Developing a New Vegetation Index Using Cyan, Orange, and Near Infrared Bands to Analyze Soybean Growth Dynamics
Abstract
:1. Introduction
1.1. Remote Sensing for Assessing Vegetation Health
Existing Vegetation Indices
2. Materials and Methods
2.1. Data and Study Area
2.2. Spectral Signatures
2.3. Vegetation Indices
2.4. Leaf Area Index
2.5. Proposed Indices and Their Validation
3. Results
3.1. Spectral Profiles
3.2. Proposed Indices
3.2.1. Correlation between Different Spectral Bands and VIs (OCN Camera)
3.2.2. Correlation between LAI and New VIs
4. Discussion
4.1. Spectral Profiles
4.2. Proposed Indices
4.3. Practical Applications of Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oregon State University. Environmental Factors Affecting Plant Growth. OSU Extension Service. 2022. Available online: https://extension.oregonstate.edu/gardening/techniques/environmental-factors-affecting-plant-growth# (accessed on 6 September 2022).
- Hemathilake, D.; Gunathilake, D. High-productive agricultural technologies to fulfill future food demands: Hydroponics, aquaponics, and precision/smart agriculture. Futur. Foods 2022, 555–567. [Google Scholar] [CrossRef]
- Roca, M.; Chen, K.; Pérez-Gálvez, A. Chlorophylls. In Handbook on Natural Pigments in Food and Beverages, Industrial Applications for Improving Food Color; Woodhead Publishing: Cambridge, UK, 2016; pp. 125–158. [Google Scholar] [CrossRef]
- Filella, I.; Penuelas, J. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 1994, 15, 1459–1470. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.; Cescatti, A.; Gao, F.; Schull, M.; Gitelson, A. Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC). Remote Sens. Environ. 2015, 159, 203–221. [Google Scholar] [CrossRef]
- Wellburn, A.R.; Lichtenthaler, H. Formulae and Program to Determine Total Carotenoids and Chlorophylls A and B of Leaf Extracts in Different Solvents. In Advances in Photosynthesis Research; Springer: Berlin/Heidelberg, Germany, 1984; pp. 9–12. ISBN 978-94-017-6368-4. [Google Scholar]
- Hiscox, J.D.; Israelstam, G.F. Erratum: A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 1980, 58, 403. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Lausch, A.; Bastian, O.; Klotz, S.; Leitão, P.J.; Jung, A.; Rocchini, D.; Schaepman, M.E.; Skidmore, A.K.; Tischendorf, L.; Knapp, S. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 2018, 9, 1799–1809. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Watson, D.J. Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Skidmore, A.; Pettorelli, N. Agree on biodiversity metrics to track from space. Nature 2015, 523, 5–7. [Google Scholar] [CrossRef]
- Turner, W. Sensing biodiversity. Science 2014, 346, 301–302. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Asner, G.P.; Ollinger, S.V.; Martin, M.E.; Wessman, C.A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 2009, 113, S78–S91. [Google Scholar] [CrossRef]
- Huete, A.R. Remote Sensing for Environmental Monitoring; Academic Press: Cambridge, MA, USA, 2004; pp. 183–206. ISBN 9780120644773. [Google Scholar] [CrossRef]
- Acker, J.; Williams, R.; Chiu, L.; Ardanuy, P.; Miller, S.; Schueler, C.; Vachon, P.W.; Manore, M. Remote Sensing from Satellites. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2014; pp. 161–202. [Google Scholar] [CrossRef]
- Roerink, G.; Menenti, M.; Soepboer, W.; Su, Z. Assessment of climate impact on vegetation dynamics by using remote sensing. Phys. Chem. Earth Parts A/B/C 2003, 28, 103–109. [Google Scholar] [CrossRef]
- Liang, S.; Wang, D.; Tao, X.; Cheng, J.; Yao, Y.; Zhang, X.; He, T. Methodologies for Integrating Multiple High-Level Remotely Sensed Land Products. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 278–317. [Google Scholar] [CrossRef]
- Shunlin, L.; Jindi, W. Estimate of vegetation production of terrestrial ecosystem. In Advanced Remote Sensing, 2nd ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 581–620. [Google Scholar] [CrossRef]
- Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; de Bruin, S. Quantifying mangrove chlorophyll from high spatial resolution imagery. ISPRS J. Photogramm. Remote Sens. 2015, 108, 234–244. [Google Scholar] [CrossRef]
- L3Harris Geospatial Solutions Inc. Leaf Pigments. 2022. Available online: https://www.l3harrisgeospatial.com/docs/leafpigments.html (accessed on 12 September 2022).
- Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Hasegawa, S. Metabolism of limonoids. Limonin D-ring lactone hydrolase activity in Pseudomonas. J. Agric. Food Chem. 1976, 24, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- MAPIR CAMERA. OCN Filter Improves Results Compared to RGN Filter. 2020. Available online: https://www.mapir.camera/pages/ocn-filter-improves-contrast-compared-to-rgn-filter (accessed on 12 September 2022).
- MAPIR CAMERA. How to Choose a Survey3 Camera Model. 2018. Available online: https://www.mapir.camera/blogs/guide/how-to-choose-a-survey3-camera (accessed on 12 September 2022).
- Nill, K. Soy Beans: The Crop. Encycl. Food Health 2016, 56–57. [Google Scholar] [CrossRef]
- Soy Canada. Canadian Soybeans: Sustainably Grown, Customer Focused. 2022. Available online: https://soycanada.ca/wp-content/uploads/2020/06/2020_Soy_Canada_Brochure_ENG_FINALweb.pdf (accessed on 8 November 2022).
