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Abstract: The detection and recognition of traffic signs is an essential component of intelligent vehicle
perception systems, which use on-board cameras to sense traffic sign information. Unfortunately,
issues such as long-tailed distribution, occlusion, and deformation greatly decrease the detector’s
performance. In this research, YOLOv5 is used as a single classification detector for traffic sign
localization. Afterwards, we propose a hierarchical classification model (HCM) for the specific
classification, which significantly reduces the degree of imbalance between classes without changing
the sample size. To cope with the shortcomings of a single image, a training-free multi-frame
information integration module (MIM) was constructed, which can extract the detection sequence
of traffic signs based on the embedding generated by the HCM. The extracted temporal detection
information is used for the redefinition of categories and confidence. At last, this research performed
detection and recognition of the full class on two publicly available datasets, TT100K and ONCE.
Experimental results show that the HCM-improved YOLOv5 has a mAP of 79.0 in full classes, which
exceeds that of state-of-the-art methods, and achieves an inference speed of 22.7 FPS. In addition,
MIM further improves model performance by integrating multi-frame information while only slightly
increasing computational resource consumption.

Keywords: traffic sign; intelligent vehicle; long-tailed distribution; anomalies; embedding;
information integration

1. Introduction

Traffic sign detection and recognition is an essential component of automated driving
assistance systems, which can provide critical road guidance information. As illustrated in
Figure 1a, traffic signs are typically classified into three types: warning, prohibitory, and
mandatory. Each of these categories can be further subdivided to provide a more detailed
range of guidance information, such as road types, prohibitions, speed limits, and height
limits. Traffic sign detection and recognition require the precise location and classification
of traffic signs in the vehicle image.

Traffic signs are designed with distinct shapes such as squares, circles, and triangles, as
well as distinct red, yellow, and blue colors to highlight the sign. Traditional detection and
recognition methods are thus achieved by designing manual feature descriptors for traffic
sign detection and recognition. The use of sliding windows to find high-probability regions
in an image containing traffic signs is one example [1]. Researchers have also attempted to
determine adaptive segmentation thresholds for traffic sign extraction and classification
by computing histograms of images [2,3]. Color space has also been used, for example, in
segmentation in HSV [4]. Researchers extracted SURF feature points from signs and used
corroding images to match them [5]. In some studies, more complex feature descriptors,
such as coarse localization of signs based on the Hough transform [6], were used for sign
extraction. Traditional digital morphology-based methods typically necessitate clear images
with high-resolution signs and no anomalies to interfere, making them difficult to apply in
complex real-world scenarios.
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Figure 1. Analysis of traffic signs. (a) A common way of classifying traffic signs; (b) several situations 
that have a negative impact on the detector; (c) sample distribution of the TT100K dataset. 
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phology to improve the model’s robustness. Traditional HOG features were combined 

Figure 1. Analysis of traffic signs. (a) A common way of classifying traffic signs; (b) several situations
that have a negative impact on the detector; (c) sample distribution of the TT100K dataset.

Researchers added machine learning algorithms for refinement based on digital mor-
phology to improve the model’s robustness. Traditional HOG features were combined
with SVM for traffic sign detection and classification [7,8]. The researchers attempted to
segment the images based on color features and then used SVM to implement classifi-
cation on the segmented regions [9–11]. Since many traffic signs are circular in shape,
the researchers used the circular Hough transform to detect the signs and then classified
them using SVM [12,13]. Although the support vector machine improves detection and
recognition accuracy, it is still heavily reliant on manual features. As a result, the improved
model, while capable of more accurate and detailed classification, struggles to deal with
the anomalies depicted in Figure 1b.

Object detection algorithms based on convolutional neural networks have become
a better choice for academics due to the extensive use of high-performance computer
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systems. However, smaller traffic signs are difficult to detect and classify accurately as
the detailed features of small targets are difficult to transfer to the deeper feature maps.
Some researchers have used image super-resolution algorithms to enhance the detection of
small targets [14,15]. Since attention mechanisms can drive the network to focus more on
channel and spatial feature acquisition, adding attention mechanisms to the model can also
improve the model’s ability to extract semantic features [16–20].

From different viewpoints, traffic signs produce images of varying scales, and changes
in scale can also affect detector performance. Researchers attempted to incorporate
deformable convolution into the network, which can adjust the perceptual field adap-
tively [19,21,22]. Because the backbone generates feature maps of varying sizes during
layer-by-layer downsampling, some researchers have fused feature information from vari-
ous scales by constructing feature pyramids in order to improve the model’s extraction of
multi-scale features [22–30].

Some researchers have improved model performance without changing the detector
by using pre-processing techniques, such as image enhancement based on probabilistic
models [31], highlighting edge features of traffic signs [32], and enhancing the hue of dark
areas of images [33]. In addition, on-board cameras typically take high-resolution images for
sensing the vehicle’s surroundings but increase the search range for traffic signs. Therefore,
an attempt has been made in some studies to construct a coarse-to-fine framework, which is
used to reduce computational costs and improve model performance [34–36]. Background
information is frequently ignored, but some researchers have improved model accuracy
by using background detail features of neighboring signs [37,38]. In addition, spiking
neural networks (SNN) are used to improve existing traffic sign detection and recognition
algorithms [39–41], which can extract time-related features and have higher computational
efficiency on hardware platforms.

To obtain accurate indication information, we must classify traffic signs down to the
smallest category, which requires the algorithm to accurately identify up to several hundred
sign categories. As shown in Figure 1c, there is a great difference in sample size between
the traffic sign classes. This will result in classes with larger sample sizes having better
classification accuracy, while classes with sparse samples perform poorly [42]. Existing
studies usually only identify traffic signs according to three categories: prohibited, warning,
and mandatory, or remove categories with a sample size of less than 100. However, each
category of traffic sign is designed to convey important guidance information. Therefore,
the detection and recognition of traffic signs need to be implemented in as comprehensive
a range of categories as possible.

