blue | B2 | |||
Green | B3 | |||
Red | B4 | |||
Red-edge 1 | B5 | |||
Red-edge 2 | B6 | |||
Red-edge 3 | B7 | |||
NIR | B8 | |||
Water vapor | B9 | |||
SWIR1 | B11 | |||
SWIR2 | B12 | |||
Conventional spectral index | Normalized difference vegetation index | NDVI | [29] | |
Enhanced Vegetation Index | EVI | [30] | ||
Soil-adjusted vegetation index | SAVI | [31] | ||
Modified normalized difference water index | MNDWI | [32] | ||
Normalized difference moisture index | NDMI | [33] | ||
Plastic-mulched landcover index | PMLI | [17] | ||
Maximum NDVI composite | NDVImax | [5] | ||
Minimum NDVI composite | NDVImin | [5] | ||
Red-edge index | Chlorophyll Index Red-Edge | CIre | [34] | |
Normalized Difference red edge 1 | NDre1 | [34] | ||
Normalized Difference red edge 2 | NDre2 | [34] | ||
Meris terrestrial chlorophyll index | MTCI | [35] | ||
Normalized Difference Vegetation Index red-edge 1 narrow | NDVIre1 | [36,37] | ||
Normalized Difference Vegetation Index red-edge 1 narrow | NDVIre1 | [36,37] | ||
Normalized Difference Vegetation Index red-edge 1 narrow | NDVIre1 | [36,37] | ||
Textural features | Sum Average | SAVG | ||
Variance | VAR | |||
Inverse Difference Moment | IDM | |||
Contrast | CON | |||
Dissimilarity | DISS | |||
Entropy | ENT | |||
Angular Second Moment | ASM | |||
Correlation | CORR | |||
Topographic-temperature features | DEM | DEM | ||
SLOPE | SLOPE | |||
Aspect | Aspect | |||
Hill shade | Hillshade | |||
Land surface temperature | LST |
Feature Type | Band Name | Number of Bands |
---|---|---|
Spectral bands | B1_4, B12_2, B2_4, B12_1, B4_4, B11_4, B8_4, B12_4, B7_1, B7_4 | 10 |
Conventional spectral index | MNDWI_3, MNDWI_2, NDVI_MIN, MNDWI_1, NDVI_MAX, SAVI_4, NDMI_1, PMLI_4, NDVI_4, NDMI_4, PMLI_1 | 11 |
Red-edge index | MTCI_3, MTCI_2, NDVIRE2_2, NDRE1_4, NDRE2_4, MTCI_4, NDVIRE1_4, CIRE_4, NDVIRE1_2 | 9 |
Textural features | SAVG_2, SAVG_1, IDM_1, CON_1, CORR_2, CON_2, IDM_2, CORR_1, DISS_1, DISS_2, VAR_2, VAR_1, ASM_2, SAVG_3 | 14 |
Topographic-temperature features | Elevation, LST_4, LST_1, LST_2, LST_3, Aspect, Slope | 7 |
Combination Scheme | Number of Bands | Code |
---|---|---|
Spectral bands + Topographic-temperature | 17 | C1 |
Spectral bands + Red-edge index | 19 | C2 |
Spectral bands + Conventional spectral index | 21 | C3 |
Spectral bands + Texture | 24 | C4 |
Spectral bands + Red-edge index + Topographic-temperature | 26 | C5 |
Spectral bands + Conventional spectral index + Topographic-temperature | 28 | C6 |
Spectral bands +Conventional spectral index + Red-edge index | 30 | C7 |
Spectral bands + Topographic-temperature + Texture | 31 | C8 |
Spectral bands + Red-edge index + Texture | 33 | C9 |
Spectral bands + Conventional spectral index + Texture | 35 | C10 |
Spectral bands + Conventional spectral index + Red-edge index + Topographic-temperature | 37 | C11 |
Spectral bands + Red-edge index + Topographic-temperature + Texture | 40 | C12 |
Spectral bands + Conventional spectral index + Topographic-temperature + Texture | 42 | C13 |
Spectral bands + Conventional spectral index + Red-edge index + Texture | 44 | C14 |
Spectral bands + Conventional spectral index + Red-edge index + Topographic-temperature + Texture | 51 | C15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, G.; Zhang, L.; Luo, L.; Liu, G.; Chen, Z.; Xiong, S. Mapping Insect-Proof Screened Citrus Orchards Using Sentinel-2 MSl Time-Series Images. Remote Sens. 2023, 15, 2867. https://doi.org/10.3390/rs15112867
Yu G, Zhang L, Luo L, Liu G, Chen Z, Xiong S. Mapping Insect-Proof Screened Citrus Orchards Using Sentinel-2 MSl Time-Series Images. Remote Sensing. 2023; 15(11):2867. https://doi.org/10.3390/rs15112867
Chicago/Turabian StyleYu, Guobin, Li Zhang, Lingxia Luo, Guihua Liu, Zongyi Chen, and Shanshan Xiong. 2023. "Mapping Insect-Proof Screened Citrus Orchards Using Sentinel-2 MSl Time-Series Images" Remote Sensing 15, no. 11: 2867. https://doi.org/10.3390/rs15112867
APA StyleYu, G., Zhang, L., Luo, L., Liu, G., Chen, Z., & Xiong, S. (2023). Mapping Insect-Proof Screened Citrus Orchards Using Sentinel-2 MSl Time-Series Images. Remote Sensing, 15(11), 2867. https://doi.org/10.3390/rs15112867