Assessment and Projections of Marine Heatwaves in the Northwest Pacific Based on CMIP6 Models
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.1.1. Observed Sea Surface Temperature
2.1.2. Simulated SST by CMIP6 Models
2.2. Methodology
2.2.1. Marine Heatwave Detection
2.2.2. Spatial Skill Scoring Metric
2.2.3. Temporal Skill Scoring Metric
2.2.4. Rank Score Method
2.2.5. MR Composite Metrics
2.2.6. Weighting Methods
3. Results
3.1. Marine Heat Waves during the Historical Period (1985–2014)
3.2. Projections of Marine Heatwaves in the 21st Century
3.2.1. Results for the Fixed Baseline
3.2.2. Results for the Shifting Baseline
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Frölicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef]
- Donovan, M.K.; Burkepile, D.E.; Kratochwill, C.; Shlesinger, T.; Sully, S.; Oliver, T.A.; Hodgson, G.; Freiwald, J.; van Woesik, R. Local conditions magnify coral loss after marine heatwaves. Science 2021, 372, 977–980. [Google Scholar] [CrossRef]
- Feng, Y.; Bethel, B.J.; Dong, C.; Zhao, H.; Yao, Y.; Yu, Y. Marine heatwave events near Weizhou Island, Beibu Gulf in 2020 and their possible relations to coral bleaching. Sci. Total Environ. 2022, 823, 153414. [Google Scholar] [CrossRef]
- Selig, E.R.; Casey, K.S.; Bruno, J.F. New insights into global patterns of ocean temperature anomalies: Implications for coral reef health and management. Glob. Ecol. Biogeogr. 2010, 19, 397–411. [Google Scholar] [CrossRef]
- Garrabou, J.; Gómez-Gras, D.; Medrano, A.; Cerrano, C.; Ponti, M.; Schlegel, R.; Bensoussan, N.; Turicchia, E.; Sini, M.; Gerovasileiou, V. Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea. Glob. Chang. Biol. 2022, 28, 5708–5725. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.W.; Frölicher, T.L. Marine heatwaves exacerbate climate change impacts for fisheries in the northeast Pacific. Sci. Rep. 2020, 10, 6678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Shi, J.; Liu, Q.; Chen, H.; Li, C. A persistent and intense marine heatwave in the Northeast Pacific during 2019–2020. Geophys. Res. Lett. 2021, 48, e2021GL093239. [Google Scholar] [CrossRef]
- Joh, Y.; Di Lorenzo, E. Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the Northeast Pacific. Geophys. Res. Lett. 2017, 44, 11663–11671. [Google Scholar] [CrossRef] [Green Version]
- Scannell, H.A.; Johnson, G.C.; Thompson, L.; Lyman, J.M.; Riser, S.C. Subsurface evolution and persistence of marine heatwaves in the Northeast Pacific. Geophys. Res. Lett. 2020, 47, e2020GL090548. [Google Scholar] [CrossRef]
- Saranya, J.; Roxy, M.K.; Dasgupta, P.; Anand, A. Genesis and trends in marine heatwaves over the tropical Indian Ocean and their interaction with the Indian summer monsoon. J. Geophys. Res. Oceans 2022, 127, e2021JC017427. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Y.; Feng, M.; Hu, S. Long-lasting marine heatwaves instigated by ocean planetary waves in the tropical Indian Ocean during 2015–2016 and 2019–2020. Geophys. Res. Lett. 2021, 48, e2021GL095350. [Google Scholar] [CrossRef]
- Manta, G.; de Mello, S.; Trinchin, R.; Badagian, J.; Barreiro, M. The 2017 record marine heatwave in the southwestern Atlantic shelf. Geophys. Res. Lett. 2018, 45, 12449–12456. [Google Scholar] [CrossRef]
- Schlegel, R.W.; Oliver, E.C.; Chen, K. Drivers of marine heatwaves in the Northwest Atlantic: The role of air–sea interaction during onset and decline. Front. Mar. Sci. 2021, 8, 627970. [Google Scholar] [CrossRef]