On-board cameras can continuously capture traffic signs, but most existing studies
only use information from a single image. Missed detections or misclassifications due to
anomalies such as occlusion and deformation are typically present in only a few frames, but
incorrect detection of a single sign can also pose a serious hazard, negatively impacting the
environment, infrastructure, and human life. Some researchers have attempted to improve
detector performance using image sequences in previous studies [43–46], but this often
necessitates an additional training process and consumes more computational resources.
Meanwhile, successive detections can result in redundant results.

In general, the main contributions of this paper are summarized as follows:

(1) We propose a hierarchical classification model (HCM) based on the natural distribu-
tion characteristics of traffic signs, which is used for the classification of traffic signs
in full classes. Meanwhile, the HCM significantly reduces the degree of imbalance
between classes without changing the sample size.

(2) To deal with missing or misleading information caused by anomalies, this study de-
signed a multi-frame information aggregation module (MIM) to extract the detection
sequence of traffic signs, which is based on the embedding generated by the HCM.
The temporal sequence of detection information can deal with the shortcomings of a
single image, reducing false detections caused by anomalies.
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(3) We validated our method using two open-source datasets, TT100K and ONCE. The
HCM-improved YOLOv5 achieves a mAP of 79.0 in full classes, exceeding existing
state-of-the-art methods. Experiments using ONCE show that MIM further improves
the performance of the model by integrating multi-frame information.

2. Methods

The image sequence I captured by the on-board camera is used as input in this work,
and we need to detect and recognize traffic signs for each frame. Specifically, we need to
detect the bounding box bi =

{
xi, yi, wi, hi} of each traffic sign and recognize the specific

category ci. The central coordinates, width, and length of the bounding box are noted as x,
y, w, and h, respectively.{

bi
t, ci

t

∣∣∣ I
}

, ci
t ∈ K, t ∈ T, i ∈ {1, 2, · · · , Nt} (1)

In conclusion, our work can be summarized as Equation (1). K and T in the formula
are the set of traffic sign categories and the set of time, respectively. Nt is the number of
traffic signs in the image It. Figure 2 illustrates the overall framework of our method. While
the vehicle moves, the on-board camera catches street scenes, creating a temporal sequence
of photos I. The processing steps of our algorithm can be summarized as follows:
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Figure 2. Model overview. Traffic signs are captured several times by the on-board camera while
the vehicle is in motion. First, YOLOv5 performs the positioning of the traffic sign. Afterwards, the
HCM determines the specific category. Finally, the MIM is used to integrate the information from the
multiple detections to redefine the results at time t.

Step 1: We use the previous m frames {It−m, It−m+1, . . . , It−1} as reference frame set
for a given image It inside I.

Step 2: Based on the image It and all reference frames, YOLOv5 generates a number
of candidate regions through detection.

Step 3: The hierarchical classification module (HCM) implements the specific classifi-
cation of candidate areas.
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Step 4: Based on the embedding extracted by the HCM, the multi-frame information
integration module (MIM) searches for associated boxes in reference frames.

Step 5: MIM analyzes the detection sequences generated by the association operation,
which is used for category and confidence redefinition.

2.1. Detector

Object detection is used to locate targets in an image and perform category recogni-
tion. Yet, because of small objects, large-scale changes, and long-tailed distributions, it is
challenging to accomplish robust detection by merely applying a generic object detection al-
gorithm. At the same time, the algorithm’s inference speed is a crucial assessment criterion
in order to interpret sign information in a timely manner on rapidly moving cars.

Object detection can be divided into two categories, depending on the framework:
one-stage and two-stage. Object detection algorithms with two stages generate regional
proposals first, then classify each proposed region. A considerable number of regions of
interest are generated via region proposals. For example, R-CNN [47] creates approxi-
mately 2000 proposed regions in each input image. Because each proposed region needs
independent feature extraction and classification, two-stage object detection necessitates
considerable inference space and time costs.

In contrast to the classification and regression of proposed regions, one-stage object
detection typically divides the image into a number of grids, each containing a number of a
priori boxes. Following that, based on the feature maps provided by the backbone network,
the algorithm predicts the position and class of objects within each grid [48]. Compared to
the two-stage algorithm, the one-stage object detection uses a more direct global regression
and classification. The one-stage framework allows for fast inference as there are not a
large number of candidate regions to be computed independently.

In addition to the speed of inference, the accuracy of the model is an important
consideration. The scale fluctuations of traffic signs and small objects result in generic
object detection methods that are frequently hard to recognize robustly. MS-COCO [49]
defines objects with an area of fewer than 32 × 32 pixels as small objects. The sparse
appearance of small objects makes it difficult for the algorithm to distinguish between
background and object, and it also places higher challenges on the model’s detection
accuracy [50]. During the feature extraction process, the backbone network can generate
feature maps of different sizes to represent information at various scales. Shallow feature
maps contain more detailed spatial features, while deeper feature maps represent more
abstract semantic features. To address the performance decrease caused by scale factors,
researchers designed the feature pyramid network (FPN) for fusing feature information at
multiple scales by concatenating or summing elements between feature maps.

For reasons of inference speed and detection accuracy, the detection and recognition
of traffic signs require a one-stage object detection algorithm that adapts to the multi-scale
variation. Following comparison, YOLOv5 is selected as the detector in this research. As
a member of the yolo series of object detection algorithms, YOLOv5 not only inherits the
conventional quick detection capabilities but also applies a number of tactics to mitigate
the detrimental impacts of scale variation and small objects. Specifically, benefiting from
a unique residual structure and spatial pyramidal pooling, YOLOv5 has excellent multi-
scale feature extraction capabilities, which help to extract traffic sign features at different
distances. The creation of a bi-directional feature pyramid structure improves information
transfer across features at different scales and the model’s retention of detailed features in
the image. At the same time, traffic signs have distinct shapes and color qualities that set
them out from the background, so YOLOv5 can be used to precisely locate traffic signs in
an image.

