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Abstract: In recent years, hyperspectral image classification techniques have attracted a lot of atten-
tion from many scholars because they can be used to model the development of different cities and
provide a reference for urban planning and construction. However, due to the difficulty in obtaining
hyperspectral images, only a limited number of pixels can be used as training samples. Therefore,
how to adequately extract and utilize the spatial and spectral information of hyperspectral images
with limited training samples has become a difficult problem. To address this issue, we propose a
hyperspectral image classification method based on dense pyramidal convolution and multi-feature
fusion (DPCMF). In this approach, two branches are designed to extract spatial and spectral features,
respectively. In the spatial branch, dense pyramid convolutions and non-local blocks are used to
extract multi-scale local and global spatial features in image samples, which are then fused to obtain
spatial features. In the spectral branch, dense pyramidal convolution layers are used to extract
spectral features in image samples. Finally, the spatial and spectral features are fused and fed into
fully connected layers to obtain classification results. The experimental results show that the overall
accuracy (OA) of the method proposed in this paper is 96.74%, 98.10%, 98.92% and 96.67% on the
four hyperspectral datasets, respectively. Significant improvements are achieved compared to the
five methods of SVM, SSRN, FDSSC, DBMA and DBDA for hyperspectral classification. Therefore,
the proposed method can better extract and exploit the spatial and spectral information in image
samples when the number of training samples is limited. Provide more realistic and intuitive terrain
and environmental conditions for urban planning, design, construction and management.

Keywords: hyperspectral image classification; image processing; spectral-spatial feature fusion;
deep learning

1. Introduction

Hyperspectral images, also known as hyperspectral remote sensing images, are stereo-
scopic images captured by aerospace vehicles equipped with hyperspectral imagers. They
consist of two spatial dimensions and one spectral dimension. The spectral dimension
contains 10 s or even 100 s of spectral bands, which provide it with broad prospects for ap-
plications such as military target detection [1]; atmospheric and environmental research [2];
forest vegetation cover detection [3]; and change area detection [4]. Hyperspectral image
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classification is a commonly used technique in the applications listed above. However, the
excessive redundancy of spectral information and the limited number of training samples
pose a great challenge for hyperspectral image classification.

In the early research on hyperspectral image classification, methods such as support
vector machine (SVM) [5], multinomial logistic regression (MLR) [6] and sparse representa-
tion classification (SRC) [7] were proposed, which directly take the original input as the
training sample and use it to train the classifier through the spectral information of the
hyperspectral image. However, such methods ignore two problems: (1) the large amount
of redundant information in spectral bands makes it difficult to train the model; (2) hyper-
spectral images have high spatial correlation and contain abundant spectral information.
To solve problem (1), dimensionality reduction strategies [8,9] (feature selection [10] and
feature extraction [11]) are applied to hyperspectral image classification tasks. To solve
problem (2), morphological contours [12] and Gabor features [13] are used to ex-tract spatial
information, and the morphological kernel [14] and composite kernel [15] methods are used
to extract spectral–spatial information. Although the aforementioned methods improve
the accuracy of the classifier, it is difficult to achieve better classification results in complex
scenes because these methods use shallow models and rely heavily on labeled samples,
which cannot extract the deep features of the samples.

Deep learning (DL) has shown strong capabilities in automatically extracting nonlinear
and hierarchical features, and thus has been widely used in information extraction [16],
image classification [17], semantic segmentation [18] and object detection [19]. Therefore,
some hyperspectral image classification methods based on deep learning are proposed.
In [20], Zhou et al. used a stacked auto-encoder (SAE) to extract spectral and spatial features
and used logistic regression to obtain classification results. In [21], Szegedy C, et al. used
a restricted Boltzmann machine (RBM) and deep belief network (DBN) for classification.
In [22], Ma et al. used a spatially updated deep auto-encoder (DAE) to extract spectral–
spatial features and designed a different co-representation mechanism to handle narrow-
scale training sets. In [23], Zhang et al. utilized a recursive auto-encoder to learn the spatial
and spectral information and adopted a weighting scheme to fuse the spatial information.
Although these methods can extract the spectral–spatial features of hyperspectral images
to a certain extent, they destroy the spatial structure. Since convolutional neural networks
(CNNs) can exploit spatial features while preserving the original spatial structure, some
methods based on CNNs have been proposed. In [24], Zhao et al. employed a CNN as the
feature extractor. In [25], Zhang et al. proposed a method based on differentiated region
convolutional neural network (DRCNN), which uses different image patches within the
neighborhood of the target pixel as the input of the CNN, and the input data is effective
reinforcement. In [26], Lee et al. proposed a contextual deep CNN (CDCNN) with deeper
and wider network layers.

In general, deep-level features in the image can be extracted by increasing the depth
of the network, but this also causes problems such as difficulty in model training and
gradient vanishing. The residual network (ResNet) [27] and dense convolutional network
(DenseNet) [28] solved this problem quite efficiently, and such networks can also extract
deep-level features without increasing the depth of the network structure. Inspired by
ResNet, the literature [29] proposed a spectral-spatial residual network (SSRN) that contains
a spectral residual block and a spatial residual block for sequentially extracting spectral
features and spatial features. Inspired by DenseNet, some literature [30] has proposed a fast
dense spectral-spatial convolutional network (FDSSC), which achieves better performance
while reducing the training time. Although the aforementioned methods solve the feature
extraction problem using CNN, but in the process of model training, the attention of the
convolutional layer to features is not the same. In order to optimize the extracted features,
the attention mechanism is used to process different features differently. It is also a research
hotspot in recent years. One study [31] proposed a feedback attention-based dense CNN
network, while another [32] proposed a dual-branch multi-attention mechanism network
(DBMA) based on the convolutional block attention module (CBAM) [33]. Moreover, [34]
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proposed a dual-branch dual-attention mechanism network (DBDA) based on the dual-
attention network (DANet) [35]. Although these methods are very effective, the extraction
and utilization of spatial information and spectral information of hyperspectral images are
not sufficient, resulting in the inability to obtain better classification results in the case of
limited training samples.

