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Abstract: In this work, we propose a geodetic model for the seismic sequence, with doublet earth-
quakes, that occurred in Bandar Abbas, Iran, in November 2021. A dataset of Sentinel-1 images,
processed using the InSAR (Interferometric Synthetic Aperture Radar) technique, was employed
to identify the surface deformation caused by the major events of the sequence and to constrain
their geometry and kinematics using seismological constraints. A Coulomb stress transfer analysis
was also applied to investigate the sequence’s structural evolution in space and time. A linear
inversion of the InSAR data provided a non-uniform distribution of slip over the fault planes. We
also performed an accurate relocation of foreshocks and aftershocks recorded by locally established
seismographs, thereby allowing us to determine the compressional tectonic stress regime affecting
the crustal volume. Despite the very short time span of the sequence, our results clearly suggest that
distinct blind structures that were previously unknown or only suspected were the causative faults.
The first Mw 6.0 earthquake occurred on an NNE-dipping, intermediate-angle, reverse-oblique plane,
while the Mw 6.4 earthquake occurred on almost horizontal or very low-angle (SSE-dipping) reverse
segments with top-to-the-south kinematics. The former, which cut through and displaced the Pan-
African pre-Palaeozoic basement, indicates a thick-skinned tectonic style, while the latter rupture(s),
which occurred within the Palaeozoic–Cenozoic sedimentary succession and likely exploited the
stratigraphic mechanical discontinuities, clearly depicts a thin-skinned style.

Keywords: Bandar Abbas seismic sequence; Fin doublet earthquakes; InSAR measurements; analytical
modelling; tectonic deformation; double-difference relocation

1. Introduction

On 14 November 2021, at 12:07 and 12:08 UTC (17:35 Iran Standard Time for the first
quake), Fin doublet earthquakes with MW 6.0 and 6.4 occurred near the city of Bandar
Abbas in the seismically active area of Hormozgan Province, southern Iran (Figure 1 and
Table 1). There were about 300 aftershocks following this seismic doublet over the next
five months, with 30 aftershocks of a magnitude higher than 4.0 [1,2]. Among them, the
largest aftershock of Mw 5.2 occurred on 15 November, potentially causing additional
surface displacements. The sequence of earthquakes in Hormozgan killed 1 person, injured
99 people, destroyed 3000 homes, and caused power outages [2].
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Figure 1. Geological map of the investigated area plotted on a SRTM shaded-relief digital elevation
model [3]. The continuous and dashed blue lines (dots for segment connections) represent the traces
of the geological profiles by [4,5] discussed in the text. The orange boxes represent the projection on
the horizontal plane of the modelled faults. The stars represent the location of doublet earthquakes.

Table 1. Source parameters of the 2021 Fin doublet earthquakes according to several institutions.

Event Agency Dataset Magnitude Plane
n.

Strike
(◦)

Dip
(◦)

Rake
(◦)

Depth
(km)

Lat.
(◦)

Lon.
(◦)

1

USGS Teleseismic 6.0 (M)
1 270 63 90

9 27.716 56.0742 91 27 91

GCMT Teleseismic 6.1 (Mw)
1 262 56 77

17.2 27.570 55.9802 105 36 108

IRSC Regional seismic data 6.2 (MN)
- - - -

19.5 27.568 56.084- - - -
IIEES Regional seismic data 6.3 (ML) - - - - 14 27.668 56.075
EMSC Regional seismic data 6.0 (MW) - - - - 10 27.71 56.12
GFZ Teleseismic 6.0 (MW) - - - - 10 27.65 55.99

