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Abstract: Based on deep learning, various pan-sharpening models have achieved excellent results.
However, most of them adopt simple addition or concatenation operations to merge the information
of low spatial resolution multi-spectral (LRMS) images and panchromatic (PAN) images, which
may cause a loss of detailed information. To tackle this issue, inspired by capsule networks, we
propose a plug-and-play layer named modified dynamic routing layer (MDRL), which modifies
the information transmission mode of capsules to effectively fuse LRMS images and PAN images.
Concretely, the lower-level capsules are generated by applying transform operation to the features of
LRMS images and PAN images, which preserve the spatial location information. Then, the dynamic
routing algorithm is modified to adaptively select the lower-level capsules to generate the higher-level
capsule features to represent the fusion of LRMS images and PAN images, which can effectively avoid
the loss of detailed information. In addition, the previous addition and concatenation operations are
illustrated as special cases of our MDRL. Based on MIPSM with addition operations and DRPNN
with concatenation operations, two modified dynamic routing models named MDR–MIPSM and
MDR–DRPNN are further proposed for pan-sharpening. Extensive experimental results demonstrate
that the proposed method can achieve remarkable spectral and spatial quality.

Keywords: pan-sharpening; MDRL; MDR–MIPSM; MDR–DRPNN

1. Introduction

Due to its broad applications, remote sensing image processing has become an ac-
tive field in computer vision. Based on different application scenarios, there are many
representative research directions, such as hyperspectral image classification [1–9], esti-
mation of the number of endmembers [10,11], hyperspectral unmixing [12,13] and pan-
sharpening [14–16]. Pan-sharpening mainly fuses the information of LRMS images and
PAN images to obtain high spatial resolution multi-spectral (HRMS) images, which contain
the rich spectral information from LRMS images and the spatial details of PAN images.

In recent decades, numerous pan-sharpening algorithms have been proposed. These
methods could be roughly divided into two kinds: the traditional pan-sharpening ap-
proaches and deep learning approaches. There are three categories in traditional pan-
sharpening approaches, namely component substitute (CS) [17–19], multi-resolution anal-
ysis (MRA) [20–22] and variational optimization-based (VO) [23–25]. CS-based methods
replace the specific components of the LRMS images with the PAN images. Via a multi-
resolution analysis, the MRA-based methods try to inject the spatial details contained in the
PAN images. Different from them, VO-based methods take pan-sharpening as an inverse
problem and solve this problem by designing optimization algorithms.

With the flourish of deep learning [26–28], convolutional neural networks (CNNs) are
used for improving the performance of pan-sharpening methods. Representative pioneer-
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ing work is the pan-sharpening neural network (PNN) [29], which uses the concatenation
of LRMS and PAN images as input. Compared with traditional pan-sharpening approaches,
PNN only uses convolutional neural networks with a three-layer architecture to obtain
promising results. Due to the relatively shallow structure, PNN cannot effectively extract
representative information from LRMS images and PAN images. Thus, a growing number
of researchers are devoted to improve the architecture of PNN. For example, Wei et al. [30]
utilized residual learning to construct a deep model named deep residual pan-sharpening
neural network (DRPNN), which made full use of the nonlinearity of deep learning mod-
els. Yuan et al. [31] employed the multi-scale convolution and residual blocks, and then
proposed the multi-depth convolutional neural network (MSDCNN). Xiong et al. [32]
designed a loss function with no-reference and a four-layer convolutional neural network
for pan-sharpening. Guo et al. [33] proposed a dual spatial–spectral fusion network (DSSN)
that contained spatial fusion stream and spectral fusion stream.

Shao et al. [34] proposed a model named remote sensing image fusion neural networks
(RSIFNNs), which adopted two-branch networks to extract information from LRMS and
PAN images separately. In [35], Liu et al. combined a shallow–deep convolutional network
and a spectral discrimination-based detail injection model to design a novel multi-spectral
image pan-sharpening method (MIPSM), whose HRMS images contained more spectral
information. In addition, Vivone et al. [36] proposed a benchmarking framework, where
they constructed a reference dataset, standardized various image preprocessing steps and
introduced the quality assessment protocols in detail. In summary, this compelling work
defined a complete benchmark suite in the field of pan-sharpening.. Recently, many other
works [37–39] have emerged, boosting pan-sharpening performance.

Although various deep learning methods have obtained excellent results in pan-
sharpening task, they adopt simple addition or concatenation operations to merge the
information of HRMS images and PAN images, which may cause a loss of detailed infor-
mation. To be more specific, many deep learning models for pan-sharpening (e.g., PNN,
DRPNN and MSDCNN) directly concatenate LRMS images and PAN images in the channel
dimension as the input of the models. Due to there being only one channel in PAN images,
a concatenation operation merely treats the PAN image as one channel of LRMS images
equally, which does not take advantage of the spatial information in the PAN images.
Other methods (e.g., MIPSM) add LRMS images and PAN images to the deep feature space,
whose underlying assumption is that two kinds of images have the same importance. Thus,
these fusion strategies severely limit the expression ability of models. In summary, it is
urgent to explore a more effective information fusion module for the pan-sharpening task.