Inspired by pyramidal convolution (PyConv) [36] and DenseNet, for the two problems
of missing features and insufficient feature extraction, this paper proposes a hyperspectral
image classification method based on dense pyramidal convolution and multi-feature
fusion (DPCMF). The proposed method consists of two branches: the spatial branch and
the spectral branch, both of which are designed to capture spectral and spatial features,
respectively. In the spatial branch, principal component analysis (PCA) is performed to
achieve dimensionality reduction for image samples, whereas noise and redundant spectral
information are removed while retaining significant spectral information. Then, the dense
pyramid convolution module and non-local block [37] are used to extract multi-scale local
spatial information and global spatial information from image samples. Finally, the multi-
scale local spatial information and global spatial information are fused to obtain a spatial
feature map. In the spectral branch, convolutional neural networks are first used to perform
convolutions on image samples, and then the spectral information in the images is extracted
through dense pyramid convolution to obtain spectral feature maps. Lastly, the spatial
and spectral feature maps are fused and fed into the classification module to obtain the
classification results. The three main contributions of this paper are described below.

• To address the problem of missing features, a hyperspectral image classification
method (DPCMF) based on dense pyramidal convolution and multi-feature fusion
is proposed. This method uses spatial and spectral branches to extract local spatial
features and spectral features, respectively. Multi-scale local spatial information
is extracted using non-local block segmentation and fused to obtain hyperspectral
feature maps.

• To address the problem of insufficient feature extraction, in the feature extraction part
of the spatial and spectral branches, a combination of pyramidal convolution and
DenseNet is used. Without increasing the depth of the network, the convolutional ker-
nels are arranged in descending order to extract deep-level features at different scales.

• DPCMF achieves state-of-the-art classification accuracies on four datasets with limited
training samples.

The rest of this paper is arranged as follows: Section 2 presents the specific implementa-
tion of the proposed method; Sections 3 and 4 present and analyze the experimental results;
and Section 5 summarizes the conclusions of the article and proposes future directions
for research.

2. Materials and Methods

In this section, we give a brief introduction to the structure of dense pyramidal
convolution layers, non-local blocks and DPCMF networks.

2.1. Dense Pyramidal Convolution

In a traditional CNN, deeper features are generally extracted by increasing the network
depth, but the problem of vanishing or exploding gradients occurs simultaneously, making
it difficult to train deep models. DenseNet improves feature availability without increasing
the network depth through dense connections, and it also solves the problem of gradient
vanishing and gradient exploding. As shown in Figure 1, the purpose of feature reuse
is achieved in DenseNet by building dense connections between all previous layers and
subsequent layers to fuse shallow and deep features. The output Xi of the ith layer can be
expressed as:

Xi = Hi[X0, X1, . . . , Xi−1] (1)
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where Hi represents a nonlinear transformation including convolution, activation function,
and batch normalization (BN), and [] means the output X0, X1, .., Xi−1 of the 0th layer to
the (i−1)th layer are spliced along the channel dimension.
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Figure 1. Architecture of DenseNet.

During the training process of DenseNet, convolution kernels of uniform size are
normally used to extract image features, which will lead to insufficient actual receptive
field of the convolutional neural network, inability to extract multi-scale information in
image samples, and insufficient feature extraction. PyConv uses convolution kernels of
different sizes to extract image features, which solves this problem effectively. Based on
DenseNet and PyConv, we propose a dense pyramid structure as a feature extraction
module for hyperspectral images. The three-dimensional convolutional neural network
(3D-CNN) is obtained by adding a dimension of convolution calculation on basis of the
original convolutional neural network, and the dimensionality of the convolution kernel is
increased from the original two dimensions to three dimensions. Unlike 2D convolutions,
which focus on exploring single feature information, 3D convolutions can slide through
three dimensions, mining rich information from all feature maps. A hyperspectral image is
a cubic structure that contains both spectral and spatial information, and 3D convolutions
not only affect the spatial dimension, but they also involve multiple continuous spectral
bands simultaneously. Therefore, spatial and spectral information can be obtained by
applying 3D convolutional neural networks to extract features from hyperspectral images.
As shown in Figure 2, 3D convolutions with convolution kernels arranged in descending
order according to their sizes are used as the basic structure to extract images that are
not used in the image samples. Scale information, using dense connections, concatenates
shallow large-scale features and deep small-scale features to obtain a feature map that
combines multi-scale information in image samples.
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The convolution process of the 3D convolutional layer is shown in Figure 3. The input
is nk feature maps with a size of pk × pk × bk, and after nk+1 3D-CNN layers with a certain
convolution kernel size, nk+1 feature maps with a size of pk+1 × pk+1 × bk+1 are generated.
The ith output of the (k + 1)th 3D-CNN layer is expressed as:

Xk+1
i = R

(
nk

∑
j=1

ˆ
X

k

j × Hk+1
i + ck+1

i

)
(2)
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where X̂k
j ∈ Rp×p×k represents the jth input feature map of the (k+1)th layer, Xk+1

i repre-

sents the final output of the kth layer, Hk+1
i and ck+1

i represent the weights and biases of
the (k+1)th layer and R(·) represents the batch normalization (BN) and nonlinear activa-
tion function.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 20 
 

 

 𝑋ାଵ = 𝑅 ቌ 𝑋ೖ
ୀଵ × 𝐻ାଵ + 𝑐ାଵቍ (2)

where 𝑋 ∈ 𝑅×× represents the jth input feature map of the (k+1)th layer, 𝑋ାଵ repre-
sents the final output of the kth layer, 𝐻ାଵ and 𝑐ାଵ represent the weights and biases of 
the (k + 1)th layer and R(·) represents the batch normalization (BN) and nonlinear activa-
tion function. 

