Deep-Learning-Based Rice Phenological Stage Recognition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Dataset Construction
2.2.1. Dataset Annotation
2.2.2. Data Enhancement
2.3. Experimental Environment and Configuration
2.4. Model Evaluation Indicators
2.5. Experimental Procedure
2.5.1. Experimental Steps
2.5.2. Model Training and Super-Reference Configuration
3. Results
3.1. Phenological Identification Result
3.2. Data Cleaning Results
3.3. Results of the Different Taxonomic Classifications for the Identification of Phenology
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, H.; Li, Z.; He, P.; Jin, X.; Yang, G.; Yu, H.; Yang, F. Simulation of Winter Wheat Phenology in Beijing Area with DSSAT-CERES Model. In Computer and Computing Technologies in Agriculture IX; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Gao, F.; Zhang, X. Mapping Crop Phenology in Near Real-Time Using Satellite Remote Sensing: Challenges and Opportunities. J. Remote Sens. 2021, 2021, 8379391. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Yu, L.; Gong, P.; Biging, G.S. Automated mapping of soybean and corn using phenology. Isprs J. Photogramm. Remote Sens. 2016, 119, 151–164. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.T.; Paniz, F.P.; Sanchez, F.E.S.; Pedron, T.; Torres, D.P.; da Rocha Concenço, F.I.G.; Parfitt, J.M.B.; Batista, B.L. Selected soil water tensions at phenological phases and mineral content of trace elements in rice grains–mitigating arsenic by water management. Agric. Water Manag. 2020, 228, 105884. [Google Scholar] [CrossRef]
- Bueno, C.S.; Lafarge, T. Higher crop performance of rice hybrids than of elite inbreds in the tropics: 1. Hybrids accumulate more biomass during each phenological phase. Field Crop. Res. 2009, 112, 229–237. [Google Scholar] [CrossRef]
- He, L.; Asseng, S.; Zhao, G.; Wu, D.; Yang, X.; Zhuang, W.; Jin, N.; Yu, Q. Impacts of recent climate warming, cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. Agric. For. Meteorol. 2015, 200, 135–143. [Google Scholar] [CrossRef]
- Valipour, M.; Dietrich, J. Developing ensemble mean models of satellite remote sensing, climate reanalysis, and land surface models. Theor. Appl. Climatol. 2022, 150, 909–926. [Google Scholar] [CrossRef]
- Ganguly, S.; Friedl, M.A.; Tan, B.; Zhang, X.; Verma, M. Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sens. Environ. 2010, 114, 1805–1816. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Sanabria, H.; Sanches, M.G.; Caicedo, J.P.R.; Avila-George, H. Identification of phenological stages of sugarcane cultivation using Sentinel-2 images. In Proceedings of the 2020 9th International Conference On Software Process Improvement (CIMPS), Sinaloa, Mexico, 21–23 October 2020. [Google Scholar]
- Chu, L.; Liu, Q.-S.; Huang, C.; Liu, G.-H. Monitoring of winter wheat distribution and phenological phases based on MODIS time-series: A case study in the Yellow River Delta, China. Agric. Sci. China 2016, 15, 2403–2416. [Google Scholar] [CrossRef]
- Boechel, T.; Policarpo, L.M.; de Oliveiar Ramos, G.; da Rosa Righi, R. Fuzzy time series for predicting phenological stages of apple trees. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, New York, NY, USA, 22–26 April 2021; pp. 934–941. [Google Scholar]
