
Citation: Graldi, G.; Zardi, D.; Vitti,

A. Retrieving Soil Moisture at the

Field Scale from Sentinel-1 Data over

a Semi-Arid Mediterranean

Agricultural Area. Remote Sens. 2023,

15, 2997. https://doi.org/10.3390/

rs15122997

Academic Editors: Rafał Pudełko and

Kamil Szewczak

Received: 2 May 2023

Revised: 27 May 2023

Accepted: 1 June 2023

Published: 8 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Retrieving Soil Moisture at the Field Scale from Sentinel-1 Data
over a Semi-Arid Mediterranean Agricultural Area
Giulia Graldi *, Dino Zardi and Alfonso Vitti

Department of Civil, Environmental and Mechanical Engineering, University of Trento, 38123 Trento, Italy
* Correspondence: giulia.graldi@unitn.it

Abstract: In this work, superficial soil moisture is estimated from SAR data at the field scale on
agricultural fields over which the relationship between the co-polarized backscattering coefficient
(γVV

0 ) and the measured soil moisture (SSMv) is both direct and inverse. An inversion algorithm is
adapted to the charateristics of the single field and applied to SAR signal differences. The differences
of SAR signal are obtained from a change detection (CD) method applied on the VV band of the
Sentinel-1 SAR mission. In the CD method, the variations of the total backscattered signal due to sharp
changes in vegetation and soil roughness are excluded from the dataset by using a machine learning
algorithm. The retrieval method is applied on a low vegetated agricultural area in Spain, characterized
by a semi-arid mediterranean climate and where in situ soil moisture data are available. Good results
are obtained not only over fields characterized by direct γVV

0 /SSMv relationship, reaching values of
correlation coefficient and RMSE up to r = 0.89 and RMSE = 0.042 m3/m3, but also over fields with
inverse relationship, obtaining in this case values up to r = 0.84 ad RMSE = 0.026 m3/m3. Although
the inverse relationship between the backscattering coefficient and the measured soil moisture is
not yet well understood in the field of soil moisture estimation from radar data, for the present
case, checking the nature of this relationship was fundamental in order to accordingly adapt the soil
moisture retrieval algorithm to the dataset characteristics.

Keywords: soil moisture; SAR; field scale; change detection; inversion

1. Introduction

Soil moisture is a key climate and hydrological variable since it is strongly connected
with the water cycle and the surface energy budget. The amount of soil moisture is indeed
the main driver of water and heat fluxes between land and atmosphere, and impacts
other climatic variables as well, such as air temperature and precipitation [1]. Given
the role of soil moisture, a precise knowledgle of its spatial distribution and temporal
evolution is crucial for various environmental applications, such as watershed management
and flood prediction, weather forecast and prediction of impacts from climate change,
agricultural practises, monitoring of drought and ecosystems, environmental response
to climate change [2,3]. From 2010, the soil water content is indeed one of the Essential
Climate Variables (ECVs) according to the Global Climate Observing System [4].

The retrieval of information on spatial and temporal variability of soil moisture can be
performed with different approaches, including field measurements, weather-hydrological
modelling, and processing of remote sensed data. Direct and proximal in situ measurements
can be considered as a reliable source of information for soil water content [2]. Even though
they allow determining a “ground truth”, they only provide pointwise information poorly
representative of the strong spatial variability of soil moisture. The resulting information
are in fact limited to restricted areas and likely time intervals. Moreover, monitoring
soil moisture content with in situ measurements over large areas and time periods is
demanding, due to the large effort required for installing, mantaining and operating the
sensors. Hydrological and weather forecasting models could instead provide soil moisture
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information at a wider space and time scale. Nevertheless, soil moisture from models is
affected by uncertainties, such as the analitical framework of the model and input data [5],
which may be considered and taken into account. Information on soil moisture can be
retrieved at wide spatial and time scale also by processing remote sensed images, exploiting
the interaction between the acquired signal and the characteristics of the Earth surface.
In particular, satellite images from either active or passive microwave sensors have been
largely exploited for estimating superficial soil moisture during the last 20 years [6,7], due
to the sensitivity of the signal to the dielectric constant of the land surface, and thus to the
soil moisture content. Among the remote sensing techniques for estimating superficial soil
moisture, the GNSS-R (Global Navigation Satellite Systems—Reflectometry) [8] exploits
the GNSS signal reflected on the Earth Surface received by spaceborne GNSS-R receivers.
With this technique, the retrieved soil moisture is referred to the area around the reflection
point on the Earth surface within a radius of thousands of meters.