A dynamic routing algorithm is proposed by capsule networks [40–42] to fuse the in-
formation contained by capsules, which is the essence of the dynamic selection mechanism.
Inspired by capsule networks, we modify the information transmission mode of capsules to
construct a plug-and-play layer named modified dynamic routing layer (MDRL) to replace
the addition or concatenation operations. Specifically, different from the original capsule
networks, the lower-level capsules are generated by applying transform operation to the
features of LRMS images and PAN images, which preserve the spatial location information.
Then, the dynamic routing algorithm is modified to adaptively select the lower-level cap-
sules to generate the higher-level capsule features to represent the fusion of LRMS images
and PAN images, which can effectively avoid the loss of detailed information. In addi-
tion, the previous addition and concatenation operations are illustrated as special cases
of our MDRL. MIPSM and DRPNN are two typically pan-sharpening networks, whose
fusion strategy are addition and concatenation, respectively. To evaluate our proposed
approach, the original fusion strategy is replaced with MDRL for MIPSM and DRPNN,
and the new networks are named MDR–MIPSM and MDR–DRPNN. Our proposed models
have been evaluated on three benchmark datasets, i.e., Landsat8, QuickBird and GaoFen2.
The experimental results show that our model can achieve competitive performance, which
demonstrates the effectiveness of our models. In summary, the contributions of this work
are shown as follows:
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• To replace addition or concatenation operations in many deep learning models, we
modify the dynamic routing algorithm to construct a modified dynamic routing layer
(MDRL), where MDRL may be the first try to fuse LRMS images and PAN images
by modifying the information transmission mode of capsules for pan-sharpening.
In addition, the addition and concatenation operations are illustrated as special cases
of our MDRL.

• In MDRL, the spatial location information is preserved in our model based on the con-
volutional operator in transform operation and the vectorize operation. Furthermore,
the coupling coefficients are learned by the MDR algorithm, which make MDRL fuse
the information of PAN images and LRMS images more effectively than with a simple
concatenation or summation operation.

• Based on two baseline models (i.e., MIPSM and DRPNN), the proposed MDRL is
inserted into them to generate our two neural networks named MDR–MIPSM and
MDR–DRPNN. Quantitative experiments on three benchmark datasets demonstrate
the superiority of our method.

The rest of this paper is organized as follows: MDRL and its corresponding models
MDR–MIPSM and MDR–DRPNN are introduced in Section 2. Section 3 reports the experi-
mental results. Section 4 mainly discusses our model by ablation experiments. Section 5
concludes this paper.

2. Materials and Methods
2.1. Dynamic Routing Algorithm

A dynamic routing algorithm is proposed to transfer information between capsules
in adjacent layers of a capsule network [40,41]. Let us remark that the terminology “cap-
sule” refers to the feature which is ready for classification or other high-level vision tasks.
Capsules can be simply regarded as the feature maps. Let us assume ui is a vector with
m-dimension and it represents the output of the ith lower-level capsule. The “prediction
vector” ûj|i of the jth higher-level capsule can be defined as multiplying a weight matrix
Wij ∈ Rn×m by ui:

ûj|i = Wij × ui. (1)

Thus, ûj|i is a n-dimension vector, and the capsule network sums all prediction ûj|i
with weights cij to obtain the input of the jth higher-level capsule sj as follows:

sj =
M

∑
i=1

cijûj|i, (2)

cij =
exp(bij)

∑N
k=1 exp(bik)

, (3)

where cij is the coupling coefficient between the ith lower-level capsule and the jth higher-
level capsule, while M and N represent the number of lower-level capsules and higher-level
capsules, respectively. bij is the unnormalized coupling coefficient, which is iteratively
updated by the dynamic routing algorithm and initialized to zero.