- Boschetti, M.; Stroppiana, D.; Brivio, P.A.; Bocchi, S. Multi-year monitoring of rice crop phenology through time series analysis of MODIS images. Int. J. Remote Sens. 2009, 30, 4643–4662. [Google Scholar] [CrossRef]
- Zhang, C.; Xie, Z.; Shang, J.; Liu, J.; Dong, T.; Tang, M.; Feng, S.; Cai, H. Detecting winter canola (Brassica napus) phenological stages using an improved shape-model method based on time-series UAV spectral data. Crop J. 2022, 10, 1353–1362. [Google Scholar] [CrossRef]
- Pan, Y.; Li, L.; Zhang, J.; Liang, S.; Zhu, X.; Sulla-Menashe, D. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sens. Environ. 2012, 119, 232–242. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Wang, R.; Shan, J.; Tadesse, T.; Hayes, M.J.; Li, D. A hybrid approach for detecting corn and soybean phenology with time-series MODIS data. Remote Sens. Environ. 2016, 181, 237–250. [Google Scholar] [CrossRef]
- Richardson, A.D.; Hollinger, D.Y.; Dail, D.B.; Lee, J.T.; Munger, J.W.; O’keefe, J. Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol. 2009, 29, 321–331. [Google Scholar] [CrossRef]
- Adamsen, F.J.; Pinter, P.J., Jr.; Barnes, E.M.; LaMorte, R.L.; Wall, G.W.; Leavitt, S.W.; Kimball, B.A. Measuring Wheat Senescence with a Digital Camera. Crop Sci. 1999, 39, 719–724. [Google Scholar] [CrossRef]
- Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222. [Google Scholar] [CrossRef] [Green Version]
- Nagai, S.; Saitoh, T.M.; Noh, N.J.; Yoon, T.K.; Kobayashi, H.; Suzuki, R.; Nasahara, K.N.; Son, Y.; Muraoka, H. Utility of information in photographs taken upwards from the floor of closed-canopy deciduous broadleaved and closed-canopy evergreen coniferous forests for continuous observation of canopy phenology. Ecol. Inform. 2013, 18, 10–19. [Google Scholar] [CrossRef]
- Guo, Y.; Chen, S.; Wang, H.; de Beurs, K. Comparison of Multi-Methods for Identifying Maize Phenology Using PhenoCams. Remote Sens. 2022, 14, 244. [Google Scholar] [CrossRef]
- Jia-Kun, T.; Yu, L.; Ming-Tao, D. Study on the applicable indices for monitoring seasonal changes of Acacia sylvestris based on RGB images. Remote Sens. Technol. Appl. 2018, 33, 476–485. [Google Scholar]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Sun, Y.; Wang, H.Q.; Xia, Z.Y.; Ma, J.H.; Lv, M.Z. Tobacco-disease Image Recognition via Multiple-Attention Classification Network. In Proceedings of the 4th International Conference on Data Mining, Communications and Information Technology (DMCIT 2020), Shaanxi, China, 21–24 May 2020. [Google Scholar]
- Zhong, S.; Jia, C.; Chen, K.; Dai, P. A novel steganalysis method with deep learning for different texture complexity images. Multimed. Tools Appl. 2019, 78, 8017–8039. [Google Scholar] [CrossRef]
- Lin, J.; Zhao, L.; Li, S.; Ward, R.; Wang, Z.J. Active-Learning-Incorporated Deep Transfer Learning for Hyperspectral Image Classification. JSTARS 2018, 11, 4048–4062. [Google Scholar] [CrossRef]
- Sarwinda, D.; Paradisa, R.H.; Bustamam, A.; Anggia, P. Deep Learning in Image Classification using Residual Network (ResNet) Variants for Detection of Colorectal Cancer. Procedia Comput. Sci. 2021, 179, 423–431. [Google Scholar] [CrossRef]