Many efforts have been made for estimating the quantities of interest from microwave
images at global scale, by realizing various satellite missions whose soil moisture products
are characterized by coarse resolution and frequent (up to daily) revisit time. Among the
missions providing these kind of products, there are Soil Moisture and Ocean Salinity
(SMOS) [9], Soil Moisture Active Passive (SMAP) [10], Windsat [11] and Advanced Scat-
terometer (ASCAT) [12]. One of the most suitable radar technologies for estimating soil
moisture at a finer resolution is the Synthetic Aperture Radar (SAR) [13]. Open missions
carrying this technology allow characterizing parameters of interest at a resolutions up to
20 m, with a revisit time of 6 days, as is the case of the Sentinel-1 C-band SAR mission of
the European Space Agency (ESA) [14], and in the next future missions such as NISAR
(NASA-ISRO SAR) will provide L-band and S-band images at even higher resolutions of
5 m and 20 m. In the meantime, the high acquisition frequency of sensors such as the one
of Sentinel-1, produce dense time series of SAR images, increasing the potentialities of
applying methods such as those based on Change Detection (CD) analysis.

In the context of soil moisture estimation at kilometric scale over sparsely vegetated
areas, a CD method can be used by assuming that the main drivers of the variations of the
backscattered signal are superficial soil moisture and the development of the vegetation
(e.g., [15,16]). At the field scale instead, the SAR signal is also influeced by surface roughness.
For considering this, Balenzano et al. [17] proposed a CD method in which vegetation and
roughness variations could be assumed to be constant between two epochs close in time,
where homogeneous crop type are present. On areas characterized by heterogeneous crops
instead, Gao et al. [18] coupled a CD method and a semi-empirical model to parametrize
vegetation contribution to SAR signal with an optical vegetation index, using a 100 m
resolution for mitigating roughness and noise influences. Unfortunately, optical data are
not always available with a fixed frequency over a study area, as their usability depends
on cloud cover conditions. In order to have more frequent information on the vegetation
contribution, Veloso et al. [19] studied the sensitivity of SAR bands in distinguishing crop
types and monitoring crops changes during the growing season. They demonstrated the
suitability of the cross-polarized VH band of Sentinel-1 for classifying the state of the
vegetation. Moreover, the effects of changes in roughness conditions at the field scale have
to be taken into account, because agricultural operations such as tillage and harvesting
can cause sharp changes in the roughness conditions of the field, and thus not negligible
variations on the total backscattering coefficients.

In the present work, the influence of vegetation and soil roughness variations on the
total backscattered signal are taken into account with a preliminary analysis on co-polarized
and cross-polarized Sentinel-1 bands, similarly to what proposed by Zhu et al. [20]. Sharp
changes linked to vegetation evolution and variations in soil roughness conditions are
identifyed at the field scale in a 3D space of SAR fetures by using a DBSCAN algorithm.
Once outliers are excluded from the data sample, it is assumed that soil moisture is the main
driver of SAR signal changes at the field scale. At this point, a change detection method is
applied on Sentinel-1 VV band for estimating the soil moisture content with an inversion
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algorithm. The analyses are conducted at the field scale on an agricultural area for which
soil moisture measurements are avaliable. The inversion algorithm is thus applied over
24 fields characterized by a quite strong correlation between co-polarized backscattering
coefficient and in situ measurements. The quality of results will be influenced by the extent
to which the assumptions of the retrieval method are fullfilled over the single field, and by
the effectiveness of the DBSCAN algorithm in detecting the outliers.

The article is organized in the following sections: in Section 2 the study area is
described, as well as the in situ and satellite datasets; Section 3 illustrates the preliminary
analysis and the retrieval method used for the calculation of the superficial soil moisture;
in Section 4 the results are reported and discussed; finally, in Section 5 the conclusions are
drawn along with perspectives and future works.

2. Materials
2.1. Study Case

The study area is in central Spain, between the cities of Zamora, Valladolid and
Salamanca (Figure 1). Here, a soil moisture monitoring network called REMEDHUS is
operated by the Centro Hispano Luso de Investigaciones Agrarias (CIALE) of the University
of Salamanca [21]. The REMEDHUS network is included in the International Soil Moisture
Network (ISMN) [22], which is mainly focused on the distribution of harmonized and
standardized data for the validation of remote sensing soil moisture products. Figure 1
shows the stations of the network providing data used for the present work. The extention
of the area is 1285 km2 and the main land use is agriculture. In particular, more than 80% of
the area is covered by rainfed crops such as wheat and barley [21], and the remaining part
by irrigated crops (corn), vineyards, forest and pastures [23]. The area is flat with maximum
altitude differences of 200 m, and the soil is mainly composed of sand with a low content
of organic matter. The climate of the region is continental semi-arid mediterranean, with an
average annual temperature of 12 °C and a mean annual precipitation of 385 mm [24]. The
study period covers the irrigation season from April to October of the years 2018–2021.