CONV

kH 1kH +

1 1 1 1,k k k ka a d n+ + + +× ×

1kH +

,
k k k kp p b n× × 1 1 1 1,

k k k kp p b n
+ + + +× ×  

Figure 3. Architecture of a 3D-convolutional neural network (3D-CNN). 

2.2. Non-Local Block 
In a CNN, the convolution operation only focuses on the local receptive field. If the 

receptive field of a neuron is to be increased, this can only be achieved by stacking convo-
lutional and pooling layers. However, this approach would considerably increase the 
computational load and the number of parameters. Therefore, in this paper, we use non-
local blocks to capture the connections between distant pixels and obtain the global infor-
mation in the image sample by computing the weights of all position features in the image 
sample. Figure 4 shows the structure of a non-local block, where X is the input feature 
map and Y is the output feature map with the same shape as X. θ, Φ, g and h represent 
convolution kernels with a size of 1 × 1 × 1, where the number of θ, Φ and g is 1/2 of the 
number of channels of X and the number of h is the number of channels of X. The convo-
lutional layer first reduces the number of channels of the input X to 1/2 of the original one 
through θ, Φ and g, thus reducing the computational load. This process can be expressed 
as: θሺ𝑥ሻ = 𝑊ఏ𝑥 + 𝑏ఏ (3)Φሺ𝑥ሻ = 𝑊ః𝑥 + 𝑏ః (4)gሺ𝑥ሻ = 𝑊𝑥 + 𝑏 (5)

where W and b denote the weight matrix and bias in the convolution process, respectively. 
After three convolutions, the outputs θሺ𝑥ሻ, Φሺ𝑥ሻ and gሺ𝑥ሻ with the number of chan-
nels being 1/2 of that in X are obtained, and the transposes of θሺ𝑥ሻ and Φሺ𝑥ሻ are point 
multiplication operations. This process can be expressed as:  𝑓൫𝑥, 𝑥൯ = θሺ𝑥ሻ்Φ൫𝑥൯ (6)

where 𝑓൫𝑥, 𝑥൯ represents the influence of position j on position i. The greater the value 
of f, the greater the influence of position j on position i. The main idea is to perform point 
multiplication between the obtained output and the eigenvalue g൫𝑥൯ of position j, restore 
the output through the convolution layer h until it has the same shape as the original input 
X and finally add the obtained weight matrix to the original input. This process can be 
expressed as: 

Figure 3. Architecture of a 3D-convolutional neural network (3D-CNN).

2.2. Non-Local Block

In a CNN, the convolution operation only focuses on the local receptive field. If
the receptive field of a neuron is to be increased, this can only be achieved by stacking
convolutional and pooling layers. However, this approach would considerably increase
the computational load and the number of parameters. Therefore, in this paper, we use
non-local blocks to capture the connections between distant pixels and obtain the global
information in the image sample by computing the weights of all position features in the
image sample. Figure 4 shows the structure of a non-local block, where X is the input
feature map and Y is the output feature map with the same shape as X. θ, Φ, g and h
represent convolution kernels with a size of 1 × 1 × 1, where the number of θ, Φ and g is
1/2 of the number of channels of X and the number of h is the number of channels of X.
The convolutional layer first reduces the number of channels of the input X to 1/2 of the
original one through θ, Φ and g, thus reducing the computational load. This process can be
expressed as:

θ(xi) = Wθ xi + bθ (3)

Φ(xi) = WΦxi + bΦ (4)

g(xi) = Wgxi + bg (5)

where W and b denote the weight matrix and bias in the convolution process, respectively.
After three convolutions, the outputs θ(xi), Φ(xi) and g(xi) with the number of channels
being 1/2 of that in X are obtained, and the transposes of θ(xi) and Φ(xi) are point
multiplication operations. This process can be expressed as:

f
(
xi, xj

)
= θ(xi)

TΦ
(
xj
)

(6)

where f
(

xi, xj
)

represents the influence of position j on position i. The greater the value
of f, the greater the influence of position j on position i. The main idea is to perform point
multiplication between the obtained output and the eigenvalue g

(
xj
)

of position j, restore
the output through the convolution layer h until it has the same shape as the original input
X and finally add the obtained weight matrix to the original input. This process can be
expressed as:

yi = f
(
xi, xj

)
g
(
xj
)

(7)

zi = h(yi) + xi (8)
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where yi is the weight of position i in the non-local block and zi denotes the final output
of position i in the non-local block. The final output Z of the entire non-local block can be
expressed as:

Z = h

(
1

C(x) ∑
∀j

f
(

xi, xj
)
g
(
xj
))

+ X (9)

where C(x) is a normalization parameter, and its value is the number of positions in X.
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2.3. Framework of the DPCMF Network

The structure of the DPCMF network is shown in Figure 5. In this section, the Indian
Pines (IP) dataset is taken as an example to describe the architecture of the DPCMF model.
The Indian Pines dataset contains 145 × 145 pixels, and each pixel has 200 spectral bands.
The size of this dataset is 145 × 145 × 200, the number of pixels with labels is 20,249, the
other pixels are the background, the number of label categories is 16, and the number of
convolution kernels is 12.

In the spatial branch, the original image samples are processed to a size of 145 × 145 × 100
by PCA, which reduces the amount of calculation and the number of model parameters
while retaining the main information. Then, the image is split into training samples with a
size of 9 × 9 × 100. In the local information extraction module, each 9 × 9 × 100 image
sample is first convolved into a feature map with 24 channels and a size of 9 × 9 × 1
through the convolution layer and then input into the spatial block that consists of three
layers. The convolution kernels are arranged in descending order according to their sizes,
which are 7 × 7 × 1, 5 × 5 × 1, and 3 × 3 × 1. Each convolutional layer is followed by a
batch normalization layer and a ReLU [38] activation function, and finally, a feature map
with a channel number of 60 and a size of 9 × 9 × 1 is obtained. In the global information
extraction module, the feature map with the same shape as the input is obtained through
the non-local module and then input into the convolutional layer to obtain a feature map
with a channel number of 60 and a size of 9 × 9 × 1. After the global and local information
in the image samples is extracted by the two modules, the feature maps of the two parts
are concatenated to obtain the spatial feature maps. The specific implementation details of
the spatial branch are given in Table 1.