Instead of a traditional activation function, capsule networks propose a non-linear
“squashing” function to handle sj for generating its corresponding output vj. The “squash-
ing” function is defined as

vj =
‖sj‖2

1 + ‖sj‖2

sj

‖sj‖
(4)

Then capsule networks calculate the agreement aij between vj and its prediction vector
ûj|i as follows:
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aij = vj × ûj|i (5)

Last, coupling coefficients bij can be updated by adding aij. Supposing that there
are r iterations, the final coupling coefficients bij are fixed after r iterations. Now the
outputs of higher-level capsules can be calculated by Equation (4). It is revealed that
dynamic routing is an algorithm used for automatically modeling relationships between
low-level and high-level capsules, where the coupling coefficient stands for which low-level
capsule contributes more to the high-level capsule. As a matter of fact, this procedure
can be applied to the fusion of information from LRMS and PAN images. That is to say,
LRMS and PAN images are viewed as low-level capsules, while the fused image is the
high-level capsule. In this manner, the dynamic routing algorithm can be viewed as a
fusion strategy that automatically selects important features to reconstruct an HRMS image,
where the importance is measured by the coupling coefficient. It is worth noting that
coupling coefficients are determined by input data, which means that they can vary with
the different samples. Thus, in the test stage, MDRL can perform better than the simple
fusion strategy (e.g., addition or concatenation). Based on the original dynamic routing
algorithm proposed in [40,41] designed for image classification, we modify it to make it
compatible with pan-sharpening.

2.2. MDRL and MDRCNN

Here, for fusing the features of LRMS images and PAN images, a modified dynamic
routing (MDR) algorithm and a modified dynamic routing layer (MDRL) are first in-
troduced. Then, a deep model named modified dynamic routing CNN (MDRCNN) is
proposed, based on MDRL.

For convenience, some notations should be summarized first. An LRMS image is
denoted as L ∈ Rh×w×B, where h, w and B are the height, width and band number,
respectively. A similar notation is applied to a PAN image P ∈ RH×W×b. Thus, the size
of our target HRMS image is H ∈ RH×W×B. In addition, the convolutional operator
Conv(X, cin, cout) is defined, where X, cin and cout represent the input feature, the number
of input channels and the number of output channels, respectively.

Modifying the dynamic routing, MDRL is constructed for fusing the LRMS images
and PAN images. The proposed MDRL consists of two parts: transform operation and
modified dynamic routing (MDR) algorithm. Using the transform operation, we obtain
the “prediction vector” of higher-level capsules. Then, MDR is proposed to obtain the
representation of higher-level capsules which contains the information of LRMS images
and PAN images.

(1) Transform operation: First, the input patch of LRMS images Lp and the input patch
of PAN images Pp in the same area are taken as two lower-level capsules. Furthermore,
suppose the size of Lp is h1×w1× B and the size of Pp is h2×w2× b. Then, the up-sampling
is used to handle Lp to generate Lu with the same spatial resolution of Pp (i.e., h2 ×w2 × B).
Different from using multilayer perception in capsule networks, the convolutional operator
in transform operation is adopted to use fewer parameters. Therefore, the prediction vector
ûj|i ∈ Rh2×w2×cout

can be expressed as

ûj|1 = Conv(Lu, B, cout), ûj|2 = Conv(Pp, b, cout), (6)

where b is one, which means PAN images have only one band, and cout is usually set as
B + b (i.e., cout = B + 1). In other words, ûj|1 and ûj|2 are the feature maps of LRMS and
PAN images, respectively. Last, for compatibility with MDR, ûj|1 and ûj|2 are vectorized

to obtain two new prediction vectors ûc
j|1 ∈ Rh2w2cout×1 and ûc

j|2 ∈ Rh2w2cout×1 as the input
of MDR.

(2) Modified dynamic routing (MDR) algorithm: The dynamic routing algorithm is
used to transfer information between capsules in adjacent layers in the original capsule
network. However, the capsule network with the original dynamic routing algorithm
mainly handles the image classification, and it is not easy to apply image fusion. Thus, the
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dynamic routing algorithm needs to be modified to fit the pan-sharpening. Our modified
dynamic routing algorithm has four major differences, compared to the dynamic routing
algorithm in the capsule network. First, we delete the exponential function in Equation (3)
due to the significant difference of ûj|i · sj. In other words, if two values differ greatly, then
an exponential function will further amplify the difference, which is very easy to cause
bij to be either 1 or 0. This evidently stands on the opposite of fusing the information of
LRMS images and PAN images. Second, a lower-level capsule is coupled to all higher-level
capsules in the original routing algorithm. In contrast to that, we make cij to represent the
importance of each lower-level capsule to higher-level capsules. Based on the above two
changes, Equation (3) is modified as follows:

cij =
bij

∑M
k=1 bkj

, (7)

where M represents the number of lower-level capsules. Third, the “squashing” function is
replaced by the classical activation function. At last, for easy calculation, the number of
higher-level capsules N is set to 1. The specific MDR algorithm is shown in Algorithm 1.

Algorithm 1 MDR for pan-sharpening.

Input:
Prediction vectors: ûc

j|i ∈ Rh2w2cout
.

The number of iterations: r.
The number of capsules in layer l: M.
The number of capsules in layer (l + 1): N.
Initialization: Initialize all capsules i in layer l and capsules j in layer (l + 1): bij = 0.
For r iterations do

for all capsules i in layer l and capsules j in layer (l + 1): use Equation (7) to obtain cij.
for all capsules j in layer (l + 1): use Equation (2) to obtain sj.
for all capsules i in layer l and capsules j in layer (l + 1): bij ← bij + ûj|i × sj.