Figure 1. Location of the study area in Spain and spatial distribution of the measurement stations of
the REMEDHUS network considered in the study.

2.2. In Situ Data
2.2.1. Soil Moisture Measurements

The REMEDHUS network provides hourly soil moisture measurements in m3/m3

and it is operating since 2005 through the services of the ISMN. The network includes a
total number of 24 stations, but only for 19 of them were data available for the study period
covering the four irrigation seasons of 2018–2021. The distribution of the 19 stations within
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the study area is shown in Figure 1. The stations are not inside agricultural fields, but
mostly at the boundaries of one or more fields, as can be seen for the stations of Granja
and La Cruz de Elias in Figure 2. The superficial soil moisture (SSMv) is measured with
capacitive sensors (Hydra Probes, Stevens Water Monitoring System, Inc., Portland, OR,
USA) at a depth of 5 cm below the surface. Only the station of Ca nizal is classified as
irrigated, and hence there measured soil moisture depends both on meteorological events
and on irrigation [22]. Soil moisture data from every station are compared with the mean
value of SAR satellite data over one or more fields around the measurement station.

(a) Granja (b) La Cruz de Elias

Figure 2. Layout of the measurment stations of REMEDHUS at the boundary of cultivated fields.

2.2.2. Meteorological Data

Precipitation data from five meteorological stations within the study area were used
to analize soil moisture time series. Four stations are included in the REMEDHUS network
while the fifth is operated by the Spanish National Meteorological Agency (AEMET) [25].

2.3. Satellite Data
2.3.1. Sentinel-1 SAR Data

Sentinel-1 is a radar mission for Earth Observation developed by ESA within the
Copernicus programme [14]. It is composed of two spacecrafts, Sentinel-1A (S1A) and
Sentinel-1B (S1B), both equipped with a SAR system operating in C-band (3.75–7.5 cm).
The two satellites were launched respectively in April 2014 (S1A) and April 2016 (S1B), and
share the same orbit at a distance of 180°. The acquisition frequency of a single satellite on
a scene with the same configuration is 12 days at the equator, resulting in a revisit time of
6 days. Unfortunately, since December 2021 Sentinel-1B is not operating anymore due to
an anomaly.

In this work, images acquired in the Interferometric Wide-Swath (IW) mode were
used. This operational mode is the mostly used over land and it is characterized by a
swath width of 250 km. The dual polarization acquisitions (VV, VH) of the Level 1 Ground
Range Detected High Resolution (GRD HR) product were used. The GRD products were
preprocessed with Sentinel Application Toolbox (SNAP) [26] for obtaining maps of the
backscattering coefficient γ0 for both VV and VH bands at 20 m resolution. The sequence
of preprocessing operations performed on the images was similar to the one suggested by
Filipponi [27]. In particluar, the speckle noise removal was performed with the Refined Lee
filter [28] and the radiometric and geometric correction were computed using the Digital
Terrain Model at 5 m resolution provided by the spanish Autonomous National Centre of
Geographic Information [29]. Since the analyses were performed at field scale, the mean
values of γ0 in both polarizations were computed for all the fields of interest. A series of
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139 Sentinel-1 images of the irrigation seasons from 2018 to 2021 was downloaded from
the Copernicus Open Access Hub website [30]. The main features of these products are
summarized in Table 1.

Table 1. Characteristics of the Sentinel-1 dataset.

Study Period N° of Images Level Product Polarization Relative Orbit n° Incidence Angle Relative Orbit

2018–2021 139 GRD HR VV, VH 154, 74 30.6◦–46.5◦ Desc., Asc.

2.3.2. Sentinel-2 Optical Data

Sentinel-2 is a mission developed by ESA within the Copernicus programme [31]
providing optical observations of the Earth. The mission is composed of two identical
satellites Sentinel-2A (S2A) launched in June 2015, and Sentinel-2B (S2B) launched in March
2017. The spacecrafts are equipped with a Multi Spectral Instrument (MSI) acquiring 13
bands in the subranges of visible, near infrared (NIR) and short wave infrared (SWIR) at
different resolutions (10 m, 20 m, 60 m) over a swath of 290 km. S2A and S2B share the
same orbit with a delay of 180° and provide a revisit time of 6 days at the equator.