2

USGS Teleseismic 6.4 (M)
1 289 85 101

10 27.727 56.0722 41 12 22

GCMT Teleseismic 6.1 (Mw)
1 276 65 99

13.8 27.54 56.032 75 27 72
IRSC Regional seismic data 6.3 (MN) - - - - 10.0 27.536 56.174
IIEES Regional seismic data 6.4 (ML) - - - - 15 27.565 56.367
EMSC Regional seismic data 6.3 (MW) - - - - 10 27.73 56.15
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These earthquakes occurred within the tectonically active area situated at the eastern
tip of the Zagros Fold-and-Thrust Belt (ZFTB) (southern Hormozgan Province) [6]. The
ZFTB belongs to the broader Alpine-Himalayan orogenic belt and is located in the northern
sector of the Arabian plate and the Persian Gulf. As a result of the ongoing collision
between the Arabia and Central Iran plates, the Zagros Mountains were formed [7]. Salt
diapirs from the Late Precambrian Hormuz salt are abundant in the eastern Zagros, as
are collision-related detachment folds with irregular shapes along-strike. The salt diapirs
in this area (plugs and domes) are irregularly distributed from the suture zone in the
north to the Persian Gulf and in the south [8] (Figure 1), and they play a crucial role in the
tectonic evolution of the region. Short and compact fold structures form on top of a major
detachment [9] and accommodate most of the shortenings in the deformed parts of the
area [4,10,11]. The fold location, the orientation of the hinge axis and their shape and size
are strongly influenced by preexisting salt features and local pre-buckling thickening. In
addition, salt structures generate small basin geometries, which consequently govern the
sedimentary distribution and facies [5,12].

Changes in the fold axis trend in the Genau, which is a buried salt diapir, as well as
salt plugs (such as the Handun and Finu) are evident in this area. There was a probable salt
diapir uplift process in this area since the Palaeozoic era [13]. The salt dome of Handun,
which emerged in the core of the Handun anticline and is responsible for its peanut
shape, was supposed to be inactive. [12]. Shortening across the area occurs at a rate of
~20 mm/a [14], which is partly accommodated along the subduction interface separating
the underthrusting oceanic crust from the overlying south-eastern Zagros accretionary
wedge [15].

Early NW–SE trends, such as those controlling the deposition of the Cambrian Hormuz
salt unit, are thought to be inherited from late Precambrian deformation [15]. According
to [16], the overall strain field across the Zagros is directed N–S to N010◦ on average and is
slightly oblique at ~20–30◦ relative to the long-term SW–NE shortening direction across the
orogen. The maximum compressive strain orientation in the SE Zagros has been found to
be oriented 14–18◦, and the convergence rates characterising the area increase from NW
to SE [4,17,18]. The anticlinal structures located along the SE margin of the orogen are
associated with major topographic features and present the highest elevations in the SE
Zagros, exposing rocks as old as the Ordovician and Cambrian periods with respect to their
cores [13,19]. As a result of the Late Ordovician transgression, shales, siltstones, sandstones,
and fossiliferous limestones were deposited [13].

The Eo-Cambrian-to-Quaternary sedimentary cover of the Arabian plate shows a max-
imum thickness of 10–12 km in correspondence with the eastern sector of the ZFTB [5,20].
This sequence consists of mainly Palaeozoic and Mesozoic successions overlain by Cenozoic
siliciclastic and carbonate rocks resting on top of a highly metamorphosed Neoproterozoic
Pan-African basement that has been impacted by major transcurrent shear zones [20–22].

Between the sedimentary units and the basement rocks, there exists a high competence-
mechanical contrast, where a major detachment level has developed. From this weakness
zone, diffuse folding develops [4], while the underlying basement is characterised by
low-angle shear zones accommodating the shortening [23]. It is worthwhile to note that the
sector of the chain where the Fin doublet occurred, which is delimited to the north by the
High Zagros Fault (HZF) and to the south by the Mountain Frontal Fault (MFF; Figure 1),
was also referred to in the past as the “Zagros Simply Folded Belt” [23–25].

The emergent salt domes in the east Zagros area reveal that halokinesis (internal
trigger) prevails over tectonic processes (external trigger), and the rifting event that oc-
curred during the Palaeozoic was the main factor giving rise to the Hormuz diapirism.
Additionally, in subsequent deformational events, these emergent diapirs played a crucial
role in the location, geometry and kinematic evolution of faults and folds [26].