- Li, Y.; Ren, G.; Wang, Q.; You, Q. More extreme marine heatwaves in the China Seas during the global warming hiatus. Environ. Res. Lett. 2019, 14, 104010. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, B.; Zeng, L.; He, Y.; Wu, Z.; Chen, J. Properties and Drivers of Marine Heat Waves in the Northern South China Sea. J. Phys. Oceanogr. 2022, 52, 917–927. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C. Variations in summer marine heatwaves in the South China Sea. J. Geophys. Res. Oceans 2021, 126, e2021JC017792. [Google Scholar] [CrossRef]
- Carvalho, K.; Smith, T.; Wang, S. Bering Sea marine heatwaves: Patterns, trends and connections with the Arctic. J. Hydrol. 2021, 600, 126462. [Google Scholar] [CrossRef]
- Walsh, J.E.; Thoman, R.L.; Bhatt, U.S.; Bieniek, P.A.; Brettschneider, B.; Brubaker, M.; Danielson, S.; Lader, R.; Fetterer, F.; Holderied, K. The high latitude marine heat wave of 2016 and its impacts on Alaska. Bull. Am. Meteorol. Soc. 2018, 99, S39–S43. [Google Scholar] [CrossRef]
- Echevin, V.; Colas, F.; Espinoza-Morriberon, D.; Vasquez, L.; Anculle, T.; Gutierrez, D. Forcings and evolution of the 2017 coastal El Niño off Northern Peru and Ecuador. Front. Mar. Sci. 2018, 5, 367. [Google Scholar] [CrossRef]
- Pearce, A.F.; Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 2013, 111, 139–156. [Google Scholar] [CrossRef]
- Liu, Q.Y.; Wang, D.; Wang, X.; Shu, Y.; Xie, Q.; Chen, J. Thermal variations in the S outh C hina S ea associated with the eastern and central Pacific El Niño events and their mechanisms. J. Geophys. Res. Oceans 2014, 119, 8955–8972. [Google Scholar] [CrossRef]
- Tan, W.; Wang, X.; Wang, W.; Wang, C.; Zuo, J. Different responses of sea surface temperature in the South China Sea to various El Niño events during boreal autumn. J. Clim. 2016, 29, 1127–1142. [Google Scholar] [CrossRef]
- Oliver, E.C.; Donat, M.G.; Burrows, M.T.; Moore, P.J.; Smale, D.A.; Alexander, L.V.; Benthuysen, J.A.; Feng, M.; Sen Gupta, A.; Hobday, A.J. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 2018, 9, 1324. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Ren, G.; You, Q.; Wang, Q.; Niu, Q.; Mu, L. The 2016 record-breaking marine heatwave in the Yellow Sea and associated atmospheric circulation anomalies. Atmos. Res. 2022, 268, 106011. [Google Scholar] [CrossRef]
- Yao, Y.; Wang, C.; Wang, C. Record-breaking 2020 summer marine heatwaves in the western North Pacific. Deep Sea Res. Part II 2023, 209, 105288. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Scannell, H.A.; Sen Gupta, A.; Benthuysen, J.A.; Feng, M.; Oliver, E.C.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Hobday, A.J. A global assessment of marine heatwaves and their drivers. Nat. Commun. 2019, 10, 2624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, R.R.; Taschetto, A.S.; Sen Gupta, A.; Foltz, G.R. Common cause for severe droughts in South America and marine heatwaves in the South Atlantic. Nat. Geosci. 2019, 12, 620–626. [Google Scholar] [CrossRef]
- Sen Gupta, A.; Thomsen, M.; Benthuysen, J.A.; Hobday, A.J.; Oliver, E.; Alexander, L.V.; Burrows, M.T.; Donat, M.G.; Feng, M.; Holbrook, N.J. Drivers and impacts of the most extreme marine heatwave events. Sci. Rep. 2020, 10, 19359. [Google Scholar] [CrossRef]