Level 2A Bottom Of Atmosphere (BOA) products were used, in particular the True
Color Image (TCI) at 10 m of resolution. The images were downloaded from the Copernicus
Open Access Hub website and preprocessed using the Geographical Resources Analysis
Support System (GRASS) GIS Software 8.2.1 [32]. Since the TCI were used as a reference
for digitalizing the fields, only 4 images for every irrigation season were used, for a total of
16 images.

3. Method
3.1. Preliminary Analysis for Field Selection

As shown in the previous Section, the measurement stations of the REMEDHUS
network are not inside agricultural fields but at their boundaries (Figure 2). Moreover,
the data provider does not supply information on associated reference field along with
the coordinates of the measurement stations. Hence, as in the present work the analyses
are conducted at field scale, it was necessary to properly couple single agricultural fields
with the respective measurement stations. To this purpose the agricultural fields on whose
boundaries the measurement stations lie were digitalized. Sentinel-2 images for all the
four years under analysis were used as reference for identifying the shape of the fields.
In order to select the most appropriate fields for estimating superficial soil moisture, the
co-polarized band of Sentinel-1 was analyzed, on the ground of its sensitivity to soil
water content. Specifically, the relationship between the mean value of the co-polarized
backscattering coefficient γVV

0 over the field and the measured soil moisture of the reference
station was studied, by plotting γVV

0 as a function of the measured soil moisture. In order
to take into account and recognize the influence of precipitation on the SAR signal, data in
correspondence of precipitation events were highlighted in the graphs. The relationship
was studied for every digitalized field and separately for every year of the study period,
in order to not mix the influence of different crops cultivated on the same field during
different irrigation seasons.

Only fields characterized by a clear relationship between co-polarized data and mea-
sured soil moisture (absolute value of correlation coefficient |r| > 0.5) were selected, as
illustrated in details in Section 4. Among the selected fields, two main trends emerged from
the data distributions in the SSMv—γVV

0 plane. These two distributions are clearly charac-
terized by either a positive or a negative slope, as will be shown in Section 4. According to
the scientific literature about soil moisture estimation from radar data, positive relationship
is the expected one. Ulaby [33] stated indeed that the superficial radar response increases
with soil moisture, since in wet soil conditions the reflection coefficient is higher than in dry
conditions, thus causing an increase in the intensity of the backscattering coefficient. On the
other hand, inverse relationships between SAR signal and soil moisture were also found in
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literature, in particular on areas characterized by arid enviroments [34] such as in the study
area of the present work. The causes of this behavior are still under study: Baghdadi et
al. [35] first suggested that it could be casued by variations in soil roughness contribution
on the total backscatter. More recently it was explained as a volumetric contribution [36]
attributable to subsurface backscattering [37]. Given the high values of correlation between
SAR co-polarized signal and measured soil moisture on the selected agricultural fields
showing both positive and negative correlation, here soil moisture is estimated on fields
showing both behaviors.

3.2. Superficial Soil Moisture Estimation

On the selected fields, the mean superficial soil moisture is retrieved using an in-
version algorithm. Co-polarized SAR signal differences are inverted assuming that the
temporal differences of γVV

0 and real soil moisture are linked by the relationship shown in
Equation (1). Specifically, the differences in the numerators of Equation (1) are between the
current epoch t and the driest epoch of the study period, while the differences appearing in
the denumerators represent the maximum variation within the study period.

∆SSMv(t)
∆SSMv(max)

=
∆γVV

0 (t)
∆γVV

0 (max)
(1)

The differences of SAR signal (right hand side of Equation (1)) are calculated with a
Change Detection method, illustrated in the next subsection.

3.2.1. Change Dectection Method

The total backscattering coefficient of a scene with vegetation canopies can be modelled
as the incoherent sum of three components [38], as below reported:

γVV
0,total = γ0,veg + L2γ0,soil + γ0,veg+soil (2)

Here, γ0,veg, γ0,soil and γ0,veg+soil represent respectively the volumetric scattering of
the vegetation, the attenuated scattering contribution of the superficial layer of the soil
(in which L2 is the attenuation coefficient) and the contribution of the interaction between
the vegetation and the soil surface. The latter contribution is significant only in the cross-
polarized band (i.e., the VH band for Sentinel-1) [39,40], and since here the soil moisture
is estimated from the co-polarized VV band, for the present purposes this contribution
can be neglected. The soil component γ0,soil of Equation (2) is influenced by both soil
roughness and moisture, while the vegetation component γ0,veg depends on moisture
content of the canopy and on canopy geometry. Given the multiple dependencies of the
total backscattered signal from various features of the Earth Surface, the identification of
the soil moisture contribution is challenging because all the other components need to be
properly addressed.