In this paper, to identify the major causative faults of the seismic sequence and better
understand the seismotectonics of the study area, we present a multi-disciplinary study
combining seismological and geodetic data with the geological and tectonic information
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available for the region. Using the InSAR (Interferometry from Synthetic Aperture Radar)
two-pass technique, we reconstructed some major active faults affecting the area [27], with
the aim of contributing to a better understanding of the seismotectonic evolution of the
broader region and particularly its seismotectonic characteristics. For this purpose, we
proposed a realistic parametric model of the causative faults associated with the evolution
of the area based on inversion techniques of ground deformation detected by the InSAR,
the compilation of tectonic data, the analysis of foreshock and aftershock sequences and
the calculation of the coseismic stress drop. The flowchart of our procedure is presented in
Figure 2.
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2. Materials and Methods
2.1. InSAR Deformation and Fault Model

SAR imaging from space, based on the DInSAR (Differential Interferometric Synthetic
Aperture Radar) technique, is routinely used to monitor coseismic surface displacements.
The use of two satellite images taken before and after an earthquake allows the DInSAR to
reconstruct the coseismic motion [28]. This research is based on Sentinel-1 satellite imagery,
obtained from the ESA (European Space Agency) constellation, in IW (Interferometric Wide)
mode and V–V polarisation with a wide 250 km swath coverage, and enables near-real-time
response to seismic events [29–31]. Coseismic displacement fields were retrieved using
two pairs of images along the ascending and descending orbits, at a temporal interval
of 12 days (Table 2). Due to the minimal time gap between the two events, both pairs
obviously include the mainshocks. Additionally, several aftershocks occurred during the
time window, but their contribution in terms of surface deformations was likely negligible.

Table 2. Sentinel-1 pairs used to detect the permanent deformations of the Fin doublet mainshocks
and major aftershock.

Interferogram Number Master’s Date Slave’s Date Pass Direction Orbit Number

1 13 November 2021 25 November 2021 Ascending 57

2 9 November 2021 21 November 2021 Descending 166
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A final ground resolution of about 30 m was achieved by co-registering and multi-
looking 4 and 1 in the range and azimuth directions, respectively., thereby increasing
the signal-to-noise ratio. Orbital corrections were then applied using ESA PO (Precise
Orbits), and the SRTM-1 digital elevation model was used to remove the topographic
phase contribution.

We significantly improved the quality of the interferometric fringes by applying an
adaptive filtering algorithm to the raw interferograms [32]. As compared to using fixed filter
parameters [33–35], adaptive filtering algorithms allow one to adjust the filter parameters
according to the current input, which can improve filtering performance. In addition to
self-tuning, robustness, real-time operation and reduced complexity, the adaptive filtering
algorithm has some disadvantages, e.g., computational complexity, requiring a significant
amount of time and data to converge and sensitivity to initialization. The unwrapping
interferogram was obtained using a MCF (Minimum Cost Flow) algorithm [36] and then
geocoded using the same 30 m resolution SRTM-1 DEM.

Any interferometry measures motion along a satellite’s line of sight (LoS), i.e., the
oblique direction between the satellite and the Earth’s surface. Positive values along the
LoS correspond to a movement of the ground towards the satellite, while negative values
indicate a movement away from the satellite (Figure 3).
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ing (right) orbits for the 2021 Fin doublet earthquakes. When a displacement is positive, it indicates
that the earth is moving towards the satellite, while when it is negative, it indicates that the earth is
moving away from it.
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We modelled a subset of points sampled from ascending and descending raster maps,
which had been acquired by posting images every 500 m in the close range and 2000 m in
the far range, to retrieve the parameters of a finite dislocation source. The LoS coseismic
points from two orbits were then jointly modelled using a validated dual-step approach:
first, the geometry and position of the fault were determined by a nonlinear inversion.
Subsequently, a linear inversion was carried out to determine the slip distribution on
the inverted fault planes. There was a different contribution of post-seismic motion to
each coseismic displacement map based on the temporal coverage. For both cases, the
geophysical model for predicting surface displacement was the elastic finite dislocation
source in a homogeneous half-space [37]. More details about both steps implemented in
this study are described in [38–40].

Non-linear inversion was carried out using the Levenberg–Marquardt optimization
algorithm [41]. A minimization algorithm that restarts multiple times can ensure that
the global minimum is captured. It is an efficient method for dealing with nonlinear
problems with many variables. In comparison to other algorithms [42–44], this technology
has several advantages: it is more robust than the Gauss–Newton method; it converges
faster than either gradient descent or GN on their own; it can handle models with multiple
free parameters that are not known precisely. Even if one’s initial guess is incorrect, the LM
can still find an optimal solution; however, if there are more than 10 parameters in a model,
the convergence time can be very slow. The linear inversion procedure preserved the fixed
geometric settings derived from the non-linear inversion and spread the fault until the slip
vanished to zero [38]. Trial-and-error was used for the damping of the system, with the
empirical parameters balancing the slip distribution roughness and data fit [45,46]. Our
non-negative constraint prevented the slip direction from changing along the fault.