End for
For all capsules j in layer (l + 1): vj = ReLU(sj).
output: vj.

As a plug-and-play module, MDRL can be plugged into a CNN to replace the addition
or concatenation operation. As shown in Figure 1a, taking the concatenation operation as
an example, many deep learning models directly concatenate the LMRS images and PAN
images in channel dimension, which means that the PAN images equal the one channel of
LRMS images. Plugging the MDRL, the modified dynamic routing convolutional neural
network (MDRCNN) is proposed for pan-sharpening. In our MDRCNN, as shown in
Figure 1b, the LMRS images and PAN images are treated as two lower-level capsules. Then,
the transform operation and modified dynamic routing algorithm handle them and obtain
the higher-level capsules to represent the fusion of LMRS images and PAN images. Last,
the highest-level capsule is transmitted to the remaining network layers to generate the
HRMS images for pan-sharpening.
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Figure 1. The architecture of our modified dynamic routing convolutional neural network (MDRCNN)
with one modified dynamic routing layer (MDRL), compared to the concatenation operation in many
deep learning models. It is worth noting that CNN represents the framework of deep models using
concatenation operation, such as PNN, DRPNN and MSDCNN.

In addition, the proposed MDRL can be stacked to plug in the MDRCNN. As shown
in Figure 2, there are T MDRLs in the MDRCNN. Using the LRMS images and PAN images
as input, the first fusion feature (i.e., higher-level capsule of the first MDRL) is obtained, via
the first MDRL. Inspired by the deep residual network [43], taking the first fusion feature,
LRMS images and PAN images as new lower-level capsules, the second MDRL can obtain
the second fusion feature. By that analogy, MDRCNN with T MDRLs can be constructed
for fusing the LRMS images and PAN images effectively.

U

LRMS

Transform 
operation 

&
Modified 
dynamic 
routing

1th MDRL

Transform 
operation 

&
Modified 
dynamic 
routing

Transform 
operation 

&
Modified 
dynamic 
routing

. . .

2th MDRL Tth MDRL

CNN

Figure 2. Schematic illustration of the proposed modified dynamic routing convolutional neural
network (MDRCNN) with T modified dynamic routing layers.

2.3. The Relationship between the MDRL and Addition or Concatenation Operations

In this part, the relationship between the MDRL and summation or concatenation
operations are analyzed. Through analysis, it is found that concatenation or addition
operations are the special cases of the proposed MDRL when an affine transform and
modified dynamic routing algorithm coordinate with each other.

Taking the concatenation as an example, concatenation operation means that many
deep learning methods directly concatenate the PAN images and LRMS images into a
channel dimension. Assuming that the size of the PAN images’ patch is m× n× 1, the size
of the LRMS images’ patch is m× n× c after up-sampling, and there is only one higher-level
capsule. In our MDRL, the size of the filter for LRMS images kL is set to 3× 3× c, and there
are (c + 1) filters (i.e., kL

1 , kL
2 , ..., kL

c+1). Similarly, the size of the filter for PANs kP is set to
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3× 3× 1, and there are (c + 1) filters (i.e., kP
1 , kP

2 , ..., kP
c+1). Now, the prediction vector’s size

is mn(c + 1)× 1. Based on Equation (7), suppose the coupling coefficient corresponding
to LRMS images C11 is a(0 < a < 1); then, the coupling coefficient corresponding to
PAN images C21 is 1− a. Every LRMS filter kL

i ∈ R3×3×c, i = 1, ..., c + 1 can be split into
c channel filter kL

ij ∈ R3×3, j = 1, ..., c and one channel filter’s size is 3× 3, which means

kL
i = [kL

i1, kL
i2, ..., kL

ic, ], i = 1, ..., c + 1. Then, we set the special value of the LRMS filters as
follows:

kL
ij =

0 0 0
0 1/a 0
0 0 0

, i f i = j and i = 1, ..., c; kL
ii =

0 0 0
0 0 0
0 0 0

, i f i 6= j or i = c + 1.

Similarly, the PAN filters can be expressed as kP
i = [kP

i1], kP
i1 ∈ R3×3, i = 1, ..., c + 1.

Then, we set the special value of the PAN filters as follows:

kP
i1 =

0 0 0
0 1/(1− a) 0
0 0 0

, i f i = c + 1; kL
i1 =

0 0 0
0 0 0
0 0 0

, i f i = 1, ..., c.

Now, MDRL becomes the concatenation operation. It is easy to find that MDRL can
also degenerate into the summation operation.