- Hayashi, M.; Shiogama, H.; Emori, S.; Ogura, T.; Hirota, N. The northwestern Pacific warming record in August 2020 occurred under anthropogenic forcing. Geophys. Res. Lett. 2021, 48, e2020GL090956. [Google Scholar] [CrossRef]
- Elzahaby, Y.; Schaeffer, A.; Roughan, M.; Delaux, S. Oceanic circulation drives the deepest and longest marine heatwaves in the East Australian Current system. Geophys. Res. Lett. 2021, 48, e2021GL094785. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Huang, J.; Zeng, L.; Huang, F. Biases of five latent heat flux products and their impacts on mixed-layer temperature estimates in the South China Sea. J. Geophys. Res. Ocean. 2017, 122, 5088–5104. [Google Scholar] [CrossRef]
- Kuroda, H.; Setou, T. Extensive marine heatwaves at the sea surface in the northwestern Pacific Ocean in summer 2021. Remote Sens. 2021, 13, 3989. [Google Scholar] [CrossRef]
- Amaya, D.J.; Miller, A.J.; Xie, S.-P.; Kosaka, Y. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 2020, 11, 1903. [Google Scholar] [CrossRef] [Green Version]
- Myers, T.A.; Mechoso, C.R.; Cesana, G.V.; DeFlorio, M.J.; Waliser, D.E. Cloud feedback key to marine heatwave off Baja California. Geophys. Res. Lett. 2018, 45, 4345–4352. [Google Scholar] [CrossRef]
- Schmeisser, L.; Bond, N.A.; Siedlecki, S.A.; Ackerman, T.P. The role of clouds and surface heat fluxes in the maintenance of the 2013–2016 Northeast Pacific marine heatwave. J. Geophys. Res. Atmos. 2019, 124, 10772–10783. [Google Scholar] [CrossRef]
- Liu, K.; Xu, K.; Zhu, C.; Liu, B. Diversity of marine heatwaves in the South China Sea regulated by ENSO phase. J. Clim. 2022, 35, 877–893. [Google Scholar] [CrossRef]
- Saleem, F.; Zeng, X.; Hina, S.; Omer, A. Regional changes in extreme temperature records over Pakistan and their relation to Pacific variability. Atmos. Res. 2021, 250, 105407. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, R.; Wang, X. Impacts of diverse El Niño events on north tropical Atlantic warming in their decaying springs. J. Geophys. Res. Ocean. 2021, 126, e2021JC017514. [Google Scholar] [CrossRef]
- Marshall, A.; Hendon, H. Impacts of the MJO in the Indian Ocean and on the Western Australian coast. Clim. Dyn. 2014, 42, 579–595. [Google Scholar] [CrossRef]
- Wang, D.; Xu, T.; Fang, G.; Jiang, S.; Wang, G.; Wei, Z.; Wang, Y. Characteristics of Marine Heatwaves in the Japan/East Sea. Remote Sens. 2022, 14, 936. [Google Scholar] [CrossRef]
- Barkhordarian, A.; Nielsen, D.M.; Baehr, J. Recent marine heatwaves in the North Pacific warming pool can be attributed to rising atmospheric levels of greenhouse gases. Commun. Earth. Environ. 2022, 3, 131. [Google Scholar] [CrossRef]
- Costa, N.V.; Rodrigues, R.R. Future summer marine heatwaves in the western South Atlantic. Geophys. Res. Lett. 2021, 48, e2021GL094509. [Google Scholar] [CrossRef]
- Oliver, E.C.; Burrows, M.T.; Donat, M.G.; Sen Gupta, A.; Alexander, L.V.; Perkins-Kirkpatrick, S.E.; Benthuysen, J.A.; Hobday, A.J.; Holbrook, N.J.; Moore, P.J. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. 2019, 6, 734. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Wang, J.; Yin, J.; Zou, X. Marine heatwaves in China’s marginal seas and adjacent offshore waters: Past, present, and future. J. Geophys. Res. Oceans 2020, 125, e2019JC015801. [Google Scholar] [CrossRef]
- Pilo, G.S.; Holbrook, N.J.; Kiss, A.E.; Hogg, A.M. Sensitivity of marine heatwave metrics to ocean model resolution. Geophys. Res. Lett. 2019, 46, 14604–14612. [Google Scholar] [CrossRef]