Table 1. Implementation details of the spatial branch.

Layer Name Kernel Size Output Size

PCA — (145 × 145 × 100)
Conv (3 × 3 × 1) (9 × 9 × 1, 24)

Spatial Block-1 (7 × 7 × 1) (9 × 9 × 1, 12)
Spatial Block-2 (5 × 5 × 1) (9 × 9 × 1, 12)
Spatial Block-3 (3 × 3 × 1) (9 × 9 × 1, 12)
Non-local block — (9 × 9 × 100)

Conv (3 × 3 × 1) (9 × 9 × 1, 60)
Concatenate — (9 × 9 × 1, 120)
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In the spectral branch, the image is split into training samples with a size of 9× 9× 200,
each sample is first convolved into a 9× 9× 97 feature map through the convolutional layer
and then input into the spectral block. The spectral block consists of three convolutional
layers. The convolutional kernels are arranged in descending order according to their sizes,
which are 1 × 1 × 7, 1 × 1 × 5 and 1 × 1 × 3, respectively. After each convolutional layer, a
batch normalization layer and a ReLU activation function are added, and the image sample
is input to the convolution kernel in the convolutional layer with a size of 1 × 1 × 97 to
obtain the spectral feature map. The specific implementation details of the spectral branch
are listed in Table 2.

In the classification module, the spatial feature map obtained by the spatial branch
and the spectral feature map obtained by the spectral branch are subjected to feature fusion
to obtain a feature map with a channel number of 180 and a size of 9 × 9 × 1; then, a
feature map with a size of 1 × 180 is obtained through the global average pooling (GAP)
layer; finally, the classification result is obtained through the fully connected layer and the
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Softmax activation function. The implementation details of the classification module are
given in Table 3.

Table 2. Implementation details of the spectral branch.

Layer Name Kernel Size Output Size

Conv (1 × 1 × 7) (9 × 9 × 97)
Spectral Block-1 (1 × 1 × 7) (9 × 9 × 97, 12)
Spectral Block-2 (1 × 1 × 5) (9 × 9 × 97, 12)
Spectral Block-3 (1 × 1 × 3) (9 × 9 × 97, 12)

Conv (1 × 1 × 97) (9 × 9 × 1, 60)

Table 3. Implementation details of the classification module.

Layer Name Kernel Size Output Size

Concatenation layer — (9 × 9 × 1, 180)
GAP layer — (1 × 180)

Fully Connected layer — (1 × 16)

3. Experimental Results

In order to verify the effectiveness of the method proposed in this paper, four public
hyperspectral datasets, namely, Indian Pines (IP), Pavia University (UP), Salinas Valley
(SV) and Botswana (BS), are used to conduct experiments. The accuracy of each method is
measured by three evaluation indicators: overall accuracy (OA), average accuracy (AA)
and Kappa coefficient. OA represents the proportion of correctly classified samples to
the total test samples, and AA represents the average accuracy across all categories. The
Kappa coefficient represents the level of consistency between the true value and the clas-
sification result. The greater the values of these three evaluation metrics, the better the
classification results.

3.1. Introduction and Division of the Dataset

Indian Pines (IP): Indian Pines was imaged by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) in 1992 on an Indian pine tree in Indiana, USA and marked with
a size of 145 × 145. The imaging wavelength range of AVIRIS is 0.4–2.5 µm, and it
continuously images ground objects in 220 continuous bands. However, because the
104th–108th, 150th–163rd and 220th bands cannot be reflected by water, 200 bands covering
16 types of ground objects are truly used for training.

Pavia University (UP): Pavia University is part of the hyperspectral data of the city of
Pavia in Italy in 2003 collected by the German Airborne Reflective Optics Spectrographic
Imaging System (ROSIS-03). The size of this dataset is 610 × 340. The spectral imager
continuously captures images with 115 bands within the wavelength range of 0.43–0.86 µm,
and the spatial resolution of the resulting images is 1.3 m. Among these bands, 12 bands
were eliminated due to noise effects, and 103 bands covering 9 types of ground objects
were used for real-world training.

Salinas Valley (SV): The Salinas Valley dataset was acquired by the AVIRIS sensor in
Salinas Valley, California. The size of this dataset is 512× 217, the spatial resolution is 3.7 m,
and it contains 224 continuous bands. In total, 20 water-absorbing bands (108–112, 154–167,
224) were removed, and 204 bands covering 16 types of ground objects were actually used
for training.

Botswana (BS): The Botswana dataset was acquired by the NASA EO-1 satellite in the
Okavango Delta of Botswana in May 2001. The size of this dataset is 1476× 256. The sensor
on EO-1 has a wavelength range of 400–2500 nm and a spatial resolution of about 20 m.
Among the 242 bands, the noise bands (1–9, 56–81, 98–101, 120–133, 165–186) were removed,
and 145 bands covering 14 types of ground objects were actually used for training.
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Before conducting the experiments, we split each dataset into three parts, namely,
training set, validation set, and test set. The training set is used to update model parameters,
the validation set is used to monitor the temporary models generated during the training
phase, and the test set is used to evaluate the optimal model. For different datasets, the
proportions of the three parts are different. The division of Indian Pines (IP) is shown in
Table 4, the division of Pavia University (UP) is shown in Table 5, the division of Salinas
Valley (SV) is shown in Table 6 and the division of Botswana (BS) is shown in Table 7.

Table 4. Samples of the IP dataset for training, validation and testing.