However, the filter weights for LRMS images and PAN images are obtained by the
BP algorithm [44], and the coupling coefficients are learned by the MDR algorithm. Thus,
the proposed MDRL can fuse the information of PAN images and LRMS images more
effectively than a simple concatenation or summation operation.

2.4. Dataset and Evaluation Metrics

Here, three satellite datasets are chosen as our evaluation dataset, namely Land-
sat8, QuickBird and GaoFen2. Specifically, Landsat8 has 350 samples on its training
dataset, 50 samples on its validation dataset and 100 samples on its test dataset. GaoFen2
has the same number of training/testing/validation images as Landsat8. QuickBird has
474/103/100 samples on its training/validation/test dataset. There are 10 bands of LRMS
images on Landsat8, and the spatial up-scaling ratio (SUR) is set as 2. QuickBird and
GaoFen2 contain 4 bands and the SUR is 4. Furthermore, all the samples are generated by
using the Wald protocol [45]. Table 1 shows all the details of the three datasets above.

Table 1. Summaries for datasets used for pan-sharpening.

Datasets Training Validation Test Bands Spatial Up-Scaling Ratio (SUR)

QuickBird 474 103 100 4 4
Landsat8 350 50 100 10 2
GaoFen2 350 50 100 4 4

In the training process, the LRMS images are carved up into patches with a size of
32× 32; thus, the patches of PAN images have a size of (32*SUR)×(32*SUR). In the test
phase, to measure performance of our method, we use the following four metrics: three
spatial assessment metrics including structural similarity (SSIM) [46], error relative global
dimensionless synthesis (ERGAS) [47], peak signal-to-noise ratio (PSNR) [48] and one
spectral assessment metric spectral angle mapper (SAM) [49]. The fused image has a high
quality when the PSNR and SSIM become higher, or the SAM and ERGAS become lower.

3. Experimental Results

In order to evaluate the effectiveness of our method, MDRL is plugged into two
famous deep learning methods (i.e., MIPSM and DRPNN) to construct two new models
named MDR–MIPSM and MDR–DRPNN. They are chosen because MIPSM uses addition
operation and DRPNN uses concatenation operation to fuse LRMS images and PAN images.
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The proposed two models are compared with recent approaches on three benchmark
datasets named Landsat8, QuickBird and GaoFen2. All the experiments are conducted on a
computer with an NVIDIA RTX1080Ti GPU with 11 GB memory.

3.1. Comparison Methods and Training Details

In the experiments, we compare our two models, MDR–MIPSM and MDR–DRPNN,
with some excellent methods, including seven traditional fusion methods and eight recent
methods based on deep convolutional networks. Most of all, eight deep learning methods
include two baseline models (i.e., MIPSM and DRPNN). Concretely, seven traditional
fusion methods contain BDSD [23], Brovey [17], GS [18], HPF [50], IHS [19], Indusion [20]
and SFIM [21]. A total of eight deep learning methods contain MIPSM [21], DRPNN [30],
MSDCNN [31], RSIFNN [34], PANNET [51], CUNet [52], FGF-GAN [53], MHNet [54] and
PMACNet [55].

Our MDR–MIPSM and MDR–DRPNN adopt l1 loss as the loss function ||H − Ĥ||1,
where H and Ĥ represent the ground truth HRMS image and the reconstruction HRMS
image, respectively. In most of our experiments, the configuration of MDR–MIPSM and
MDR–DRPNN is set as follows: there are two MDRLs, the kernel size is set to 3× 3 and the
number of modified dynamic routing’s iterations is set to 1 due to its ease of calculation.
These two models are supervised by Adam [56] over 200 epochs, and the learning rate is
set as 1× 10−3 with a 0.8 times decrease every 20 epochs. In addition, two layers of MIPSM
and DRPNN are deleted to construct our MDR–MIPSM and MDR–DRPNN, due to the
number of MDRL being 2 in our experiments.

3.2. Performance Comparison

Table 2 shows the quantitative results of our methods, compared with all comparison
methods on the QuickBird dataset. The proposed MDR–MIPSM and MDR–DRPNN are
superior to the traditional pan-sharpening approaches. In the deep learning methods,
our MDR–DRPNN also achieves the best performance on all four indicators. Moreover,
our MDR–MIPSM and MDR–DRPNN perform visibly better than MIPSM and DRPNN.
Specifically, the result obtained by our MDR–MIPSM exceeds MIPSM in PSNR by almost
2.1 db, which is a significant improvement.

In Tables 3 and 4, our MDR–MIPSM and MDR–DRPNN are compared with other
state-of-the-art methods on the Landsat8 and GaoFen2 datasets. It is found that our MDR–
DRPNN performs slightly worse than PANNet on the SAM indicator, and visibly better
than DRPNN on all metrics on Table 3. In addition, FGF-GAN and PANNet perform
slightly better than our MDR–DRPNN on the SAM indicator in Table 4. However, on PSNR,
SSIM and ERGAS, our MDR–DRPNN achieves the best performance, compared with all
other models.
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Table 2. Comparison results on QuickBird dataset. The best and the second best are highlighted
by bold and underlined, respectively. The up or down arrow indicates higher or lower metric
corresponding to better images.