In the real world, traffic signs suffer from a sample imbalance between categories,
which has a direct impact on the dataset. Although object detection algorithms contain
both localization and classification capabilities, the long-tailed distribution of traffic signs
frequently results in significant a reduction in the algorithm’s classification performance.
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YOLOv5 achieves multi-classification in the head by modifying the feature map size, but
the imbalanced distribution of data has a substantial impact on the model’s detection and
classification performance. Therefore, YOLOv5 is not suitable for both the detection and
recognition of traffic signs, but traffic sign localization can be effectively solved by using a
single classification that distinguishes the traffic signs from the background.

Given the input image sequence I, we will utilize YOLOv5 to locate the traffic signs in
the image. For one of the images It, the detector will obtain Nt bounding boxes and the
corresponding confidence, denoted as Dt =

{
bi

t, con f i
t
}

, i ∈ {1, 2, · · · , Nt}. The bounding
box is represented by the term bi

t in the equation, which contains the length, width, and
centroid coordinates of the box, while the other component con f i

t is used to describe the
confidence of the detection, con f i

t ∈ [0, 1]. By processing the entire image sequence with
YOLOv5, we can obtain a detection sequence D.

2.2. Hierarchical Classification Model

Although YOLOv5 as a detector can effectively address the problem of localizing traffic
signs in photos, robust classification is difficult to obtain. The difficulty in categorization
is due to the fact that there are hundreds of kinds of traffic signs and that the distribution
of samples is significantly imbalanced. In general, YOLOv5 needs a new classification
module that is able to achieve accurate classification for all classes in the case of long-
tailed distributions. Moreover, as there is often more than one traffic sign in an image, the
classification model should avoid using complex structural designs, which can lead to long
processing times for a single image.

The dataset of traffic signs generally suffers from an uneven distribution of samples,
which reflects the distribution in realistic scenarios. The mandatory category of signs, which
is typically used to guide lane information, has a large sample size, while the warning
category of signs has an extremely limited sample size. Despite the fact that there are
hundreds of traffic sign classifications, a few common categories account for the vast
majority of samples in the dataset. Based on the sample size, we divided the traffic sign
categories in TT100K into three categories: large, medium, and small. Categories with fewer
than 10 samples were labeled as small, those with more than 50 samples were labeled as
large, and the remaining categories were labeled as medium. Table 1 depicts the percentage
of sample size and the percentage of number of categories for these three types of signs.
The category with a large sample size accounts for only 20.6% of all categories but has
43.9% of the sample size. In contrast, the low sample size category accounts for more than
half of all categories but has a sample size of only 12.2%.

Table 1. Statistical results for the three categories.

Percentage Type Large Medium Small

Sample size 43.9% 43.9% 12.2%
Number of categories 20.6% 24.5% 54.8%

When faced with imbalanced sample sizes, previous research has often used either
under-sampling or oversampling to balance the sample size. Both strategies are data-level
approaches, but under-sampling yields less data for model training, whereas oversampling
lengthens training time and may result in model overfitting [42]. Unlike data augmentation,
we employ a grouping strategy to classify traffic sign categories. Traffic signs are classified
into three superclasses: warning, prohibitory, and mandatory, with a number of specialized
subclasses within each superclass. As illustrated in Figure 3, the superclasses range signifi-
cantly in color and shape. For example, prohibitory signs have a red circular border, but
warning signs have triangular and yellow features. This significant difference in features
makes it easy for the classification algorithm to achieve better classification accuracy on
the superclasses. The difficulty in classification is to precisely identify subclasses with
a long-tailed distribution. However, we discovered that the majority of the mandatory
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signs are seen in classes with a large sample size, whereas the warning signs are typically
found in classes with a small sample size. While the overall sample distribution exhibits a
significant long-tailed distribution, the difference in sample size between subclasses within
a superclass is much smaller. Thus, grouping can improve the overall performance of the
classification model by reducing the degree of imbalance without changing the sample size.
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Based on the grouping results, a lightweight hierarchical classification module (HCM)
was built and used to identify superclasses and subclasses. Although classifiers tailored
to each superclass can be created, this typically slows down inference. Therefore, the
HCM is made up of four structurally identical sub-networks, one of which serves as a
superclass classifier and the other three for subclass recognition within the superclass.
Each subnetwork can be divided into two parts: the backbone and the classification
component (CS). The extraction of deep semantic features is required for a number of
candidate regions provided by YOLOv5. We built a lightweight backbone h based on
MobileNet to accomplish quick feature extraction. The input images were initially rescaled
to 224 × 224 × 3. Following that, we extracted features using lightweight convolutional
components. To extract features, we then constantly downsample the input image based on
the convolutional component. This procedure is as follows: given a candidate region b, the
backbone h generates a high-dimensional embedding e through progressive downsampling,
e = h(b).

Following traffic sign feature extraction, we combine the convolution and softmax
functions to generate a classification component g. Convolution is used for classification
rather than fully connected layers because the number of parameters in fully connected
layers increases dramatically as the number of classes to be classified increases, increasing
space and time consumption. We first determine the convolution kernel θ depending on
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the number of categories, then change the feature embedding e to a feature map of the
desired size using convolution operations, and lastly use the softmax function to produce
the classification result c, c = g(e, θ) or c = g(h(b), θ).

As shown in Figure 4, HCM begins prediction by identifying superclasses, following
which the relevant subclass classifier is chosen for a specific classification. Simultaneously,
there are model training requirements. We adjust the number of classifications by changing
the convolution kernel parameter θ in the classification component g. Take the superclass
classifier as an example, where the classification component generates a feature map of size
1 × 3 for the identification of the three superclasses. After completing the structural design
of the HCM, we use a cross-entropy loss function for model training. The cgt and cpre in
Equation (2) denote the ground truth and predicted value, respectively.

Llog
(
cgt, cpre

)
= −

[
cgt log

(
cpre
)
+
(
1− cgt

)
log
(
1− cpre

)]
(2)
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For one of the frames It, we first extract all the candidate regions from the detection re-
sult Dt. Afterwards, the HCM identifies each candidate region bi

t independently. Following
the classification results, we supplement Dt with specific categories and embeddings. After
processing by HCM, Dt can be expressed by Equation (3).