Using the Coulomb stress field, it was also possible to determine whether the second
shock and most aftershocks occurred in areas of increased stress. The complexities of
fault networks and their intersections might contribute to through-going ruptures and
large multi-segment earthquakes [47]. We therefore postulated that a triggering effect was
induced by the first fault and estimated how the stress changed on other nearby faults.
The static analysis of the Coulomb failure function (∆CFF) was constrained with the plane
geometries and rake directions from the non-linear inversions [48].

2.2. Analysis of Aftershocks

The aftershock sequence of the Fin doublet earthquakes was not collected by a very
dense local seismological network. We prepared data by combining recorded pick phases
from 23 seismic stations (Figure 4) belonging to the IRSC catalogue (www.irsc.ir (accessed
on 7 April 2023)) [1] and the IIEES catalogue (www.iiees.ac.ir (accessed on 7 April 2023)) [2]
and from one station belonging to the national seismic network of the UAE. The nearest and
farthest stations are BNDS (IIEES) and KSHD (IRSC), with mean distances of 15 km and
350 km, respectively, to the cluster centroid. The initial dataset consists of 383 earthquakes
(Ml > 2.5) that started one month before the mainshocks and lasted for six months (1 August
2021 to 30 May 2022).

The total numbers of P and S phases are 2818 and 268, respectively, which were
identified manually by each network’s operator. To relocate all earthquakes, we used an
updated version of the 1D velocity model (Table 3) based on [49,50], located in the south
west of the study area.

To reduce location uncertainty for these closely spaced events, we employed the
double-difference earthquake location method, HypoDD [51]. This method is particularly
useful to map the aligned distributions of earthquakes that may highlight the fault geometry.
We used a selected subset of 364 events according to the quality criteria described in the
HypoDD document [52] for defining the strong linkage between closely spaced events. By
considering easy to harsh conditions using different parameters for both selecting catalogue
data and running HypoDD, we obtained a maximum resolution image of seismicity and
eliminated any relative scatter in location caused by local heterogeneities in the assumed

www.irsc.ir
www.iiees.ac.ir
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1D velocity structure. We applied the nearest-neighbour approach to link the events
using a maximum search radius of 10 km (MAXNGH) and a minimum number of 8 links
(MINLNKS), each with a minimum number of 6 observations (MINOBS), and selected
a maximum separation of 10 km (MAXSEP). Event linkage strongly controls how well a
dataset will be relocated in HypoDD. Ultimately, the HypoDD program reduced the dataset
of 364 events to 280 events during the relocation process, all in one cluster.
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Figure 4. Fin doublets recorded by regional networks. The red, blue, and black triangles denote seis-
mic stations belonging to the IRSC, IIEES, and UAE, respectively. The red circle shows the area within
a 350 km radius from the mainshocks. The red stars represent the location of doublet earthquakes.

Table 3. Updated velocity model used in this study.

Layer Vp (km/s) Z (km)

1 4.20 0.0
2 5.40 2.0
3 5.70 4.0
4 5.90 10.0
5 6.10 14.0
6 6.50 19.0
7 8.20 46.0

3. Results

There was a significant increase in the seismicity rate in the Fin area of Hormozgan
Province as a result of two strong mainshocks on 14 November 2021. With the use of the
SAR acquisition, two events were included in the analysed time window (Table 1). Due to
the fact that a differential interferogram’s coherence factor largely depends on the reference
image’s temporal baseline and spatial decorrelation [53], a short time interval was used in
this study to produce interferograms with good coherence gaps (>0.6).

Given that the seismicity was relatively tightly spaced, we were able to characterise
the aftershock sequence, among different runs of HypoDD, as a single cluster of 280 earth-
quakes (Figure 5), which were mostly located at the western edge of the MFF. Based on the
event location accuracy as defined in Table 4, all events were subdivided into three sub-
classes. As a result, 20, 110 and 225 events occurred in subclasses A, B and C, respectively.
About 50% of the aftershocks had a depth uncertainty of less than 3 km, and about 78%
had a depth uncertainty of less than 4 km (Figure 6).
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Figure 5. Fin doublet earthquakes (white stars) and aftershocks (coloured based on location accuracy
in the three subclasses A, B and C (Class A: red; class B: orange and class C: green)). All focal
mechanisms (in red) were obtained from the GCMT. Four depth cross-sections are depicted in black
lines. HFZ: High Zagros Fault; MFF: Mountain Front Fault; ZFF: Zagros Frontal Fault.