- Zhang, C.; Kang, F.; Wang, Y. An Improved Apple Object Detection Method Based on Lightweight YOLOv4 in Complex Backgrounds. Remote Sens. 2022, 14, 4150. [Google Scholar] [CrossRef]
- Yun, Z.; Yang, Y.; Xu, X.; Sun, C. Precision detection of crop diseases based on improved YOLOv5 model. Front. Plant Sci. 2023, 13, 1066835. [Google Scholar]
- Han, J.; Shi, L.; Yang, Q.; Huang, K.; Zha, Y.; Yu, J. Real-time detection of rice phenology through convolutional neural network using handheld camera images. Precis. Agric. 2020, 22, 154–178. [Google Scholar] [CrossRef]
- Sheng, R.T.; Huang, Y.-H.; Chan, P.-C.; Bhat, S.A.; Wu, Y.-C.; Huang, N.-F. Rice Growth Stage Classification via RF-Based Machine Learning and Image Processing. Agriculture 2022, 12, 2137. [Google Scholar] [CrossRef]
- Cheng, M.; Yuan, H.; Wang, Q.; Cai, Z.; Liu, Y.; Zhang, Y. Application of deep learning in sheep behaviors recognition and influence analysis of training data characteristics on the recognition effect. Comput. Electron. Agric. 2022, 198, 107010. [Google Scholar] [CrossRef]
Configuration Name | Parameters |
---|---|
Processor | Intel Xeon Intel(R) Core (TM) i9-10900 K CPU @ 3.70 GHz |
Video cards | NVIDIAV GeForce RTX 3090 |
Memory | 64 G |
Development languages | Python 3.9.7 |
Deep learning frameworks | Tensorflow |
Classification Result Confusion Matrix | ||
---|---|---|
Ture Situation | Predicted Label | |
Ture label | Positive | Counter |
Positive | TP (True positive) | FN (False negative) |
Counter | FP (False positive) | TN (True negative) |
Models | Test Training Set Accuracy | Top 1 | Top 5 | Test Set Loss Values | Duration per Epoch |
---|---|---|---|---|---|
ResNet-50 | 87.01% | 84.45% | 97.06% | 0.3764 | 286 s |
ResNet-101 | 87.50% | 84.93% | 97.06% | 0.3307 | 305 s |
EfficientNet | 65.77% | 63.48% | 70.32% | 0.7231 | 361 s |
VGG16 | 77.98% | 75.69% | 96.97% | 0.6141 | 307 s |
VGG19 | 76.51% | 74.38% | 95.63% | 0.6744 | 302 s |
Datasets | Model Testing Training Set Accuracy | Top 1 | Top 5 | Test Set Loss Values | Duration per Epoch |
---|---|---|---|---|---|
Yolov5 data cleaning | 87.33% | 85.60% | 97.06% | 0.3866 | 280 s |
Yolov6 data cleaning | 86.51% | 83.22% | 95.31% | 0.3648 | 282 s |
Yolov7 data cleaning | 86.86% | 83.94% | 96.78% | 0.3521 | 279 s |
Raw data | 87.01% | 84.45% | 97.06% | 0.3823 | 286 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, J.; Hu, T.; Yuan, J.; Liu, Q.; Wang, W.; Liu, J.; Guo, L.; Song, G. Deep-Learning-Based Rice Phenological Stage Recognition. Remote Sens. 2023, 15, 2891. https://doi.org/10.3390/rs15112891
Qin J, Hu T, Yuan J, Liu Q, Wang W, Liu J, Guo L, Song G. Deep-Learning-Based Rice Phenological Stage Recognition. Remote Sensing. 2023; 15(11):2891. https://doi.org/10.3390/rs15112891
Chicago/Turabian StyleQin, Jiale, Tianci Hu, Jianghao Yuan, Qingzhi Liu, Wensheng Wang, Jie Liu, Leifeng Guo, and Guozhu Song. 2023. "Deep-Learning-Based Rice Phenological Stage Recognition" Remote Sensing 15, no. 11: 2891. https://doi.org/10.3390/rs15112891
APA StyleQin, J., Hu, T., Yuan, J., Liu, Q., Wang, W., Liu, J., Guo, L., & Song, G. (2023). Deep-Learning-Based Rice Phenological Stage Recognition. Remote Sensing, 15(11), 2891. https://doi.org/10.3390/rs15112891