Order Class Total Train Val. Test

1 Alfalfa 46 3 3 40
2 Corn-notill 1428 42 42 1344
3 Corn-mintill 830 24 24 782
4 Corn 237 7 7 223
5 Grass-pasture 483 14 14 455
6 Grass-trees 730 21 21 688
7 Grass-pasture-mowed 28 3 3 22
8 Hay-windrowed 478 14 14 450
9 Oats 20 3 3 14
10 Soybean-notill 972 29 29 914
11 Soybean-mintill 2455 73 73 2309
12 Soybean-clean 593 17 17 559
13 Wheat 205 6 6 193
14 Woods 1265 37 37 1191
15 Buildings-Grass-Tree-Drives 386 11 11 364
16 Stone-Steel-Towers 93 3 3 87

Total 10249 307 307 9635

Table 5. Samples of the UP dataset for training, validation and testing.

Order Class Total Train Val. Test

1 Asphalt 6631 33 33 6465
2 Meadows 18,649 93 93 18,463
3 Gravel 2099 10 10 2079
4 Corn 3064 15 15 3034
5 Trees 1345 6 6 1333
6 Bare Soil 5029 25 25 4979
7 Bitumen 1330 6 6 1318
8 Self-Blocking Bricks 3682 18 18 3646
9 Shadows 947 4 4 939

Total 42,776 210 210 42,356

Table 6. Samples of the SV dataset for training, validation and testing.

Order Class Total Train Val. Test

1 Brocoli-green-weeds-1 2009 10 10 1989
2 Brocoli-green-weeds-2 3726 18 18 3690
3 Fallow 1976 9 9 1958
4 Fallow-rough-plow 1394 6 6 1382
5 Fallow-smooth 2678 13 13 2652
6 Stubble 3959 19 19 3921
7 Celery 3579 17 17 3545
8 Grapes-untrained 11,271 56 56 11,159
9 Soil-vineyard-develop 6203 31 31 6141
10 Corn-senesced-green-weeds 3278 16 16 3246
11 Lettuce-romaine-4wk 1068 5 5 1058
12 Lettuce-romaine-5wk 1927 9 9 1909
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Table 6. Cont.

Order Class Total Train Val. Test

13 Lettuce-romaine-6wk 916 4 4 908
14 Lettuce-romaine-7wk 1070 5 5 1060
15 Vineyard-untrained 7268 36 36 7196
16 Vineyard-vertical-trellis 1807 9 9 1789

Total 54,129 263 263 53,603

Table 7. Samples of the BS dataset for training, validation and testing.

Order Class Total Train Val. Test

1 Water 270 3 3 264
2 Hippo grass 101 2 2 97
3 Floodplain grasses1 251 3 3 245
4 Floodplain grasses2 215 3 3 209
5 Reeds1 269 3 3 263
6 Riparian 269 3 3 263
7 Fierscar2 259 3 3 253
8 Island interior 203 3 3 197
9 Acacia woodlands 314 4 4 306
10 Acacia shrublands 248 3 3 242
11 Acacia grasslands 305 4 4 297
12 Short mopane 181 2 2 177
13 Mixed mopane 269 3 3 263
14 Exposed soils 95 1 1 93

Total 3248 40 40 3168

3.2. Experimental Setting

To validate the classification performance of the, we conducted experiments to com-
pare the DPCMF network with the SVM, SSRN, FDSSC, DBMA and DBDA classification
networks. All experiments were performed on Intel (R) Xeon (R) 4208 CPU @ 2.10 GHz
processor with Nvidia GeForce RTX Running on the 2060Ti graphics card system. The
programming language used is Python. All classification networks were implemented
using PyTorch, PyCharm was used as the compiler, the batch size was set to 16, RMSprop
was used as the optimizer, the initial learning rate was set to 0.00005, and the cross-entropy
loss function was used for experiments.

3.3. Classification Maps and Categorized Results
3.3.1. Classification Maps and Categorized Results for the IP Dataset

In this experiment, 3% of the samples were used as training samples, 3% as validation
samples, and 94% as test samples. The categorized results of different methods on the IP
dataset are listed in Table 8, and the classification maps are shown in Figure 6.

Table 8. Categorized results for the IP dataset with 3% training samples.

Class SVM SSRN FDSSC DBMA DBDA DPCMF

1/% 24.19 60.00 97.67 83.33 97.72 100
2/% 56.71 91.47 99.12 92.27 96.43 97.62
3/% 65.09 93.51 95.85 92.37 97.81 95.83
4/% 39.63 88.95 100 100 97.56 100
5/% 87.33 100 98.35 98.24 98.30 92.86
6/% 83.87 95.95 88.44 98.40 96.75 95.24
7/% 57.50 86.20 82.75 39.59 88.00 90.26
8/% 89.28 94.50 100 99.10 100 100
9/% 22.58 69.56 93.33 26.31 100 100
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Table 8. Cont.

Class SVM SSRN FDSSC DBMA DBDA DPCMF

10/% 66.70 84.35 87.31 83.98 91.12 93.10
11/% 62.50 91.86 99.09 95.65 98.63 97.26
12/% 51.86 86.74 89.01 85.05 93.55 94.12
13/% 94.79 98.97 98.92 100 97.97 100
14/% 90.42 94.74 96.24 93.73 94.40 97.30
15/% 62.82 95.09 94.41 94.37 92.98 90.91
16/% 98.46 91.11 94.38 96.51 95.45 93.44

OA/% 69.35 91.95 95.45 92.85 96.13 96.74
AA/% 65.86 88.94 94.68 86.18 95.69 96.12

Kappa/% 64.65 90.81 94.82 91.85 95.43 96.32
Training Time/s 11.85 52.30 128.74 113.25 77.25 72.41

Test Time/s 1.62 3.12 6.32 8.96 7.02 7.25
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3.3.2. Classification Maps and Categorized Results for the UP Dataset

In this experiment, 0.5% of the samples were used as training samples, 0.5% as valida-
tion samples, and 99% as test samples. The categorized results of different methods on the
UP dataset are listed in Table 9, and the classification maps are shown in Figure 7.
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Table 9. Categorized results for the UP dataset with 0.5% training samples.