Table 4. Statistical parameters for defining subclasses A, and B and C.

Class Horizontal
Error (km)

Depth Error
(km) RMS (s) Azimuthal

Gap (◦)
Number of

Events

A 2.0 4.0 0.3 180 20
B 3.0 6.0 0.4 200 110
C 5.0 8.0 0.5 200 225

Body-wave modelling determined the centroid depth of moderate-sized earthquakes
throughout the Zagros [49,54–56], i.e., between about 8 and 20 km. Looking at the depth
distribution of the relocated events (Figure 6), it is possible to observe that ca. 90% of
the recorded seismicity occurs within the first 20 km, showing a higher density between
7 and 20 km and a peak at 12–15 km. Taking into account the depth errors (Figure 7b),
the depth distribution and the cluster (Figure 8) seem to confirm that most seismogenic
deformations occur in the deeper layers of the sedimentary cover and mainly within the
underlying basement rocks, where rheological behaviour is fundamentally brittle and
frictional processes prevail [57]. This confirms that crustal deformation is still active in this
sector of the Zagros and especially documents the persistent seismogenic behaviour of the
tectonic structures pervading the area at this depth.
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With precise earthquake locations associated with focal mechanisms listed in Table 5
(Figure 5), it is possible to determine the geometry and motion of active faults and their
location with respect to thick sedimentary layers [6,58,59]. Most of the focal mechanisms in
the Central Zagros are based on the CMT catalogue or computed from body-wave mod-
elling [54–56,58]. The majority of moderate-to-big earthquakes occurred on reverse faulting
on the planes oriented NW–SE (Figure 5, Table 4). In Figure 5, the reverse mechanisms #8,
9, 16 and 17 trend northwest–southeast and parallel to the fold axes. Figure 5 shows a con-
sistency between the trend of the aftershocks and the strike of reverse-faulting mechanisms
and suggests that they are clearly related to the shortening on the planes striking NW–SE.

Table 5. Focal mechanism solution provided by the GCMT. All values have been checked from the
GCMT website.

No. Date–Time Lon (◦) Lat (◦) Depth
(km) Mw Strike

(◦)
Dip
(◦)

Rake
(◦)

1 21 March 1977 21:19:04 56.44 27.47 18.8 6.7 267 27 98
2 22 March 1977 11:57:35 56.13 27.23 10.0 5.9 75 43 96
3 23 March 1977 23:51:19 56.44 27.25 10.0 5.5 261 41 92
4 1 April 1977 13:36:30 56.40 27.37 10.0 5.9 262 44 90
5 16 April 1981 10:27:18 56.25 27.31 15.0 5.1 221 42 8
6 12 July 1983 11:34:22 56.26 27.11 46.0 6.0 241 45 73
7 18 December 1987 16:24:05 56.42 27.90 15.0 5.8 155 39 −149
8 9 June 1988 00:09:49 56.10 27.67 15.0 5.2 310 11 139
9 5 March 2006 09:40:08 56.40 27.61 33.0 5.4 290 45 106

10 25 March 2006 09:55:16 55.68 27.48 12.0 5.5 276 35 89
11 25 March 2006 10:00:38 55.66 27.41 12.0 5.2 267 30 70
12 24 July 2007 10:08:01 55.65 27.14 20.0 5.0 270 21 81
13 3 November 2009 23:26:53 56.16 27.04 13.2 5.0 246 30 63
14 10 November 2014 13:52:39 55.71 27.75 15.0 5.2 349 41 180
15 30 December 2019 13:49:46 56.50 27.13 18.0 5.2 223 28 41
16 14 November 2021 12:07:04 55.98 27.57 17.2 6.1 105 36 108
17 14 November 2021 12:08:39 56.03 27.54 13.8 6.1 75 27 72