Method PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
BDSD [23] 23.5540 0.7156 0.0765 4.8874
Brovey [17] 25.2744 0.7370 0.0640 4.2085
GS [18] 26.0305 0.6829 0.0586 3.9498
HPF [50] 25.9977 0.7378 0.0588 3.9452
IHS [19] 24.3826 0.6742 0.0647 4.6208
Indusion [20] 25.7623 0.6377 0.0674 4.2514
SFIM [21] 24.0351 0.6409 0.0739 4.8282
MIPSM [21] 27.7323 0.8411 0.0522 3.1550
DRPNN [30] 31.0415 0.8993 0.0378 2.2250
MSDCNN [31] 30.1245 0.8728 0.0434 2.5649
RSIFNN [34] 30.5769 0.8898 0.0405 2.3530
PANNET [51] 30.9631 0.8988 0.0368 2.2648
CUNet [52] 30.3612 0.8876 0.0428 2.4178
FGF-GAN [53] 30.3465 0.8761 0.0407 2.4103
MHNet [54] 31.1557 0.8947 0.0368 2.1931
PMACNet [55] 31.0974 0.9020 0.0384 2.3141
MDR–MIPSM (ours) 29.8426 0.8837 0.0431 2.6694
MDR–DRPNN (ours) 31.4626 0.9038 0.0358 2.1348

Table 3. Comparison results on Landsat8 dataset. The best and the second best are highlighted
by bold and underlined, respectively. The up or down arrow indicates higher or lower metric
corresponding to better images.

Method PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
BDSD [23] 33.8065 0.9128 0.0255 1.9128
Brovey [17] 32.4030 0.8533 0.0206 1.9806
GS [18] 32.0163 0.8687 0.0304 2.2119
HPF [50] 32.6691 0.8712 0.0250 2.0669
IHS [19] 32.8772 0.8615 0.0245 2.3128
Indusion [20] 30.8476 0.8168 0.0359 2.4216
SFIM [21] 32.7207 0.8714 0.0248 2.0775
MIPSM [21] 35.4891 0.9389 0.0209 1.5769
DRPNN [30] 37.3639 0.9613 0.0173 1.3303
MSDCNN [31] 36.2536 0.9581 0.0176 1.4160
RSIFNN [34] 37.0782 0.9547 0.0172 1.3273
PANNET [51] 38.0910 0.9647 0.0152 1.3021
CUNet [52] 37.0468 0.9610 0.0179 1.3430
FGF-GAN [53] 38.0832 0.9533 0.0165 1.2714
MHNet [54] 37.0049 0.9566 0.0189 1.3509
PMACNet [55] 38.3271 0.9670 0.0158 1.2278
MDR–MIPSM (ours) 37.3317 0.9614 0.0171 1.4071
MDR–DRPNN (ours) 38.5876 0.9685 0.0153 1.2012
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Table 4. Comparison results on GaoFen2 dataset. The best and the second best are highlighted by bold
and underlined, respectively. The up or down arrow indicates higher or lower metric corresponding
to better images.

Method PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓
BDSD [23] 30.2114 0.8732 0.0126 2.3963
Brovey [17] 31.5901 0.9033 0.0110 2.2088
GS [18] 30.4357 0.8836 0.0101 2.3075
HPF [50] 30.4812 0.8848 0.0113 2.3311
IHS [19] 30.4754 0.8639 0.0108 2.3546
Indusion [20] 30.5359 0.8849 0.0113 2.3457
SFIM [21] 30.4021 0.8501 0.0129 2.3688
MIPSM [21] 32.1761 0.9392 0.0104 1.8830
DRPNN [30] 35.1182 0.9663 0.0098 1.3078
MSDCNN [31] 33.6715 0.9685 0.0090 1.4720
RSIFNN [34] 33.0588 0.9588 0.0112 1.5658
PANNET [51] 34.5774 0.9635 0.0089 1.4750
CUNet [52] 33.6919 0.9630 0.0184 1.5839
FGF-GAN [53] 35.0450 0.9449 0.0089 1.4351
MHNet [54] 33.8930 0.9291 0.0176 1.3697
PMACNet [55] 35.3506 0.9678 0.0101 1.2658
MDR–MIPSM (ours) 34.2735 0.9530 0.0105 1.5150
MDR–DRPNN (ours) 35.6512 0.9704 0.0091 1.2177

Moreover, we display a visual comparison of our models with other methods on three
datasets, as shown in Figures 3–5. Compared with other methods, our MDR–DRPNN
not only preserves the spectral information of the LRMS images, but also has a wealth of
detailed information contained in the PAN images. From the amplified area, we can see
that our MDR–DRPNN generates high-quality HRMS images, which avoids spatial and
spectral distortion effectively. In addition, taking the ground truth image (upper left corner
of Figures 3–5) as a reference, we show the corresponding residual map to evaluate the
quality of images generated by our MDR–MIPSM and MDR–DRPNN in Figures 6–8. From
the residual map, we find that the fused images of our MDR–DRPNN are the closest to the
ground truth, which demonstrates the effectiveness of our methods.