In this study, no in situ data were available for modelling the contributions of veg-
etation and surface roughness on the total backscattering coefficient. For this reason, it
was assumed that over a field it is possible to neglect the effects of smooth changes in
vegetation condition and soil roughness on the total backscattered signal with respect to
the variations caused by changes in the soil moisture content. However, vegetation and soil
roughess can suddenly change over an agricultural field due to agricultural practises such
as harvesting and tillaging. Those activities can cause abrupt variations of the total SAR
signal, which values can be considered as outliers in the time series of the backscattering
coefficient in both polarizations. Given that, sharp changes in vegetation and soil roughness
are here considered as anomalies that can be detected in a 3D space of differences of SAR
features, as suggested by Zhu et al. [20]. For dual-pol C-band SAR images, they proposed
using the three following features, namely γVV , γVH , γVV/γVH , which were selected by
optimizing the feature space for detecting both vegetation and roughness changes due to
agricultural practises. SAR data acquired during rainy days up to the day after precipitation
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events were excluded from this analysis, because the increase of intensity of the SAR signal
due to precipitation would have influenced the anomaly detection. This procedure was
applied over every single field using averaged values and separately for every year, for not
eventually mixing the contributions of different crops cultivated on the same field over the
four irrigation seasons of the study period.

At first, the differences of the features between dates with interepoch equal to one and
two were extracted, and are indicated respectively with d f (i,i−1) and d f (i,i−2). Then, the
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [41] algorithm
was applied to both the multi-temporal differences of the features with interepoch one
and two. This algorithm identifies clusters of data on the basis of the spatial density of
the points in a multi-dimension space. Specifically, for every point p of a cluster C, there
is a point q contained in the same cluster (q ∈ C) for which p is inside a given radius
Eps in the multi-dimension space. This condition could be written as p ∈ NEps(q), where
NEps(q) = {p ∈ C|dist(q, p) ≤ Eps} are the points in the neighborhood of q spaced less
than Eps. At the same time, the following state |NEps(q)| ≤ MinPts should be valid,
meaning that the neighbohorood of q should contain at least MinPts points. If there are
some points which do not belong to any cluster, the algorithm classifies them as noise. In
this work, we are interested only in detecting the points of the 3D space (in which each
point represents an interepoch) classified as noise by the algorithm: the values assumed by
the differences of the features classified as “noise” are indeed isolated from to the values
assumed by all the other differences of features in the 3D space. The parameters of the
algorithm were selected according to Ester et al. [41]. Specifically, the minimum number
of points MinPts of which a cluster must be composed was set equal to 4, as well as the
parameter k, as suggested by Ester et al. [41] for 2D datasets. Since the dataset used in
this work is 3D, some tests with MinPts > 4 were carried out, but it emerged that the
results were not significantly different from the ones obtained with MinPts = 4. It was also
necessary to set the k-dist parameter which defines the radius Eps inside which the MinPts
are counted for defining a cluster. Its value was extracted by using the sorted k-dist graph,
of which an example is reported for field 6 during 2020 in Figure 3. On the y-axis of the
graph, the distances of each point in the 3D space from the fourth (k = 4) nearest point
are reported, while on the x-axis the ID of the feature differencies with interepoch one are
shown. For every field under analysis, the value of k-dist was obtained at the instersection
between the two straight lines modelling the two trends of the data distribution on the
plane ID/k-dist. As can be seen in Figure 3, which is representative of the entire sample of
analyzed data, the blue line interpolates the points characterized by low values of k-dist,
while the red line interpolates the points which are more distant between each other in the
feature space. The latter points will be classified as noise, i.e., not belonging to any cluster.
The k-dist parameter was selected by using only feature differences with interepoch one,
while the algorithm was applied also to differences of interepoch equal to two days, as
hereafter illustrated.

The output of interest produced from the application of the DBSCAN algorithm is the
classification of the interepochs (i, i− 1), (i, i− 2) as noise. Once that the epoch (i− 1) is
classified as noise, it is excluded from the dataset only when the interepoch (i, i− 2) is not,
to ensure that the detected anomaly represents a sudden variation of the SAR response.
After all these operations, it can be said that the time series of the co-polarized data fulfills
the assumptions of smooth changes in vegetation and roughness conditions, and a CD
method can be applied.

The variation of the total backscattered signal ∆γVV
0 (t) of Equation (1) is calculated as

the difference between the backscattering coefficient at the epoch t and the backscattering
coefficient at the driest epoch, as reported in Equation (3).