Class SVM SSRN FDSSC DBMA DBDA DPCMF

1/% 80.26 68.45 99.55 93.49 95.27 96.97
2/% 86.94 92.95 98.57 96.98 96.81 98.92
3/% 71.73 99.52 100 96.72 99.26 100
4/% 96.44 99.08 98.07 96.93 98.20 96.67
5/% 90.85 97.77 99.70 99.62 98.61 100
6/% 77.02 98.15 99.81 99.52 98.83 98.00
7/% 69.70 100 94.74 97.11 100 100
8/% 67.30 83.12 80.70 82.25 89.09 94.44
9/% 99.89 99.25 99.88 98.59 100 100

OA/% 83.07 88.32 96.92 95.28 97.12 98.10
AA/% 82.24 93.14 96.78 95.69 97.34 98.33

Kappa/% 77.07 84.14 95.91 93.70 96.23 97.77
Training Time/s 5.69 11.88 31.38 10.65 21.21 21.08

Test Time/s 2.09 5.21 13.56 13.12 11.05 12.98

3.3.3. Classification Maps and Categorized Results for the SV Dataset

In this experiment, 0.5% of the samples were used as training samples, 0.5% as valida-
tion samples, and 99% as test samples. The categorized results of different methods on the
SV dataset are listed in Table 10, and the classification maps are shown in Figure 8.

Table 10. Categorized results for the SV dataset with 0.5% training samples.

Class SVM SSRN FDSSC DBMA DBDA DPCMF

1/% 99.84 99.34 100 100 100 100
2/% 98.95 100 97.20 100 99.62 100
3/% 89.87 87.71 99.28 98.38 100 100
4/% 97.30 95.22 96.23 92.02 89.35 91.67
5/% 93.55 99.54 99.96 99.11 99.63 100
6/% 99.79 99.79 99.92 99.84 99.26 100
7/% 91.33 99.52 100 98.74 96.69 100
8/% 74.73 84.51 99.80 93.15 97.95 98.21
9/% 97.69 99.67 99.09 99.23 99.07 100
10/% 90.01 99.28 99.17 97.42 93.76 100
11/% 75.92 94.04 94.37 80.71 92.89 96.00
12/% 95.19 96.96 99.84 99.44 100 100
13/% 94.86 100 100 99.44 100 100
14/% 89.26 98.22 99.06 96.33 95.81 97.00
15/% 75.85 92.10 83.81 97.18 93.48 97.22
16/% 99.03 100 100 100 100 100

OA/% 88.09 94.42 96.52 96.95 97.31 98.92
AA/% 91.45 96.62 97.81 96.97 97.34 98.76

Kappa/% 86.70 93.77 95.38 96.60 97.81 98.73
Training Time/s 10.27 84.99 123.28 149.12 81.20 78.22

Test Time/s 4.13 16.32 31.05 41.33 23.60 23.66
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3.3.4. Classification Maps and Categorized Results for the BS Dataset

In this experiment, 1.2% of the samples were used as training samples, 1.2% as valida-
tion samples, and 97.6% as test samples. The categorized results of the different methods
on the BS dataset are listed in Table 11, and the classification maps are shown in Figure 9.

Table 11. Categorized results for the BS dataset with 1.2% training samples.

Class SVM SSRN FDSSC DBMA DBDA DPCMF

1/% 100 98.47 94.02 97.76 95.97 97.76
2/% 70.70 94.62 100 98.98 98.00 100
3/% 84.10 87.89 100 100 100 100
4/% 65.95 86.80 96.89 89.40 85.77 88.28
5/% 82.62 74.50 87.50 92.27 93.96 94.36
6/% 65.71 80.19 69.76 80.13 87.04 88.65
7/% 78.77 90.35 100 96.93 100 99.21
8/% 65.87 87.11 95.60 100 99.32 100
9/% 75.18 93.76 100 94.42 91.04 100
10/% 69.82 81.56 91.04 92.77 100 89.7
11/% 95.49 100 100 100 100 100
12/% 93.10 100 88.88 100 100 100
13/% 76.25 96.25 100 100 100 100
14/% 90.41 100 100 97.43 100 100

OA/% 78.63 90.26 93.17 95.19 96.39 96.67
AA/% 79.57 90.82 94.45 95.72 96.50 97.08

Kappa/% 76.87 89.47 92.59 94.79 96.09 96.57
Training
Time/s 1.62 11.23 23.02 21.09 17.96 20.39

Test
Time/s 0.38 2.01 2.65 3.11 2.10 2.32
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3.4. Impact of Convolution Kernel Size

In the process of feature extraction, the size of the convolution kernel affects the de-
gree to which information is extracted. In this chapter experiment, convolution kernels
of different sizes were used to extract features from hyperspectral images. To evaluate
the impact of the convolution kernel size on the experimental results, experiments were
conducted using convolution kernels of the same size instead of Pyconv. The experimental
results are shown in Table 12. In the table, DPCMF_3 represents the use of a 3 × 3 × 1 con-
volution kernel in the spatial block and a 1 × 1 × 3 convolution kernel in the spectral block;
DPCMF_5 represents the use of a 5 × 5 × 1 convolution kernel in the spatial block and
a 1 × 1 × 5 convolution kernel in the spectral block; DPCMF_7 represents the use of a
7 × 7 × 1 convolution kernel in the spatial block and a 1 × 1 × 7 convolution kernel in the
spectral block; and DPCMF_9 represents the use of a 9 × 9 × 1 convolution kernel in the
spatial block and a 1 × 1 × 9 convolution kernel in the spectral block.