By comparing the results between three datasets, a careful analysis of our model is
conducted. It is found that the spatial location information is preserved in our model
based on the convolutional operator in transform operation and the vectorize operation.
Thus, our model can extract more spatial detail information, which is consistent with the
experimental results. By examining the image of the three datasets, the Landsat8 dataset
contains more buildings, which means it offers offer a wealth of spatial detailed information
compared to the QuickBird and GaoFen2 datasets. Taking the base model DRPNN [30]
as example, our model MDR–DRPNN significantly improves 1.2237 db on the PSNR of
Landsat8, while it improves 0.4211 db and 0.5330 db on the PSNR of the QuickBird and
GaoFen2 datasets, respectively. Furthermore, this reminds us that our future study should
pay more attention to extract spectral detail information.
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Ground Truth Brovey GS HPF

Indusion

IHSBDSD

SFIM MIPSM DRPNN MSDCNN RSIFNN

PANNET CUNet FGF-GAN MHNet MDR-MIPSM(ours)

MDR-DRPNN(ours)

PMACNet

Figure 3. The visual comparisons of fusion results obtained by different methods on Quickbird
dataset.

Ground Truth Brovey GS HPF

Indusion

IHSBDSD

SFIM MIPSM DRPNN MSDCNN RSIFNN

PANNET CUNet FGF-GAN MHNet MDR-MIPSM(ours)

MDR-DRPNN(ours)

PMACNet

Figure 4. The visual comparisons of fusion results obtained by different methods on Landsat8 dataset.
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Ground Truth Brovey GS HPF

Indusion

IHSBDSD

SFIM MIPSM DRPNN MSDCNN RSIFNN

PANNET CUNet FGF-GAN MHNet MDR-MIPSM(ours)

MDR-DRPNN(ours)

PMACNet

Figure 5. The visual comparisons of fusion results obtained by different methods on GaoFen2 dataset.
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1

0.5

0

PMACNet

Figure 6. The visual comparisons of the corresponding residual maps on Quickbird dataset.
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1
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Figure 7. The visual comparisons of the corresponding residual maps on Landsat8 dataset.
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1
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0
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Figure 8. The visual comparisons of the corresponding residual maps on GaoFen2 dataset.

In addition, the real HRLS image is not accessible in reality. Thus, pan-sharpening in
a real LRMS image and PAN image (i.e., full scale experiment) comes with reference-free
image quality metrics. Here, Quality with No Reference (QNR), spectral distortion index
(Dλ) and spatial distortion index (DS) are chosen to evaluate the pan-sharpening quality of
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a full image on the Landsat8 and QuickBird datasets. The specific experimental results are
shown in the following Table 5. As shown in this table, our model MDR–DRPNN obtains
excellent experimental results on three metrics and two datasets, which is competitive
with other deep learning models. In particular, compared to the base model DRPNN,
our model MDR–DRPNN improves by 0.012 and 0.047 on the QNR of the Landsat8 and
QuickBird datasets, respectively. Furthermore, MDR–MIPSM increases the values on the
QNR metric with the base model MIPSM. Another two metrics Dλ and DS also show the
same improvement. Thus, the proposed plug-and-play MDRL is helpful to fuse the LRMS
image and PAN image.

Table 5. Quantitative results for the Landsat8 and QuickBird datasets at full scale. The best and the
second best are highlighted by bold and underlined, respectively. The up or down arrow indicates
higher or lower metric corresponding to better images.