∆γ0(t) = γ0(t)− γ0(tdry) (3)
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The maximum differences of backscattering coefficient are instead estimated as the
difference between the wettest and driest signal, as reported in Equation (4).

∆γ0(max) = γ0(twet)− γ0(tdry) (4)

Depending on the relationship between the VV backscattering coefficient and the mea-
sured soil moisture at the field scale, the driest SAR signal appearing in Equations (3) and (4)
assumes the value of the minimum and the maximum values of the time series, respectively
over fields characterized by direct and inverse relationship. Namely, when the correlation
is direct the driest signal is supposed to be the minimum value of γVV

0,total , while when an
inverse correlation is detected the driest value is assumed to be the maximum SAR signal
within the study period.

0 2 4 6 8 10 12 14
ID (i,i-1)

0

2

4

6

8

10

4-
di

st
 [d

B]

Figure 3. k-dist sorted graph with k = 4 for the 3D space of the differences of the features

γVV
0 , γVH

0 ,
γVH

0
γVV

0
for the field 6 referred to the station of Carretoro for 2020. The blue line fits the points

whose distance from the fourth nearest point is low, while the red line fits the points which are more
distant from their fourth nearest point in the feature space, which the DBSCAN algorithm would
classify as noise. The k-dist parameter is set equal to y coordinate of the intersection point between
the blue and the red line.

3.2.2. Inversion Algorithm

By isolating the value of the soil moisture at the epoch t from Equation (1), the soil
moisture at field scale can be estimated by means of the following Equation:

SSMv(t) =
∆γ0(t)

∆γ0(max)
∆SSMmax

v + SSMmin
v (5)

Since the analyses were performed on every field on a single irrigation season, only
35 images for every year were available. Given this low number of data, in the present
work it was decided to present a calibration study, whose results are reported in the next
Section. Moreover, a sensitivity analysis on the in situ parameters of the retrieval algorithm
was performed. Specifically, for every field and year for which satisfactory results were
obtained, the retrieval method was re-applied by varying the in situ parameters SSMmin

v
and SSMmax

v of ±10%.
Elaboration and analysis of spatial data were performed with the GRASS GIS software

8.2.1, while the change detection method, DBSCAN algorihtm, inversion algorithm and
sensitivity analysis were performed by means of python libraries.

4. Results and Discussion
4.1. Field Selection

For every measurement station, one or more fields were digitalized by using optical
images of all the 4 irrigation seasons under study. While doing that, it was noted that the
shape of some fields changed during the study period upon agricultural season. For this
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reason, only the fields more stable in time were analyzed. Moreover, since the measurement
stations are often at the border of the agricultural fields (see Figure 2), and the precision
of their coordinates is not known, for almost every station more than one field was digi-
talized and analyzed. Figure 4 shows two examples of digitalized fields for two stations,
namely Las Arenas (Figure 4a), where two fields were digitalized, and Llanos de la Boveda
(Figure 4b) where only one field was digitalized.

(a) Las Arenas (b) Llanos de la Boveda

Figure 4. Examples of digitalization of the fields around the measurment stations of Las Arenas and
Llanos de la Boveda.

From the preliminary analysis, 24 pairs of fields and years were selected out of a
total number of 118 analyzed pairs. The selected fields are listed in Table 2, along with
their reference station, crop classification according to the ISMN data and selected year of
analysis. Those fields are characterized by a correlation coefficient between the co-polarized
backscattering coefficient and the measured soil moisture whose absolute value is equal to
or bigger than 0.5, and whose sign is reported in the γVV

0 /SSMv column of Table 2. Indeed,
as previously described in Section 3, not only strong direct relations between γVV

0 and
SSMv were found in the selected fields, but also strong inverse ones, as previously detected
on arid climate areas also by other authors [34,37]. Figures 5 and 6 show representative
examples of these data distributions. In the graphs, each point corresponds to a date:
the red points indicate precipitation events in the current day or in the previous one.
Highlighting the precipitation events in those graphs was fundamental for detecting the
inverse relationships, as will be shown hereafter.