Dt =
{

bi
t, con f i

t , ci
t, ei

t

}
, i ∈ {1, 2, · · · , Nt} (3)

2.3. Multi-Frame Information Integration Module

Although the combination of YOLOv5 and HCM can mitigate the detrimental effects
of scale variation and long-tailed distribution, occlusion and deformation issues in real-
world scenarios can still result in missed detections and misclassification. However, we
discovered that traffic signs are typically captured multiple times by the in-vehicle camera,
and the majority of the detection and recognition results are correct, while occlusion and
deformation are only present in a few frames. To use information from multiple frames,
the multi-frame information integration module (MIM) first correlates detection results
between frames using the embedding e generated by the HCM and then uses the output
from previous frames to improve model performance. The accumulation of detection
results from multiple frames can compensate for a single frame’s lack of information,
reducing the number of missed detections and misclassifications. Besides that, comparing
inter-frame detection outputs can be used to eliminate redundant results produced during
the continuous detection state.

2.3.1. Correlating Detection Results

Before association, we need to filter the image sequence. The previous m frames
{It−m, It−m+1, . . . , It−1} in image sequence I are utilized as a reference frame set for a
given picture It, where the number of m is connected to the number of times the traf-
fic sign appears in the image sequence. Following that, MIM needs to find associated
detections in the reference frame, which necessitates applying high-dimensional embed-
dings. Although several methods for obtaining embedding have been proposed in previous
works [51,52], embeddings generated using HCM can avoid additional computational
resource consumption while achieving association.

The HCM generates a high-dimensional embedding of traffic signs, which is useful for
distinguishing between different types of traffic signs but difficult to differentiate between
instances of the same type. To that purpose, we extract the feature embedding e and the
centroid coordinates of the bounding box, which are used for the traffic sign’s distinguishing
feature set p, p = {x, y, e}. Following that, we created a function f to determine the
similarity between two traffic signs. Specifically, we first designed fcos, a function for
quantifying the similarity of embeddings based on cosine similarity. Equation (4) can
be used to calculate the corresponding embedding similarity given two distinguishing
features, p1 and p2.

fcos(e1, e2) =
e1·e2

|e1|·|e2|
(4)

Following that, we created fcenter, a similarity computation function based on the
Euclidean distance. Due to the large range of the Euclidean distance, fcenter needs to
perform a normalizing operation, as indicated in Equation (7).

relu(x) = max(0, x) (5)

ed(x1, x2, y1, y2) =

√
(x1 − x2)

2 + (y1 − y2)
2 (6)

fcenter(x1, x2, y1, y2) = 1− tanh
(

relu(ed(x1, x2, y1, y2)− α)

β

)
(7)



Remote Sens. 2023, 15, 2959 10 of 26

To enable an adjustable normalization calculation of the Euclidean distance, a hyper-
parameter α is set in fcenter to reflect the centroid offset of the traffic sign instance between
frames. As shown in Figure 5, the computed similarity is greatest when the Euclidean
distance is less than α. We also utilize another hyperparameter β to alter the Euclidean
distance range of interest. Lastly, Equation (8) depicts the weighted sum integration of
similarity information from embedding and Euclidean distance.

f (p1, p2) = ωcos × fcos(e1, e2) + ωcenter × fcenter(x1, x2, y1, y2)
s.t. ωcos + ωcenter = 1, ωcos > ωcenter

(8)
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Since the function f achieves result association mostly through embedding, the weight
parameters should be set so that ωcos is greater than ωcenter. Figure 6 shows two examples
of how similarity information from both aspects can be used to distinguish among different
traffic signs. For a distinguishing feature pj

t in current frame It, j ∈ {1, 2, · · · , Nt}, the
similarity is calculated based on the function f for the results in the reference frame
Ire, re ∈ {t−m, t−m + 1, · · · , t− 1}. As stated in Equation (9), the procedure will produce
a set of similarity scores. Afterwards, we extracted the maximum similarity scores smax

re and
the corresponding distinguishing feature pmax

re based on Equations (10) and (11), respectively.{
si

re

∣∣∣si
re = f

(
pj

t, pi
re

)
, i ∈ {1, 2, · · · , Nre}

}
(9)

smax
re = max

{
si

re

}
(10)

pmax
re = argmax f

(
pj

t, pi
re

)
, s.t. i ∈ {1, 2, · · · , Nre} (11)
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If smax
re exceeds the similarity threshold ε, the detection result corresponding to pmax

re

becomes the association result in Ire, which is denoted as dj
re. Similarly, we seek association

results that satisfy the requirements in all reference frames. After that, the detection result dj
t

is included to generate the sequence of detection results uj =
{

dj
t−m, dj

t−m+1, . . . , dj
t−1, dj

t

}
.

Lastly, for all traffic signs in the current frame It, we can extract the set of detection results
Ut =

{
uj, j ∈ {1, 2, · · · , Nt}

}
.

2.3.2. Sequence Analysis

In real-world circumstances, traffic signs have anomalies such as occlusion and defor-
mation, which can lead to false detection or misclassification by the detector. Fundamentally,
the anomalies cause the image’s information to be absent or deceptive. As anomalies are
typically present in only a few frames, the lack of information in a single image can be com-
pensated for by employing several detections, which can enhance the model’s performance
even further.

Based on the findings of the preceding analysis, MIM redefines categories and confi-
dences based on the sequence of detection results, as illustrated in Figure 7. To count the
confidence of category ctarget in the sequence, we construct a statistical function v, denoted
as Equation (12). After that, Equation (13) is used to calculate the category with the highest
cumulative confidence in the sequence uj. Finally, the category with the highest confidence

becomes the redefinition category cj
t, while the redefinition confidence con f j

t is calculated
by Equation (14).

v
(
d, ctarget

)
=

{
con f , i f c = ctarget

0, i f c 6= ctarget
(12)

cj
t = argmax

t

∑
τ=t−m

v(dτ , c), s.t. c ∈ K (13)

con f j
t =

1
m + 1

t

∑
τ=t−m

v
(

dτ , cj
t

)
(14)
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then redefined by integrating information from multiple detections.