- Diao, C. Remote sensing phenological monitoring framework to characterize corn and soybean physiological growing stages. Remote Sens. Environ. 2020, 248, 111960. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Tian, Q.; Zhou, C. A robust spectral angle index for remotely assessing soybean canopy chlorophyll content in different growing stages. Plant Methods 2020, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- MAPIR CAMERA. Mapir Camera. 2023. Available online: https://www.mapir.camera/pages/cameras (accessed on 12 September 2022).
- MAPIR CAMERA. Mapir Camera Control. 2023. Available online: https://www.mapir.camera/collections/software/products/mapir-camera-control (accessed on 10 October 2022).
- R Studio. The R Foundation for Statistical Computing; R Foundation for Statistical Computing: Boston, MA, USA, 2018. [Google Scholar]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Viña, A.; Arkebauer, T.; Rundquist, D. Green Leaf Area Index Estimation in Maize and Soybean: Combining Vegetation Indices to Achieve Maximal Sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef]
- Gaso, D.V.; de Wit, A.; Berger, A.G.; Kooistra, L. Predicting within-field soybean yield variability by coupling Sentinel-2 leaf area index with a crop growth model. Agric. For. Meteorol. 2021, 308, 108553. [Google Scholar] [CrossRef]
- Hoffman, J.I.E. Analysis of Variance. I. One-Way. In Basic Biostatistics for Medical and Biomedical Practitioners; Academic Press: Cambridge, MA, USA, 2019; pp. 391–417. [Google Scholar] [CrossRef]
- Nettleton, D. Chapter 6—Selection of Variables and Factor Derivation. In Commercial Data Mining; Nettleton, D., Ed.; Morgan Kaufmann: Boston, MA, USA, 2014; pp. 79–104. [Google Scholar] [CrossRef]
- Singh, S.K.; Hoyos-Villegas, V.; Ray, J.D.; Smith, J.R.; Fritschi, F.B. Quantification of leaf pigments in soybean (Glycine max (L.) Merr.) based on wavelet decomposition of hyperspectral features. Field Crop. Res. 2013, 149, 20–32. [Google Scholar] [CrossRef]
- Gutman, G.; Skakun, S.; Gitelson, A. Revisiting the use of red and near-infrared reflectances in vegetation studies and numerical climate models. Sci. Remote Sens. 2021, 4, 100025. [Google Scholar] [CrossRef]
Vegetation Index | Mathematical Expression |
---|---|
Difference Vegetation Index (DVI) [22] | |
Ratio Vegetation Index (RVI) [23] | |
Normalized Difference Vegetation Index (NDVI) [24] | |
Carotenoid Reflectance Index 1 (CRI1) [21] | |
Soil Adjusted Vegetation Index (SAVI) [25] |
Mapir Survey 3 (Wide Angle) | |||||
---|---|---|---|---|---|
OCN Camera | RGN Camera | ||||
Cyan | Orange | NIR | Green | Red | NIR |
460–520 | 585–645 | 780–870 | 530–570 | 640–680 | 820–880 |
Original Vegetation Index | Symbology | Proposed Vegetation Index |
---|---|---|
Difference Vegetation Index (DVI) | dvi_on | NIR − Orange |
Ratio Vegetation Index (RVI) | sr_on | Orange/NIR |
Ratio Vegetation Index (RVI) | sr_cn | Cyan/NIR |
Normalized Difference Vegetation Index (NDVI) | ndvi_on | (NIR − Orange)/(NIR + Orange) |
Adjusted Vegetation Index (SAVI) | savi_on | (1.5 × (NIR − Orange))/(NIR + Orange + 0.5) |
Symbology | Mathematical Expression |
---|---|
VINIR,O,C | |
VINIR,O,O | |
VIC,O |
Band | R4 | R5 | R6 | R7 | ||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Cyan | 0.08 | 0.06 | 0.08 | 0.04 | 0.06 | 0.03 | 0.04 | 0.04 |
Orange | 0.28 | 0.09 | 0.13 | 0.05 | 0.09 | 0.04 | 0.24 | 0.14 |
NIR | 0.38 | 0.22 | 0.91 | 0.12 | 0.88 | 0.13 | 0.42 | 0.20 |
VI | Stage | |||
---|---|---|---|---|
R4 | R5 | R6 | R7 | |
VINIR,O,C | 0.44 | 0.39 | 0.39 | 0.2 |
VINIR,O,O | 0.29 | 0.37 | 0.38 | −0.3 |
VIC,O | 0.48 | −0.27 | 0.28 | −0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vásquez, R.A.R.; Heenkenda, M.K.; Nelson, R.; Segura Serrano, L. Developing a New Vegetation Index Using Cyan, Orange, and Near Infrared Bands to Analyze Soybean Growth Dynamics. Remote Sens. 2023, 15, 2888. https://doi.org/10.3390/rs15112888
Vásquez RAR, Heenkenda MK, Nelson R, Segura Serrano L. Developing a New Vegetation Index Using Cyan, Orange, and Near Infrared Bands to Analyze Soybean Growth Dynamics. Remote Sensing. 2023; 15(11):2888. https://doi.org/10.3390/rs15112888
Chicago/Turabian StyleVásquez, Roger A. Rojas, Muditha K. Heenkenda, Reg Nelson, and Laura Segura Serrano. 2023. "Developing a New Vegetation Index Using Cyan, Orange, and Near Infrared Bands to Analyze Soybean Growth Dynamics" Remote Sensing 15, no. 11: 2888. https://doi.org/10.3390/rs15112888
APA StyleVásquez, R. A. R., Heenkenda, M. K., Nelson, R., & Segura Serrano, L. (2023). Developing a New Vegetation Index Using Cyan, Orange, and Near Infrared Bands to Analyze Soybean Growth Dynamics. Remote Sensing, 15(11), 2888. https://doi.org/10.3390/rs15112888