- Qiu, Z.; Qiao, F.; Jang, C.J.; Zhang, L.; Song, Z. Evaluation and projection of global marine heatwaves based on CMIP6 models. Deep Sea Res. Part II 2021, 194, 104998. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chen, Y.; Qi, J.; Zhu, Y.; Lu, C.; Yin, B. Attribution of the July 2021 Record-Breaking Northwest Pacific Marine Heatwave to Global Warming, Atmospheric Circulation, and ENSO. Bull. Am. Meteorol. Soc. 2023, 104, E291–E297. [Google Scholar] [CrossRef]
- Plecha, S.M.; Soares, P.M. Global marine heatwave events using the new CMIP6 multi-model ensemble: From shortcomings in present climate to future projections. Environ. Res. Lett. 2020, 15, 124058. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, W.; Yang, J.; Lim Kam Sian, K.T.C.; Ji, J.; Dong, C. Analysis and prediction of marine heatwaves in the Western North Pacific and Chinese coastal region. Front. Mar. Sci. 2022, 9, 2479. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Chiswell, S.M. Global Trends in Marine Heatwaves and Cold Spells: The Impacts of Fixed Versus Changing Baselines. J. Geophys. Res. Ocean. 2022, 127, e2022JC018757. [Google Scholar] [CrossRef]
- Amaya, D.; Jacox, M.G.; Fewings, M.R.; Saba, V.S.; Stuecker, M.F.; Rykaczewski, R.R.; Ross, A.C.; Stock, C.A.; Capotondi, A.; Petrik, C.M. Marine heatwaves need clear definitions so coastal communities can adapt. Nature 2023, 616, 29–32. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.; Chandler, R.; Kendon, E.; Widmann, M.; Brienen, S.; Rust, H.; Sauter, T.; Themeßl, M. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, RG3003. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations–a comparison of methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, Z.; Li, L. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Clim. 2011, 24, 4741–4756. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Liu, Z.; Charles, S.P.; Xu, Z.; Yao, Z. A score-based method for assessing the performance of GCMs: A case study of southeastern Australia. J. Geophys. Res. Atmos. 2013, 118, 4154–4167. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Xu, J.; Li, L. Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Clim. 2015, 28, 8603–8619. [Google Scholar] [CrossRef]
- Schuenemann, K.C.; Cassano, J.J. Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1. Evaluation of late 20th century simulations from IPCC models. J. Geophys. Res. Atmos. 2009, 114, D20113. [Google Scholar] [CrossRef] [Green Version]
- Dunne, J.; Horowitz, L.; Adcroft, A.; Ginoux, P.; Held, I.; John, J.; Krasting, J.; Malyshev, S.; Naik, V.; Paulot, F. The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Agulles, M.; Jorda, G.; Hoteit, I.; Agusti, S.; Duarte, C.M. Assessment of Red Sea temperatures in CMIP5 models for present and future climate. PLoS ONE 2021, 16, e0255505. [Google Scholar] [CrossRef] [PubMed]
- Oliver, E.C.; Benthuysen, J.A.; Darmaraki, S.; Donat, M.G.; Hobday, A.J.; Holbrook, N.J.; Schlegel, R.W.; Sen Gupta, A. Marine heatwaves. Ann. Rev. Mar. Sci. 2021, 13, 313–342. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Li, H.; Sun, L. The Simulation of East Asian Summer Monsoon Precipitation with a Regional Ocean-Atmosphere Coupled Model. J. Geophys. Res. Atmos. 2018, 123, 11,362–11,376. [Google Scholar] [CrossRef]