Figure 5 shows the direct relationship over the field 27 associated to the station of Las
Arenas for 2018. As it can be observed in the plot, the precipitation events are especially
associated with higher values of both γVV

0 and SSMv, but they are distributed also on
lower values of soil moisture in the sample. A similar distribution of the rainy days can
be observed in the graph referred to field 36 during 2019 (station of Llanos de la Boveda),
reported in Figure 6a. Over this field, the relationship between the backscattering coefficient
and the measured soil moisture is inverse. In Figure 6b it is reported another example
of inverse distribution for the field 12 associated to the station of Concejo del Monte in
2019. Differently from the other fields, over field 12 it is possible to note that some of
the dates associated with the precipitation events and high values of γVV

0 are isolated
compared to most of the points. These points can thus be considered as outliers. Since other
“inverse” fields of the analyzed dataset presented outliers associated with precipitation
events, similarly to field 12, consistently it was decided to exclude from the analyses the
data associated with precipitation events over fields with inverse relationship.
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Figure 5. Relationship between the mean co-polarized backscattering coefficient and the measured
soil moisture for the field 27 during 2018, which is characterized by direct relationship. Every dot
represents a date, specifically the red dots highlight days characterized by precipitation events, while
the blue dots depict dates in which no precipitation events occurred. The black line shows instead a
linear fit to the data.
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Figure 6. Relationship between the mean co-polarized backscattering coefficient and the measured
soil moisture for two fields characterized by inverse relationship. Every dot represents a date,
specifically the red dots highlight days characterized by precipitation events, while the blue dots
depict dates in which no precipitation events occurred. The black line shows instead a linear fit to
the data.

Among the data distribution of the discarded pairs of fields and years, the one reported
in Figure 7a referring to the field 37 of the station of Paredinas for the year 2018 emerged.
Here, values assumed by the co-polarized backscattering coefficient have a wider variation
in respect to the real soil moisture, remaining instead almost constant between very low
values ranging from 0 to 0.02 m3/m3. This behaviour was detected also by other authors in
arid environments [34], and it may be related to superficial scattering due to soil roughness
or to volumetric subsurface scattering. Among the analyzed distributions, also apparently
random distributions were found, such as the one reported in Figure 7b referring to the
field 29 of the station of Las Brozas for the year 2021. The fields presenting distributions
such as the ones showed in Figure 7 were not considered for further analyses.
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Figure 7. Relationship between the mean co-polarized backscattering coefficient and the measured
soil moisture for two discared fields representing two reccurent distributions of the dataset. (a) is
characterized by wide variation of γVV

0 and almost constant values of SSMv, while (b) shows a ran-
dom distribution. Every dot represents a date, specifically the red dots highlight days characterized
by precipitation events, while the blue dots depict dates in which no precipitation events occurred.
The black line shows instead a linear fit to the data.

4.2. Superficial Soil Moisture

This subsection shows at first an example of the application of the DBSCAN algorithm
for detecting dates associated with sudden changes in SAR signal. Then, the results of
the field specific estimation of soil moisture are reported and discussed for both fields
characterized by direct and inverse relationship between co-polarized backscattering coeffi-
cient and in situ soil moisture. Finally, the results of the sensitivity analysis on the in situ
parameters of the inversion algorithm are presented.

Figure 8 shows an example of application of the DBSCAN analysis on the differences
of the SAR features over field 6 (station of Carretoro) for the year 2020. For visualization
purposes, results are shown in a 2D plane of the features ∆γVV

0 and ∆γVH
0 , but the algorithm

was applied in a 3D features space as illustrated in Section 3. Violet dots represent data
classified as belonging to a cluster, while green dots, which are farther from the main cloud
of points, are classified by the algorithm as noise.

Table 2 reports the results of the estimated soil moisture in terms of statistical metrics
for every paired field and year selected in the preliminary analysis. The metrics reported
are: bias, root mean square error (RMSE), correlation coefficient (r) and coefficient of
determination (r2). The values of the correlation coefficient are always equal or greater
than 0.5, hence the retrieval method performs quite good. In general, the bias ranges from
0 m3/m3 for the field 41 in 2018 to 0.060 m3/m3 for the same field in 2020, the RMSE from
0.007 m3/m3 for the field 6 in 2020 to 0.082 m3/m3 for the field 41 in 2019. r and r2 vary
instead respectively from 0.50 and 0.25 over the field 6 in 2018 to 0.89 and 0.79 over the
field 27 in 2018. These results are in line with what presented by other authors working on
agricultural areas at the field scale over arid environments, such as Ouaadi et al. [42] and
Hachani et al. [43]. Moreover, particularly good results were obtained over 8 pairs of field
and year highlighted in bold in Table 2: their coefficient of determination assumes indeed
values equal to or greater than 0.5. Notice that the relationship between γVV

0 and SSMv
over these 8 fields is both direct and inverse, as can be checked in the column γVV

0 /SSMv
of the Table. Moreover, good results are achieved on fields which are characterized either
by low (0–0.1 m3/m3) and high (0.1–0.4 m3/m3) soil moisture values.
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Figure 8. 2D visualization of the results of the application of the DBSCAN algorithm on the mean
SAR features over the field 6 (station of Carretoro) for 2020. The 2D space is defined by the differences
of the feature ∆γVV

0 and ∆γVH
0 . Violet points were classified as belonging to one cluster, while green

points were classified as noise.