We jointly modelled the dataset of the points sampled from the InSAR data, assum-
ing that the dislocation occurred over a single surface simplified as planar geometry, for
which all parameters were left free in the non-linear inversion. The analysis of the InSAR
images indicated that the deformation area nearly coincided with the northern aftershock
cluster. From the inversion of the InSAR data, a geodetic solution of the seismic sources
was produced providing the following values: 284◦/53◦/92◦ (strike, dip angle, rake) and
85◦/6◦/81◦, respectively, for the two doublet events. Accordingly, the first modelled plane
corresponded to the NNE dipping dip-slip fault with purely reverse kinematics. The second
quake corresponded to the SSE low-angle reverse fault. The geodetic seismic moments
calculated based on Okada’s formalism were 2.41 × 1018 N·m and 3.5 × 1018 N·m, cor-
responding to Mw 6.0 and Mw 6.4, respectively.The results of the non-linear modelling
suggest uniform slip sources with length and width of 15.5 × 3 km2 and 11 × 7 km2, respec-
tively. Based on the comparison between observed and predicted surface displacements
using the Okada modelling, as well as the residuals, the solutions obtained were basi-
cally reliable and well-fitted; Figure 9 shows the signals derived from linear least-squares
inversions of the observed, modelled and residual data.
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Figure 9. Observed (a,b), modelled (c,d) and residual (e,f) maps for displacements obtained from the
ascending and descending orbits for the Mw 6.0 and 6.4 doublet mainshocks.

This preliminary model was then used for the linear inversion, where the planes were
subsampled into subareas of 1 × 1 km to better and more realistically reconstruct the slip
distribution on the rupture surfaces. The results for the first quake showed a single slip
peak distribution that reached the highest value (~90 cm) at a depth of ~11 km, with most
of the dislocation included between about 7 and 14 km depth (Figure 10). For the second
event of the seismic doublet, most of the slip occurred at depths from 1 to 7 km, while a
maximum value of ~252 cm was obtained at a depth of about 5 km.
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Using standard elasticity theory with known seismogenic fault parameters, the 
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of the first earthquake (triggering event) on the fault plane, which was reactivated by the 
second event of the doublet sequence (receiving fault), is shown in Figure 11. The positive 
ΔCFF values indicate that the main event induced subsequent faults toward failure, while 
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Figure 10. Slip distribution of the Mw 6.0 (top) and Mw 6.4 (bottom) mainshocks of the Fin doublet
earthquake (the view is from the south side). The dashed lines show the result of non-linear inversion,
and depth is along the dip of the faults.

Using standard elasticity theory with known seismogenic fault parameters, the change
in the stress field can be predicted, and its impact on nearby faults can be quantitatively
assessed by evaluating a Coulomb Failure Function (CFF). [60]. The induced stress of the
first earthquake (triggering event) on the fault plane, which was reactivated by the second
event of the doublet sequence (receiving fault), is shown in Figure 11. The positive ∆CFF
values indicate that the main event induced subsequent faults toward failure, while the
negative ∆CFF values indicate fault relaxation and failure-time delay.
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Figure 11. Distribution of the ∆CFF on the modelled fault plane (receiving fault), which was reac-
tivated by the second mainshock of the doublet sequence as a consequence of the first earthquake
(triggering fault). The dashed line shows the location of the maximum slip of the receiving fault (the
result of non-linear inversion).

4. Discussion

In order to identify the major causative faults of the seismic sequence and shed light on
the seismotectonics of the study area, we systematically revised the geological and tectonic
reconstructions available for the broader investigated region with special emphasis on the
epicentral area. Indeed, several authors (e.g., [4,5,23,61–63]) have proposed geological cross-
sections across the central and southeastern Zagros Fold-and-Thrust Belt and particularly
across the Zagros Simply Folded Belt, which was affected by the Fin seismic sequence
(Figure 1). All of these sections are commonly based on the interpretation of seismic
reflection profiles, boreholes for hydrocarbon exploration, geological field observations and
seismic data. Most of the published profiles are declared to be balanced.

As a matter of fact, the depths and consequently the geometry of stratigraphic units,
as well as of the tectonic structures, are better constrained in the shallower sectors of
the profiles, while uncertainties generally increase downwards (e.g., [4]). For example,
in correspondence with the epicentral area, the bottom of the post-Hormuz sedimentary
succession (from Palaeozoic to present) has been proposed to be at depths varying between
7.5 and 14 km (Figure 12). Similarly, and even worse due to the velocity inversion within
the Late pre-Cambrian evaporites, the thickness of the Hormuz Formation and especially
the depth of the Pan-African crystalline basement could vary among different authors.
For example, the top of the mid-crustal crystalline rocks has been proposed in different
interpretations to be at depths varying between 8 and 15 km (Figure 12).