To eliminate detection results with poor confidence, a hyperparameter γ is applied.

When the confidence con f j
t is greater than γ, the categories and confidence levels in dj

t are
replaced by the redefined results. The final result can be expressed by Equation (15). Based
on the same process, we redefine all detection results in current frame It.

Dt =

{
bj

t, con f j
t , cj

t, ej
t

}
, j ∈ {1, 2, · · · , Nt} (15)

Overall, by integrating information from multiple detections, sequence analysis mit-
igates the unfavorable impact of abnormalities. While the majority of the results in the
detection sequence are correct, the redefinition results from sequence analysis can cor-
rect for a small number of classification errors. Simultaneously, deformation might occur
at viewpoints near traffic signs, which usually results in low confidence in the results.
When employing multiple detections, the confidence level can be enhanced by leveraging
high-confidence information from previous results, resulting in fewer missed detections.

3. Results
3.1. Dataset

We deal with specific kinds of traffic signs in this study; however, a portion of the
traffic sign datasets are only labeled with three categories: warning, prohibitory, and
mandatory [53,54]. In contrast, TT100K [55] and ONCE [56] are better candidates because
their annotation information is more detailed.

TT100K contains 10,000 images with a resolution of 2048 × 2048. At the same time,
the data annotation is further refined into 232 specific categories, as shown in Figure 8.
Existing studies typically remove categories with a sample size of less than 100 [19,57–60],
but we use the full traffic sign category for model training and testing. On the other hand,
the ONCE dataset is an autonomous driving dataset with millions of scenes. The images
in the dataset were selected from 144 h of on-board camera video, taken under different
lighting and weather conditions. In order to use the temporal image data in ONCE, we
annotated the ONCE test set similarly to TT100K. After removing the night data, the test
set contains 13,268 time-series images with a resolution of 1920 × 1020.
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3.2. Metrics

The experiment uses precision, recall, and F1 score as metrics to evaluate the overall
performance of the detector, as indicated in Equations (16)–(18). F1 is the arithmetic mean
of precision and recall.

Precision =
TP

TP + FN
(16)

Recall =
TP

TP + FP
(17)

F1 =
2× Precision× Recall

Precision + Recall
(18)

where true positives (TP) are the number of samples that are actually positive and classified
as positive by the classifier; false positives (FP) are the number of samples that are actually
negative but classified as positive by the classifier; and false negatives (FN) are the number
of samples that are actually positive but classified as negative by the classifier.

Certain evaluation criteria, such as precision, have the potential to mislead
researchers [42]. When a long-tailed distribution exists, high scores may mistakenly repre-
sent good performance. As a consequence, we use mAP to further evaluate the model’s
performance. As indicated in Equation (19), mAP is the average of each category’s mean
average precision, i.e., the average precision of all categories divided by the number of
categories. This paper uses a fixed intersection-over-union (IoU) value of 0.5 for comput-
ing mAP.

mAP =
∑ Average Precision

N(Class)
(19)
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3.3. General Detector

Although newer versions of the YOLO model have been proposed, YOLOv5 still has
an advantage in the detection of traffic signs. To prove this point, the stable YOLOv7 was
chosen for comparison. Based on the TT100K dataset, we calculated the overall metrics for
YOLOv5, YOLOv7_l, and YOLOv7_x on the single classification detection task, as shown
in Table 2.

Table 2. The overall metrics of YOLOv5 and YOLOv7 when used as a single classification detector.

Method Precision (%) Recall (%) F1 (%) AP (%)

YOLOv5 92.68 95.87 94.24 96.01
YOLOv7_l 95.67 88.71 92.06 96.52
YOLOv7_x 95.57 89.43 92.40 96.72

YOLOv7 outperformed YOLOv5 in terms of AP; however, when inferring, the de-
tection algorithm needed to determine the final output based on a confidence threshold.
Based on the same confidence threshold of 0.5, YOLOv7_l outperforms YOLOv5 in terms
of precision but is lower than YOLOv5 in terms of recall and F1 score. Therefore, YOLOv5
is more suitable for traffic sign detection than YOLOv7.

We tested performance using SSD, Faster RCNN, CenterNet, and YOLOv5 as baselines,
which are derived from diverse architectures of target detection algorithms, to indicate that
generic object detection algorithms are challenging to apply to the detection and recognition
of traffic signs. SSD and YOLOv5 are typical one-stage models; Faster RCNN is a two-stage
algorithm; and CenterNet is well known for its unique anchor-free architecture. Since
TT100K has detailed category information, all baselines are trained using the training set of
TT100K until the model converges.

First, we recorded the overall metrics of the baselines on the TT100K test set in
Table 3. The results show that CenterNet and YOLOv5, which have been proposed in recent
years, outperformed SSD and Faster RCNN. Figure 9 compares the detection results of the
baselines to further analyze the reasons for the difference in performance. The traffic signs
in the red boxes are typical small objects in this case, and the signs in the yellow and blue
regions show deformations due to the viewpoint. According to the results, SSD and Faster
RCNN, which lack the ability to fuse multi-scale information, have a high percentage of
missed detections on small objects, whereas CenterNet and YOLOv5, which use a feature
pyramid structure, detect much more small-object traffic signs.

Table 3. The overall metrics of baselines evaluated on the TT100K dataset.

Method Precision (%) Recall (%) F1 (%)

SSD 32.26 12.56 18.08
Faster RCNN 33.30 57.02 42.04

CenterNet 54.32 57.12 55.69
YOLOv5 74.37 80.93 77.51

At the same time, this example reflects the negative impact of the long-tailed distribu-
tion on the detector. Specifically, the traffic sign in the yellow area has some deformation,
but the sample size of the corresponding category is sufficient. In contrast, the correspond-
ing category in the blue region has a much smaller sample size. Although the traffic signs
in the yellow and blue areas have similar deformations, the difference in sample size leads
to completely different results.
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The overall metrics do not accurately represent the model’s performance across cat-
egories with varied sample sizes. As a result, we first compute the average precision of
the baseline across all categories. After that, we calculated mAP in accordance with the
difference in sample size, which is shown in Table 4.