Table 12. Impact of kernel size on OA.

Kernel Size IP UP SV BS

DPCMF_3/% 89.13 93.15 92.12 90.61
DPCMF-5/% 93.28 96.22 95.42 94.22
DPCMF-7/% 95.12 97.02 97.38 94.67
DPCMF-9/% 94.37 96.58 96.88 95.13

3.5. Impact of Training Sample Size

To verify the impact of the number of training samples on the experimental results,
experiments were conducted using a varying number of samples as training samples. For
the IP dataset, 0.5%, 1%, 3%, 5% and 10% of the samples were used as training sets, and
the experimental results are shown in Table 13. For the UP and SV datasets, 0.1%, 0.5%,
1%, 3% and 5% of the samples were used as training sets, and the experimental results are
shown in Tables 14 and 15, respectively. For the BS dataset, 0.5%, 1.2%, 3%, 5% and 10% of
the samples were used as training sets, and the experimental results are shown in Table 16.
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Table 13. OA for different proportions of training samples in the IP dataset.

Algorithms 0.5% 1% 3% 5% 10%

SVM/% 48.53 55.95 69.35 74.74 80.55
SSRN/% 64.99 81.40 90.52 0.955 97.84

FDSSC/% 70.75 84.71 96.14 97.21 98.02
DBMA/% 59.33 77.64 93.14 93.75 96.91
DBDA/% 56.97 78.81 96.19 96.58 97.55

DPCMF/% 73.25 85.14 96.74 97.95 98.56

Table 14. OA for different proportions of training samples in the UP dataset.

Algorithms 0.1% 0.5% 1% 3% 5%

SVM/% 70.59 83.07 88.45 90.35 93.29
SSRN/% 78.32 94.85 97.11 99.43 99.69

FDSSC/% 88.97 97.02 97.74 99.50 99.58
DBMA/% 89.87 95.06 96.37 99.10 99.49
DBDA/% 88.01 97.11 98.40 99.07 99.33

DPCMF/% 91.35 98.10 98.89 99.99 99.99

Table 15. OA for different proportions of training samples in the SV dataset.

Algorithms 0.1% 0.5% 1% 3% 5%

SVM/% 78.65 88.09 89.89 91.24 92.47
SSRN/% 67.22 95.35 96.32 97.23 98.14

FDSSC/% 88.83 95.85 96.48 97.52 98.85
DBMA/% 92.15 95.90 96.66 97.62 98.21
DBDA/% 94.23 97.70 98.31 98.95 99.36

DPCMF/% 96.04 98.92 99.25 99.90 99.99

Table 16. OA for different proportions of training samples in the BS dataset.

Algorithms 0.5% 1.2% 3% 5% 10%

SVM/% 73.53 78.63 87.82 89.06 92.76
SSRN/% 84.07 94.27 95.52 98.19 99.15

FDSSC/% 87.98 90.80 96.33 97.24 99.46
DBMA/% 93.36 94.87 95.88 98.01 99.04
DBDA/% 96.27 96.39 97.38 98.64 99.33

DPCMF/% 96.37 96.67 99.10 99.58 99.91

3.6. Ablation Experiment

To verify the impact of the spatial block, spectral block, and non-local block on OA,
experiments were conducted on these three modules using four datasets, as shown in
Table 17. Table 17 displays the classification results of DPCMF, DPCMF-AE, DPCMF-AN,
DPCM-EN and DPCMF-D on the four datasets. DPCMF-AE represents the absence of
the non-local block, DPCMF-AN represents the absence of the spectral block, DPCMF-EN
represents the absence of the spatial block, and DPCMF-D represents the absence of the
Dense structure. The dataset partitioning process is consistent with that described in the
previous section.
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Table 17. Ablation experiments on four datasets.

Algorithms IP UP SV BS

DPCMF/% 96.74 98.10 98.92 96.67
DPCMF-AE/% 94.25 95.16 95.42 92.19
DPCMF-AN/% 90.38 90.30 91.37 89.24
DPCMF-EN/% 82.13 82.97 85.21 81.98
DPCMF-D/% 95.11 94.26 93.28 90.56

4. Discussion

The experimental results are shown in Figure 10a, DPCMF method achieves significant
improvements in all of the following three metrics: OA, AA and Kappa. In terms of time,
due to the large input volume of convolutional neural networks and the need for more
training parameters, the time cost of the DPCMF method is higher than that of the SVM
method, but in terms of classification accuracy, the accuracy level of the SVM method is
much lower than those of other deep learning methods. In most cases, the DPCMF method
takes less time than other deep learning-based methods.
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For the IP dataset, the OA of the DPCMF method is 96.74%, which is 27.39%, 4.79%,
1.29%, 3.89% and 0.61% higher than the OA levels of the other five methods, its AA is
96.12%, which is 30.26%, 7.18%, 1.44%, 9.94% and 0.43% higher than the AA levels of the
other five methods, and its Kappa coefficient is 96.32%, which is 31.67%, 5.51%, 1.5%, 4.47%
and 0.89% higher than the Kappa of the other five methods. The classification accuracy
for each category has reached more than 90%. Compared to the other ground objects,
the classification accuracy is lower for the Grass-pasture-mowed because there are fewer
training samples for the ground objects, and it is difficult to extract a large amount of
feature-related information from a small number of samples during model training.

For the UP dataset, the OA of the DPCMF method is 98.10%, which is 15.03%, 9.78%,
1.18%, 2.82% and 0.98% higher than the OA levels of the other five methods, its AA is
98.33%, which is 16.09%, 5.19%, 1.55%, 2.64% and 0.99% higher than the AA levels of the
other five methods, and its Kappa coefficient is 97.77%. The classification accuracy for all
categories has reached more than 94%. Compared to the alternative ground-truth features,
Self-blocking bricks have lower classification accuracy because the category features of the
ground-truth features are not obvious, and it is difficult to extract features with elevated
discriminative degree.