Some differences in tectonic style could also be due to the diverse sensitivity of re-
searchers and the role they have attributed to folding, faulting and/or diapiric phenomena.
Nevertheless, all profiles basically agree on two main aspects. Firstly, they implicitly or
explicitly suggest the occurrence of a major subhorizontal shear zone (sometimes referred
to as basal detachment) in correspondence with the highly mobilised Hormuz evaporitic
succession. Secondly, they draw large-scale folds that typically have half wavelengths from
5 to 15 km. It is also worth mentioning that in all profiles, deep-seated intermediate- to
high-angle faults are proposed to have affected the Proterozoic mid-crust underlying the
Hormuz Formation.
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Figure 12. Three examples (a–c) of geological profiles reconstructed across the central southeastern
sector of the Zagros Simply Fold Belt (modified from [4,5,61]). The blue boxes in (a,b) indicate the
seismogenic volume shown in more detail in Figure 13.

Two of the above-mentioned profiles from [4,5] are of particular interest for the goals
of the present research as they have been reconstructed exactly across the epicentral area of
the Fin seismic sequence (Figure 13). Their traces are presented in Figure 1.

For the purpose of this paper, we redrew these two profiles focusing on the sector
between the Genau and Handun anticlines. It should be noted that both profiles were
segmented, composited and reconstructed by the authors on the basis of distinct non-
parallel seismic profiles; as a consequence, although the traces are roughly parallel to
each other, they run a distance between 1 and 13 km, and this has an obvious impact
on the originally proposed interpretations. Taking into account the above-mentioned
uncertainties, we slightly modified the deeper portions of the drawings in an attempt
to provide a uniform interpretation, especially regarding the depth of the mid-crustal
basement top and the thickness of the post-Hormuz Palaeozoic stratigraphic units. On the
other hand, the vicinity of the two profiles and, in some parts, their superposition could
not justify the major differences in the geological and tectonic reconstructions. Thus, these
differences had to be minimised.

As described and discussed in the previous sections of this paper, the rupture sur-
faces associated with the Fin mainshocks were geodetically and seismologically modelled.
Based on the reconstructed 3D geometries, we plotted the intersections of the modelled
seismogenic sources on the two geological profiles as shown with thick red curves in
Figure 13.
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discontinuities within the Pan-African crust, are well documented within the Zagros, 
mainly based on seismological and morphological evidence [4,6,11,59,64–66]. 

Regarding the second mainshock of the Fin doublet, it certainly occurred within the 
Palaeozoic–Present sedimentary succession overlying the basal detachment developed in 
the Hormuz Formation. Indeed, when we plotted the reconstructed geological profiles, 
the modelled source well reproduced the soil deformation (see the section on DInSAR 
analyses); therefore, it is likely that the causative fault is mainly represented by the major 
mechanical discontinuities between some of the Phanerozoic stratigraphic units. The sub-
horizontal to very low-angle setting and the position of the modelled coseismic slip sur-
face suggest that sliding occurred as a consequence of, and was associated with, a large-
scale flexural folding phenomenon affecting the major syncline south of the Handun struc-
ture (Figure 13). The general tectonic framework also suggests that beyond the flexural 
line separating the above-mentioned syncline from the Handun anticline, the flexural slid-
ing also involved the flank of the latter anticline, progressively evolving to form a cut-
through fault crossing its fold core. In this regard, it should be noted that [4] also sug-
gested a similar (though at a minor scale) mechanical behaviour along the shallower 
southern sector of the Handun anticline (Figure 13b) with the development of a detached 

Figure 13. Geological profiles across the epicentral area, modified from [5] (a) and [4] (b). The red
curves represent the causative faults of the Fin seismic sequence mainshocks based on the modelling
proposed in the present paper. The blue curves represent probable faults extracted from other studies.
PA: Pan-African mid-crustal basement; Hz: pre-Cambrian Hormuz Formation; Pz: late pre-Cambrian
and Palaeozoic; Mz: Mesozoic units; Cz: Cenozoic units.