Table 4. The mAP of baselines evaluated on the TT100K dataset.

Method mAPall mAPsmall mAPmedium mAPlarge

SSD 5.87 1.92 8.69 13.00
Faster RCNN 10.30 7.31 11.41 16.93

CenterNet 16.95 4.87 17.11 48.88
YOLOv5 26.64 1.73 36.78 80.79

The results show that there is a significant difference in accuracy between the categories
with an adequate sample size and those with fewer samples. YOLOv5 has a higher mAP
in categories with sufficient sample size. However, for the category with fewer samples,
the gap between baselines is substantially lower. As a result, YOLOv5 is not suitable
for combining detection and multi-classification tasks for objects having a long-tailed
distribution, such as traffic signs.
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The photos in TT100K are often taken in bright light, and the majority of the samples
are small. ONCE, on the other hand, records photographs in a variety of weather conditions,
such as sunny, rainy, and cloudy days, but with a lower proportion of small objects than
TT100K. We used the same strategy to compute the metrics for the ONCE baseline method
and recorded them in Table 5.

Table 5. The overall metrics of baselines evaluated on the ONCE dataset.

Method Precision (%) Recall (%) F1 (%)

SSD 82.89 5.53 10.36
Faster RCNN 74.32 48.25 58.51

CenterNet 95.43 42.11 58.43
YOLOv5 87.69 71.23 78.61

The test results on ONCE are basically unchanged, with the exception that Faster
RCNN performs substantially better than TT100K on ONCE, showing that the small object
is the primary cause for Faster RCNN’s limited performance. Figure 10 shows detection
in three types of weather to illustrate the impact of weather on model performance. The
images in the sunny environment are clear, but those in the cloudy and rainy surroundings
are substantially dimmer. The effect of environmental elements is also represented in the
baseline results; for example, cloudy and rainy conditions result in more missed detections
or misclassifications. It was also discovered that, while Faster RCNN performed well
overall, it lacked localization precision.
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Based on this, we calculated the mAP of the baseline for categories with varying
sample sizes, as shown in Table 6. The results of the tests show that the Faster RCNN
outperforms SSD and CenterNet in the less-sample category. On cloudy days, the Faster
RCNN performs better as a two-stage object detection method.
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Table 6. The mAP of baselines evaluated on the ONCE dataset.

Weather Method mAPall mAPsmal mAPmedium mAPlarge

All

SSD 11.23 8.02 7.58 30.88
Faster RCNN 35.15 28.85 35.71 55.22

CenterNet 17.52 8.12 11.11 64.83
YOLOv5 39.59 25.60 43.49 77.82

Sunny

SSD 15.51 11.68 10.30 47.27
Faster RCNN 41.08 37.78 41.58 55.12

CenterNet 22.61 11.38 21.04 79.16
YOLOv5 46.01 31.91 55.42 86.67

Rainy

SSD 25.79 22.96 24.27 61.51
Faster RCNN 44.76 37.67 60.92 74.29

CenterNet 37.06 26.67 58.37 87.51
YOLOv5 53.95 42.66 83.07 90.78

Cloudy

SSD 16.82 10.23 11.73 38.39
Faster RCNN 47.99 46.44 42.3 57.58

CenterNet 23.62 0.14 26.51 79.44
YOLOv5 45.55 23.69 55.12 90.66

3.4. HCM-Based Method

This section evaluates the performance of the HCM-improved model to validate the
efficacy of our method. The HCM-improved YOLOv5 is labeled as YOLOv5-HC. In the
training process, the input image resolution was adjusted from 2048 × 2048 to 640 × 640
after downsampling. The initial learning rate of the model was set to 0.001, and Adam was
used as the optimizer for the network training.

Since HCM is an image classification model, the TT100K training set must be cropped
based on the annotations to obtain picture samples of traffic signs. HCM is composed
of four separate sub-networks, one of which produces a feature map of size three for
superclass recognition and is trained using all of the data in the training set. The remaining
subnetworks are used for the three superclasses’ subclass identification, and each sub-
network is trained using data from the corresponding superclass. The subnetwork for
mandatory sign recognition, in particular, generates a feature map of dimension 22, which
corresponds to the 22 mandatory traffic sign subclasses. Similarly, to accommodate the
specific number of subclasses, the sub-networks used to recognize prohibitory and warning
signs will build feature maps of dimensions 119 and 32, respectively.

During the training of each sub-network, the input image was resized to 224 × 224
while Adam was set as the network’s optimizer. The network training was divided into two
sections. First, we freeze the backbone weights and set the learning rate at 1e-3. Following
that, training with 20 epochs is used to change the weights of the convolutional layer in
the classification component. The backbone weights are unfrozen in the second stage, and
the learning rate is decreased to 1 × 10−4. To finish fine-tuning the weights, the model is
trained for 30 epochs.

After finishing the training, we recorded the overall metrics of YOLOv5-HC on the
TT100K test set in Table 7. The results show that YOLOv5-HC outperformed YOLOv5 by
11.16%, 14.36%, and 12.64 points in precision, recall, and F1 score, respectively. YOLOv5-
HC discovered the most complicated small object i2r in the red region shown in Figure 11.
Meanwhile, only YOLOv5-HC correctly classified the few-sample category sign in the
blue region.

Table 7. The overall metrics of YOLOv5 and YOLOv5-HC evaluated on the TT100K dataset.