For the SV dataset, the OA of the DPCMF method is 98.92%, which is 10.83%, 4.5%,
2.4%, 1.97.05% and 1.61% higher than the OA levels of the other five methods, its AA is
98.76%, which is 7.31%, 2.14%, 0.95%, 1.79% and 1.42% higher than the AA levels of the
other five methods, and its Kappa coefficient is 98.73%, which is 12.03%, 4.96%, 3.35%, 2.13%
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and 0.92% higher than the Kappa coefficient of the other five methods. The classification
accuracy for each category has reached more than 91%.

For the BS dataset, the OA of the DCFE method is 96.67%, which is 18.04%, 6.41%,
3.50%, 1.48% and 0.28% higher than the OA levels of the other five methods, its AA is
97.08%, which is 17.51%, 6.26%, 2.63%, 1.36% and 0.58% higher than the AA levels of the
other five methods, and its Kappa coefficient is 96.57%, which is 19.70%, 7.10%, 3.98%,
1.78% and 0.48% than the Kappa coefficient of the other five methods. Compared to the
other ground features, Floodplain Meadows 2 has lower classification accuracy because
there are fewer training samples for this ground feature, the features of this ground feature
are more complex, and feature extraction is more difficult during the training of the model.

From the results of the Figure 10b and Table 12, as the size of the convolutional kernel
increased, the OA gradually increased, indicating that larger kernels can better capture a
wider range of features. However, when the size of the kernel increased to a certain extent,
the OA started to decrease because excessively large kernels may capture noise or irrelevant
information, thereby reducing the accuracy of the model. In this group of experiments, the
best OA can be achieved through pyramidal convolutions. The reason is that the pyramidal
convolution module uses multi-scale kernels to capture features of different scales, thereby
improving the model generalization ability. Choosing an appropriate combination of
convolutional kernels can also improve the accuracy of the model. For example, for certain
tasks, the use of smaller kernels may be more suitable because they can better capture local
features. Therefore, when choosing the size of the convolutional kernel, it is necessary to
ensure a good balance according to the specific task requirements and data characteristics
in order to obtain the best experimental results.

In the experiments on the impact of training sample size, the classification accuracy of
the SVM, SSRN, FDSSC, DBMA, DBDA and DPCMF methods all improved as the number
of training samples increased. Moreover, the performance gap between different models
also narrowed with the increase in the number of training samples. The results of these
experiments show that, in the case of limited number of training samples, the DPCMF
method can better extract multi-class features in the samples by using densely connected
pyramidal convolution layers to capture spectral features and multi-scale spatial features
and using non-local modules to capture global spatial information. Therefore, it achieved
good classification results.

From the results of Figure 10c and Table 17, it can be seen that the absence of any mod-
ule will reduce the model accuracy. DPCMF-AE performed poorly because of inadequate
perception of global spatial features. When processing images, it is not only necessary
to understand the characteristics of each pixel in the image, but it is also necessary to
understand the global information such as the structure, background, layout and compo-
sition of the image. Such global information can help the model better understand the
image and improve its performance in image processing. DPCMF-AN performed poorly
because spectral images contain multiple continuous spectral bands, and each spectral
band corresponds to different spectral information of different wavelengths. Therefore,
they have high dimensionality and rich information that can be used to accurately describe
the spectral characteristics of objects. The inability to extract spectral features results in
the lack of important spectral information, making the model unable to distinguish and
classify different objects. DPCMF-EN performed poorly because considering only the
spectral information of pixels is often insufficient to provide sufficient information. For
example, when classifying vegetation and non-vegetation, the spectral information of
vegetation may vary at different positions, making it difficult to distinguish vegetation
from non-vegetation using only spectral information. In this case, it is necessary to con-
sider the spatial information of pixels, the positional relationship between pixels in the
image, to improve classification accuracy. DPCMF-D performed poorly because the Dense
structure plays an important role in feature extraction. The Dense structure can share
features between different layers through feature reuse, which can effectively improve the
network expressive ability and enable the network to better learn the complex features of
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input data. This mechanism can avoid the problem of vanishing gradients that is often
encountered in traditional deep networks, thus improving the network feature extraction
ability. The parameter sharing between different layers in the Dense structure can greatly
reduce the number of parameters that need to be trained in the network, thereby reducing
the network complexity. This makes the network more compact and lightweight, helping
to avoid overfitting and improve the network generalization ability. Since each layer in
the Dense structure can accept inputs from all previous layers, the network can learn the
features of input data more quickly. In addition, the Dense structure can use a shallower
network structure to achieve the same performance as traditional networks, which can
reduce training time and computational cost. Therefore, the Dense structure is essential in
the DPCMF network.

5. Conclusions

In this paper, we propose a hyperspectral image classification method based on dense
pyramidal convolution and multi-feature fusion to address the difficulty in adequately
extracting and exploiting the spatial and spectral information of hyperspectral images
when the sample size is limited. In this approach, two branches—i.e., spatial and spectral
branches—are designed, and in each branch, dense pyramidal convolution layers are used
as feature extractors. In the spatial branch, multiple local and global spatial features in
image samples are extracted using dense pyramidal convolution and non-local blocks. In
the spectral branch, the spectral features in the image samples are extracted by the dense
pyramidal convolution module. Finally, the spatial and spectral features are fused through
fully connected layers to obtain classification results.

The results of experiments conducted to compare the proposed method with the SVM,
SSRN, FDSSC, DBMA and DBDA methods on four public hyperspectral datasets (Indian
Pines, Pavia University, Salinas Valley, and Botswana) show that the DPCMF method
achieves the best experimental results in terms of OA, AA and Kappa coefficients. In the
follow-up study, we will continue to build more efficient classification models to resolve
the problem of limited sample size and further improve the current model classification
accuracy for hyperspectral images.
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