The results of this exercise are quite interesting because they indicate that the first
main shock of the Fin doublet clearly reactivated a ‘basement’ fault characterised by
an intermediate-angle setting and dip-slip reverse kinematics. The presence and recent
tectonic activity of similar deep-seated faults, which likely exploit the inherited mechanical
discontinuities within the Pan-African crust, are well documented within the Zagros,
mainly based on seismological and morphological evidence [4,6,11,59,64–66].

Regarding the second mainshock of the Fin doublet, it certainly occurred within the
Palaeozoic–Present sedimentary succession overlying the basal detachment developed in
the Hormuz Formation. Indeed, when we plotted the reconstructed geological profiles, the
modelled source well reproduced the soil deformation (see the section on DInSAR analyses);
therefore, it is likely that the causative fault is mainly represented by the major mechanical
discontinuities between some of the Phanerozoic stratigraphic units. The subhorizontal
to very low-angle setting and the position of the modelled coseismic slip surface suggest
that sliding occurred as a consequence of, and was associated with, a large-scale flexural
folding phenomenon affecting the major syncline south of the Handun structure (Figure 13).
The general tectonic framework also suggests that beyond the flexural line separating the
above-mentioned syncline from the Handun anticline, the flexural sliding also involved
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the flank of the latter anticline, progressively evolving to form a cut-through fault crossing
its fold core. In this regard, it should be noted that [4] also suggested a similar (though at
a minor scale) mechanical behaviour along the shallower southern sector of the Handun
anticline (Figure 13b) with the development of a detached back-thrust on the flank of the
fold, taking advantage of the locally tilted layering, and, hence, the presence of mechanical
discontinuities that are (almost) ideally oriented with the regional compressional stress
field. The latter structure proposed in the literature, together with the seismogenic surface
proposed in the present paper, forms a sort of distributed shear zone characterised by
reverse kinematics and an interland vergence (i.e., back thrusting). Diffuse faulting has
also been suggested by [61] based on analogue modelling and field observations.

5. Conclusions

In this study, the doublet earthquakes with magnitudes of MW 6.0 and 6.4, that struck
the Fin area in Hormozgan Province in Iran on 14 November 2021, were analysed. The
seismic sequence occurred in a tectonically active area characterised by crustal compression.

The epicentral distribution of the relocated aftershocks (Figure 5) shows that the
events spread north of the MFF. The focal mechanism solutions of the doublets were almost
identical and in reverse, and both rupture planes showed a similar roughly E–W orientation.
In order to better reconstruct the geometry of the causative faults, we investigated the
seismicity associated with the seismic sequence by relocating the recorded events, thereby
allowing us to constrain their 3D distribution. By plotting the obtained results on some
transects crossing the seismogenic volume and running perpendicular to the trace of the
MFF (Figure 8), a cluster could be observed suggesting the activation of a S-to-SSW dipping
seismogenic shear zone. Among the four cross-sections, numbers 2, 3 and 4 showed a clear
view of a previously unidentified south-dipping fault, which is in good agreement with
the focal mechanism solutions. Therefore, in contrast with the regional setting of the major
faults, the integration of seismicity data next to the focal mechanism solutions confirms the
activation of a reverse fault with a southward dip.

The question of the timing of the first basement involvement within the external
sectors of the Zagros orogene is still controversial. In this paper, we do not enter this
debate, particularly regarding whether these faults have accommodated reverse move-
ments since the beginning of the collision ([67,68]) or whether they were activated only
very recently (post-Pliocene) following a Miocene thin-skinned style of deformation, as
suggested by [4,11,61]. However, as a major finding of this research, we conclude that
both thick- and thin-skinned tectonic styles could be, and indeed are, contemporaneously
active within the Zagros Fold-and-Thrust Belt, and this could have a major impact on the
seismic hazard assessment of the broader investigated area, especially considering that this
composite seismotectonic behaviour likely characterises other sectors of the region.

The activation of the first fault plane could have possibly favoured the occurrence of
several aftershocks within the footwall of the Fin doublet system (positive ∆CFF) and trig-
gered the second mainshock (Figure 11). Considering the complex tectonic setting affecting
the region, the activation of deep basement faults could favour the dynamic rupture of
shallow ones, or vice versa, or at least create the conditions to anticipate forthcoming events.
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