- Jin, J.; Dong, X.; He, J.; Gao, X.; Zhang, B.; Zeng, Q. A Regional Air-Sea Coupled Model Developed for the East Asia and Western North Pacific Monsoon Region. J. Geophys. Res. Atmos. 2023, 128, e2022JD037957. [Google Scholar] [CrossRef]
ID | Institute | Model | Resolution (km) | Country/Region |
---|---|---|---|---|
1 | CSIRO-ARCCSS | ACCESS-CM2 | 250 | Australia |
2 | AWI | AWI-CM-1-1-MR | 25 | Germany |
3 | BCC | BCC-CSM2-MR | 100 | China |
4 | NCAR | CESM2 | 100 | USA |
5 | NCAR | CESM2-WACCM | 100 | USA |
6 | EC-Earth-Consortium | EC-Earth3 | 100 | Europe |
7 | EC-Earth-Consortium | EC-Earth3-Veg | 100 | Europe |
8 | EC-Earth-Consortium | EC-Earth3-Veg-LR | 100 | Europe |
9 | NOAA-GFDL | GFDL-ESM4 | 50 | USA |
10 | IPSL | IPSL-CM6A-LR | 100 | France |
11 | MIROC | MIROC6 | 100 | Japan |
12 | MPI-M | MPI-ESM1-2-HR | 50 | Germany |
13 | MPI-M | MPI-ESM1-2-LR | 250 | Germany |
14 | MRI | MRI-ESM2-0 | 100 | Japan |
15 | NCC | NorESM2-LM | 100 | Norway |
16 | NCC | NorESM2-MM | 100 | Norway |
NO. | Model NAME | CumInt | MeanInt | MaxInt | Frequency | Duration | Days | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RS | Rank | RS | Rank | RS | Rank | RS | Rank | RS | Rank | RS | Rank | ||
1 | ACCESS-CM2 | 1.22 | 5 | 1.10 | 8 | 1.06 | 10 | 0.74 | 14 | 0.61 | 15 | 0.35 | 14 |
2 | AWI-CM-1-1-MR | 1.54 | 1 | 0.60 | 12 | 0.88 | 11 | 1.06 | 7 | 1.61 | 5 | 1.15 | 4 |
3 | BCC-CSM2-MR | 1.18 | 7 | 1.56 | 4 | 1.28 | 6 | 0.75 | 13 | 1.70 | 2 | 1.11 | 6 |
4 | CESM2 | 0.01 | 16 | 1.69 | 2 | 1.60 | 2 | 1.40 | 3 | 0.00 | 16 | 0.11 | 16 |
5 | CESM2-WACCM | 0.86 | 13 | 0.99 | 11 | 0.57 | 14 | 1.48 | 2 | 0.90 | 13 | 0.27 | 15 |
6 | EC-Earth3 | 1.18 | 6 | 0.44 | 13 | 0.68 | 12 | 1.03 | 8 | 1.46 | 7 | 0.67 | 13 |
7 | EC-Earth3-Veg | 0.98 | 11 | 0.27 | 15 | 0.42 | 16 | 0.97 | 9 | 1.20 | 11 | 0.68 | 12 |
8 | EC-Earth3-Veg-LR | 1.04 | 9 | 0.27 | 16 | 0.49 | 15 | 0.82 | 12 | 1.61 | 6 | 0.95 | 10 |
9 | GFDL-ESM4 | 1.05 | 8 | 1.09 | 9 | 1.38 | 5 | 1.09 | 6 | 1.74 | 1 | 2.00 | 1 |
10 | IPSL-CM6A-LR | 1.33 | 3 | 0.41 | 14 | 0.63 | 13 | 1.33 | 5 | 1.62 | 4 | 0.97 | 9 |
11 | MIROC6 | 0.52 | 15 | 1.67 | 3 | 1.60 | 3 | 0.93 | 10 | 1.33 | 10 | 1.04 | 7 |
12 | MPI-ESM1-2-HR | 1.46 | 2 | 1.11 | 7 | 1.15 | 9 | 0.32 | 15 | 1.66 | 3 | 1.12 | 5 |
13 | MPI-ESM1-2-LR | 1.24 | 4 | 1.32 | 6 | 1.27 | 7 | 0.00 | 16 | 1.35 | 9 | 0.91 | 11 |
14 | MRI-ESM2-0 | 0.92 | 12 | 1.98 | 1 | 1.81 | 1 | 0.90 | 11 | 1.41 | 8 | 1.01 | 8 |
15 | NorESM2-LM | 0.62 | 14 | 1.34 | 5 | 1.47 | 4 | 1.78 | 1 | 0.89 | 14 | 1.21 | 3 |
16 | NorESM2-MM | 0.99 | 10 | 1.06 | 10 | 1.19 | 8 | 1.39 | 4 | 0.98 | 12 | 1.28 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, J.; Shan, H.; Liang, J.-H.; Dong, C. Assessment and Projections of Marine Heatwaves in the Northwest Pacific Based on CMIP6 Models. Remote Sens. 2023, 15, 2957. https://doi.org/10.3390/rs15122957
Xue J, Shan H, Liang J-H, Dong C. Assessment and Projections of Marine Heatwaves in the Northwest Pacific Based on CMIP6 Models. Remote Sensing. 2023; 15(12):2957. https://doi.org/10.3390/rs15122957
Chicago/Turabian StyleXue, Jingyuan, Haixia Shan, Jun-Hong Liang, and Changming Dong. 2023. "Assessment and Projections of Marine Heatwaves in the Northwest Pacific Based on CMIP6 Models" Remote Sensing 15, no. 12: 2957. https://doi.org/10.3390/rs15122957
APA StyleXue, J., Shan, H., Liang, J. -H., & Dong, C. (2023). Assessment and Projections of Marine Heatwaves in the Northwest Pacific Based on CMIP6 Models. Remote Sensing, 15(12), 2957. https://doi.org/10.3390/rs15122957