Method Precision (%) Recall (%) Inference Speed

YOLOv5 74.37 80.93 37.1 FPS
YOLOv5-HC 85.53 95.29 22.7 FPS
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We computed mAP for YOLOv5-HC on categories with varied sample sizes in order to
explicitly analyze the performance of HCM on fewer sample categories, which is recorded
in Table 8. YOLOv5-HC improves accuracy across all categories. As the sample size
reduces, the degree of performance improvement of HCM on YOLOv5 increases. In
addition, we compared YOLOv5-HC with related methods in full classes, as shown in
Table 9. Compared to the state-of-the-art model, YOLOv5-HC has a 7.1% improvement in
mAP across all categories. Furthermore, our method has fewer model parameters.

Table 8. The mAP of YOLOv5 and YOLOv5-HC evaluated on the TT100K dataset.

Method mAPall mAPsmall mAPmedium mAPlarge

YOLOv5 26.64 1.73 36.78 80.79
YOLOv5-HC 79.04 67.12 92.16 95.10

Table 9. Performance comparison of YOLOv5-HC with existing methods in full classes.

Method Params mAP

Cao et al. [61] 26.8M 62.3
Wang et al. [24] 8.0M 65.1
Gao et al. [62] 93.6M 71.9
YOLOv5-HC 89.5M 79.0

As traffic sign identification and recognition require rapid perception information, the
model’s inference speed is also an important metric. We used Nvidia 2080ti to calculate
the inference speed of YOLOv5 and YOLOv5-HC, as shown in Table 7. Despite the fact
that the use of HCM increased the inference time, YOLOv5-HC still achieves an inference
speed of 22.7 FPS. In terms of the balance between model accuracy and inference speed,
we want to improve the accuracy of the model as much as possible while satisfying the
real-time condition. Taking the autonomous driving dataset ONCE as an example, the data
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is sampled at a frequency of 10 FPS, so we consider that the inference speed of 22.7 FPS
satisfies the real-time requirement.

3.5. MIM-Based Method

Unlike TT100K, the data in ONCE are organized temporally. While MIM is intended
to be a training-free post-processing framework, we still use the model that completed
the training in the previous section, but test the detector on the ONCE test set based on
multiple frames of images. The MIM-improved YOLOv5-HC is labeled YOLOv5-HM.

The pre-requisite for implementing multi-image processing is to determine the number
of reference frames m. Based on the temporal information of the current frame, the MIM
selects m images before the current frame as a reference frame set. A temporal sequence
that is too long would result in computational redundancy. On the other hand, a temporal
sequence that is too short will miss some of the essential sign-detection information. By
analyzing the images in ONCE, we set m = 2.

The MIM module first needs to correlate the detection results in the image sequence,
where a number of hyperparameters need to be set. For ONCE, both α and β, which are
used to adjust the mapping effect in fcenter, are set to 500. These two parameters’ values
are determined by estimating the centroid offset of the same traffic sign instance in two
successive frames. The similarity rating function f uses two weights to integrate similarity
information. In the experiments, ωcos and ωcenter were set to 0.8 and 0.2, respectively. In
addition, when the redefinition confidence calculated by the MIM was below a threshold
value γ, the corresponding detection was removed. In the ONCE dataset, γ is set to 0.25.

To verify the effectiveness of the MIM, we tested the YOLOv5 and two improved
versions on ONCE’s test set. According to Table 10, the YOLOv5-HM showed the best
performance in terms of overall metrics. Specifically, YOLOv5-HM improved by 0.67%,
1.32%, and 1.05% as compared to YOLOv5-HC in terms of precision, recall, and F1
score, respectively.

Table 10. The overall metrics of YOLOv5 and two improved versions evaluated on the ONCE dataset.

Method Precision (%) Recall (%) F1 (%)

YOLOv5 87.69 71.23 78.61
YOLOv5-HC 93.18 80.35 86.29
YOLOv5-HM 93.85 81.67 87.34

The on-board camera, as shown in Figure 12, takes continuous photos of the same
instance as the vehicle moves. Except for the SSD with poor overall performance, the
remaining detectors achieved accurate detection and recognition in the first two frames.
However, the majority of the detectors exhibited a missed detection at moment t due to
deformation. Although the deformed traffic signs were detected by YOLOv5-HC, the result
had a low confidence level. In contrast, because YOLOv5-HM utilizes detection information
from multiple frames, the higher confidence in the first two frames is used in the sequence
analysis to obtain a higher confidence at moment t.

To investigate the impact of MIM further, we ran mAP calculations under various
weather conditions and sample sizes, as shown in Table 11. According to the results,
YOLOv5-HM achieves an optimal value of 73.86 for the overall mAP, an improvement of
1.07 over YOLOv5-HC. YOLOv5-HM outperforms the pre-improvement model in most
sample size categories. YOLOv5-HM demonstrated the most substantial performance boost
in sunny settings, with an overall mAP improvement of 1.37. YOLOv5-HM, on the other
hand, demonstrated a relatively smaller performance improvement in cloudy and rainy
situations.
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Table 11. The mAP of YOLOv5 and two improved versions evaluated on the ONCE dataset.

Weather Method mAPall mAPsmall mAPmedium mAPlarge

All
YOLOv5 39.59 25.60 43.49 77.82

YOLOv5-HC 72.79 65.53 78.66 83.40
YOLOv5-HM 73.86 66.61 79.89 84.08

Sunny
YOLOv5 46.01 31.91 55.42 86.67

YOLOv5-HC 83.00 80.74 84.54 89.40
YOLOv5-HM 84.37 82.63 85.32 89.95

Rainy
YOLOv5 53.95 42.66 83.07 90.78

YOLOv5-HC 70.67 67.12 77.40 89.51
YOLOv5-HM 71.13 67.12 79.71 89.48

Cloudy
YOLOv5 45.55 23.69 55.12 90.66

YOLOv5-HC 73.93 71.53 67.52 86.34
YOLOv5-HM 73.48 70.45 68.23 86.32
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In order to indicate the impact of the improvements, Figure 13 depicts examples of
Yolov5 and the two upgraded models under various weather situations. In a rainy situa-
tion, YOLOv5-HC exhibits a missed detection due to deformation. After MIM processing,
YOLOv5-HM achieves accurate detection and recognition, with a confidence of 0.53. A sim-
ilar problem arises in sunny situations, where confidence is diminished due to deformation.
In addition, the detector sometimes misclassifies. In the cloudy example, YOLOv5-HC
misclassified the traffic sign as i2r. Since the classifications in the reference frames were
all correct, YOLOv5-HM was able to correct this occasional misclassification using the
detection information from multiple frames. In terms of inference speed, since MIM uses
the feature embeddings extracted by the HCM, most of the increased computational effort
comes from the calculation of the Euclidean distance in the association function, which
hardly affects the inference time of the model.
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4. Discussion