Landsat8 QuickBird
Method QNR↑ Dλ↓ DS↓ QNR↑ Dλ↓ DS↓
BDSD 0.7632 0.1064 0.1469 0.6061 0.1660 0.2741
GS 0.8195 0.0580 0.1310 0.7134 0.0937 0.2157
HPF 0.8764 0.0475 0.0801 0.7626 0.1062 0.1484
IHS 0.7381 0.1360 0.1470 0.5547 0.1975 0.3095
Indusion 0.9239 0.0235 0.0539 0.8104 0.1083 0.0923
SFIM 0.8865 0.0464 0.0706 0.7573 0.1062 0.1544
CUNet 0.9132 0.0265 0.0621 0.7864 0.1367 0.0894
RSIFNN 0.9273 0.0278 0.0468 0.7709 0.1064 0.1392
MHNet 0.9117 0.0373 0.0535 0.8408 0.0760 0.0902
MSDCNN 0.9380 0.0237 0.0392 0.7419 0.1246 0.1557
PANNET 0.9499 0.0214 0.0293 0.8383 0.0865 0.0824
MIPSM 0.9273 0.0172 0.0566 0.7850 0.1290 0.0998
DRPNN 0.9380 0.0252 0.0378 0.7999 0.1087 0.1025
MDR–MIPSM (ours) 0.9354 0.0192 0.0471 0.7939 0.1028 0.1167
MDR–DRPNN (ours) 0.9500 0.0170 0.0339 0.8469 0.0680 0.0916

4. Discussion

In section, we use MDR–DRPNN as backbone and conduct some ablation experiments
to further verify the efficiency of our methods. We discussed the influence of the number of
MDRL, the number of iterations in MDR and the parameter numbers of MDR–DRPNN,
because they all play important roles in MDR–DRPNN.

4.1. Influence of the Number of MDRL

The depth of MDR–DRPNN depends on the number of MDRL; thus, it should be first
to discuss. As shown in Table 6, the number of MDRL is set as 1, 2 and 3, respectively. Taking
the PSNR, SSIM, SAM and ERGAS as metrics, the MDR–DRPNN model and Quickbird
dataset are used to evaluate it. From this table, it is found that most of the metrics increase
slightly and then decrease, when the number of MDRL increases from 1 to 2 to 3. Thus, the
number of MDRL is set as 2 in our experiments.

Table 6. The influence of the number of MDRL, based on MDR–DRPNN and Quickbird dataset. It is
worth noting that #MDRL represents the number of MDRL.

#MDRL PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓

1 31.4074 0.9022 0.0354 2.1382
2 31.4626 0.9038 0.0358 2.1348
3 31.3480 0.9029 0.0358 2.1617
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4.2. Influence of the Number of Iterations in MDR

In this section, the influence of the number of iterations on MDR is studied, due to
the fact that it is the most important parameter in MDR. For easy calculation, the number
of higher-level capsules is set as 1 in this experiment. Table 7 shows the results on the
Quickbird dataset, based on the MDR–DRPNN model and PSNR, SSIM, SAM and ERGAS
metrics. From this table, it is found that no matter the number of iterations, our proposed
MDR–DRPNN’s performance does not vary much. This also verifies the stability of our
model. Thus, for the purpose of saving training and testing time, the number of iterations
is set as 1 in our most experiments.

Table 7. The influence of the number of iterations in modified dynamic routing, based on MDR–
DRPNN and Quickbird dataset. It is worth noting that #Iterations represents the number of iterations
in modified dynamic routing.

#Iterations PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓

1 31.4626 0.9038 0.0358 2.1348
2 31.4435 0.9036 0.0362 2.1193
3 31.3661 0.9049 0.0353 2.1509

4.3. Parameter Numbers

In our method, the MDRL is used to replace the addition or concatenation operations.
Thus, based on the Quickbird dataset, the parameters of our MDR–MIPSM and MDR–
DRPNN are analyzed here. As said in the training details, two layers of MIPSM and
DRPNN are deleted to construct our models MDR–MIPSM and MDR–DRPNN, due to the
number of MDRL being 2 in our experiments. As shown in Table 8, it is found that the
amount of parameters of our models decreases visibly more than MIPSM and DRPNN, but
our models achieve better results.

Table 8. The number of parameters of our MDR–MIPSM and MDR–DRPNN, compared with MIPSM
and DRPNN, based on Quickbird dataset.

Method MIPSM MDR–MIPSM DRPNN MDR–DRPNN

#Parameters (million) 87,047 68,551 375,293 302,595
PSNR 27.7323 29.8426 31.0415 31.4626

This may be due the fact to that our network can perform more efficient fusion and
achieve a reasonable balance between spectral and spatial information, which proves the
efficacy of our method.

5. Conclusions

In this study, due to the fact that the addition and concatenation operations may
cause loss of information, we design a modified dynamic routing layer (MDRL) to replace
them for pan-sharpening, via a modified dynamic routing (MDR) algorithm. Based on the
convolutional operator in transform operation and the vectorize operation, our MDRL can
preserve more spatial location information. In addition, the coupling coefficient in MDRL
can vary with the input samples, which make MDRL fuse the PAN and LRMS images in
the test stage effectively. Using MDRL, two deep models named MDR–MIPSM and MDR–
DRPNN are proposed, and extensive experimental results on benchmark pan-sharpening
datasets demonstrate the efficacy of our method, compared with other excellent models.
In the future work, we will pay more attention to extract spectral detail information, which
may be implemented by the attention mechanism.
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