The evaluation results based on TT100K and ONCE demonstrate that the feature
pyramid structure is critical in dealing with small objects and scale variations. At the same
time, the test results reveal a shortcoming in the localization accuracy of the Faster RCNN,
which originates from the coarseness of the feature map and the limited information offered
by the candidate boxes [48]. Furthermore, the evaluation findings on classes with varying
sample sizes show that the long-tailed distribution has a considerable detrimental impact
on the detector’s performance. For reasons of inference speed and detection performance,
YOLOv5 becomes a better choice. The use of YOLOv5 as a single classification detector
allows for more efficient localization of traffic signs due to their unique color and shape
features. Detecting the most challenging case in Figure 11 also demonstrates increased
localization performance.

To cope with detector performance loss caused by unequal distribution, we propose a
hierarchical classification model (HCM) that divides traffic signs into three superclasses and
corresponding subclasses. This classification makes use of the distribution characteristics
of traffic signs. Specifically, mandatory signs are mostly in the category with a large sample
size, whereas warning signs are mostly in the category with a small sample size. While the
overall sample distribution exhibits a significant long-tailed distribution, the difference in
sample size between subclasses within a superclass is much smaller.
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Equation (19) can be utilized to quantify the degree of imbalance in sample size
between classes, which is calculated as the ratio of the maximum and minimum sample
size across all categories [42].

ρ =
maxi{|Ci|}
mini{|Ci|}

(20)

To clearly highlight the differences after grouping, some of the categories were ran-
domly selected from the large, medium, and small categories. Figure 14 indicates that after
grouping, the sample distribution of traffic signs is more balanced, which is especially
noticeable for warning traffic signs. Meanwhile, when the sample size falls, the reduction
in ρ becomes bigger, resulting in more performance gains for YOLOv5-HC in the fewer
sample categories. In addition, owing to its lightweight design, the HCM’s hierarchical
classification structure does not considerably slow down inference speed. YOLOv5-HC is
similar to the two-stage object detection algorithm, but the inference speed is much faster
than Faster RCNN.
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Small objects, scale variations, and long-tailed distributions are the main causes of
detector performance degradation. Furthermore, real-world scenes contain anomalies such
as deformation and occlusion, which frequently result in missed detections or misclassifica-
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tions. Challenging cases generated by anomalies are difficult to solve since the anomalies
result in missing or misleading image information. To overcome the limitations of a single
image, our proposed multi-frame information integration module (MIM) integrates data
from multiple detections to achieve robust detection and recognition. Meanwhile, correla-
tion can be utilized to eliminate the redundant results produced by successive detections.

The evaluation results on the ONCE dataset demonstrate that MIM achieves a per-
formance improvement in most cases. To further analyze the role of MIM, we varied
the range of information integration by adjusting the number of reference frames. The
data in Table 12 show that as the number of reference frames increases, the performance
of YOLOv5-HM gradually improves, indicating the significance of utilizing multi-frame
information. However, since traffic signs in ONCE are typically photographed three times,
there is no further improvement in model performance when the number of reference
frames m in the experiment exceeds two.

Table 12. YOLOv5-HM’s overall metrics evaluated on different reference frame numbers.

m Precision (%) Recall (%) F1 (%) mAPall

0 93.18 80.35 86.29 72.79
1 93.43 81.05 86.80 73.36
2 93.85 81.67 87.34 73.86
3 93.85 81.67 87.34 73.86
4 93.85 81.67 87.34 73.86

5. Conclusions

In this paper, two novel and simple-to-implement modules are proposed to improve
the performance of YOLOv5 for traffic sign detection and recognition. YOLOv5 provides
outstanding localization performance for small objects and scale variations as a single classi-
fication detector. To reduce the negative impact of long-tailed distributions on classification,
we propose a hierarchical classification module for the specific classification of traffic signs.
Through grouping, HCM divides traffic signs into three superclasses and corresponding
subclasses. The grouping takes advantage of traffic sign distributional characteristics,
which can greatly reduce sample size discrepancies between classes. However, in the pres-
ence of anomalies such as occlusion and deformation, single-image-based algorithms still
suffer from missing detection or misclassification. To deal with missing or misleading infor-
mation caused by anomalies, this study designed a multi-frame information aggregation
module to extract the detection sequence of traffic signs, which is based on the embedding
generated by the HCM. The temporal sequence of detection information can deal with the
shortcomings of a single image, reducing false detections caused by anomalies.

Experimental results based on TT100K show that YOLOv5-HC achieves a mAP of 79.0
in full classes, which exceeds state-of-the-art methods. At the same time, the inference
speed of 22.7 FPS satisfies the real-time requirement. Furthermore, YOLOv5-HM using
MIM outperformed YOLOv5-HC in terms of overall accuracy, with 0.67% improvement in
precision, 1.32% improvement in recall, and 1.05 improvement in F1 score, respectively.

YOLOv5 has some shortcomings in traffic sign detection and consumes most of the
computational resources. Therefore, we will improve the existing detection module in
our research as more advanced object detection algorithms are proposed. Meanwhile, we
will also try to improve the inference speed of the existing model using SNN, which can
better balance the inference time and model accuracy. In addition, due to the uniqueness of
the colors as well as the structure of the traffic signs, we also consider the use of VAE or
statistical models to generate distributions that can be used for traffic sign recognition.
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