Table 2. Statistical metrics of superficial soil moisture estimated over the fields selected from the
preliminary analysis. Bias, root mean square error (RMSE), Pearson correlation coefficient (r) and
coefficient of determination (r2) are shown. Some additional information on the reference measure-
ment station, crop type, year of analysis and sign of the relationship γVV

0 /SSMv are also indicated
for every field analyzed over different years.

Station Name Crop Field ID Year
γVV

0
SSMv

bias [
m3

m3 ] rsme [
m3

m3 ] r r2

Canizal Irrigated 1 2018 + 0.032 0.067 0.50 0.25
2021 + −0.021 0.054 0.59 0.35

Carretoro Rainfed cereal 6 2019 − 0.004 0.007 0.50 0.25
2020 − 0.003 0.017 0.71 0.50

Casa Periles Rainfed cereal 11 2018 + 0.022 0.049 0.53 0.28

Concejo del Monte Rainfed cereal 12 2019 − 0.038 0.056 0.74 0.55
2020 − 0.015 0.059 0.63 0.39

El Tomillar Vineyard 16 2021 − 0.009 0.018 0.69 0.48

Granja Rainfed cereal 41 2018 + 0.058 0.082 0.59 0.34
2020 + 0.060 0.081 0.62 0.38

Guarrati Forest/Pastures 22 2018 − −0.005 0.073 0.72 0.52

La Cruz de Elias Rainfed cereal 25 2018 + 0.029 0.042 0.77 0.59

Las Arenas Vineyard 26 2019 − 0.030 0.052 0.67 0.45
2020 − 0.020 0.045 0.54 0.29

27 2018 + 0.021 0.042 0.89 0.79

Las Vacas Rainfed cereal 33 2018 − 0.017 0.033 0.56 0.31

34 2018 + 0.043 0.056 0.71 0.51

Las Victorias Rainfed cereal 35 2020 + 0.005 0.023 0.68 0.46

Llanos de la Boveda Rainfed cereal 36 2019 − −0.009 0.026 0.84 0.71

Zamarron Rainfed cereal 39 2018 − 0.018 0.030 0.66 0.43
2020 − 0.007 0.025 0.67 0.44

40 2018 + 0.000 0.026 0.85 0.73
2019 − −0.010 0.025 0.66 0.43
2020 − 0.010 0.028 0.59 0.35
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Time series of real and estimated soil moisture are reported in Figure 9 for the two
fields characterized by the highest coefficients of determination. These two fields also
representative of the two main behaviours of the dataset in terms of direct and inverse
relationship between co-polarized backscattering coefficient and measured soil moisture.
In the graphs the measured soil moisture is in light blue and the estimated soil moisture is
red. Grey and light grey bars represent instead the precipitation, of the current and of the
previous day respectively.

Figure 9a shows the time series referred to the field 27 of Las Arenas station for the year
2018, which is characterized by positive γVV

0 /SSMv slope. In this case, the precipitation
were included in the dataset for the soil moisture estimation, and the estimated solution,
reported in red in the graph, exhibits peaks in correspondence of precipitation events, also
when no real soil moisture peak is present, such as for the last precipitation event of May
2018. The soil moisture estimated with the proposed method is therefore able to fit the trend
of the measured soil moisture, particularly in the first part of the agricultural season until
August 2018, where different peaks are present, as well as from the second half of October
on. From August to October, the solution is not as smooth as the in situ soil moisture.

Over the field 36 instead, in correspondence of the station of Llanos de la Boveda
for 2019, the precipitation days were excluded from the dataset as explained above. This
field is indeed characterized by inverse relationship between co-polarized SAR data and
measured soil moisture, and its time series are reported in Figure 9b. Also for this field,
there is a very good agreement between the estimated and the measured superficial soil
moisture. The estimated solution presents two peaks that are not present in the real soil
moisture between June and July 2019, and this can may be due to some not modelled factor
influencing the SAR signal. These variations may be caused by some agricultural practises
or to the evolution of the canopy, since over this field wheat or barley is cultivated.

2018-04 2018-05 2018-06 2018-07 2018-08 2018-09 2018-10 2018-11

0.10

0.15

0.20

0.25

0.30

SS
M

 [m
3

m
3
]

0

5

10

15

20

Pr
ec

ip
ita

tio
n 

[m
m

]

hourly soil moisture estimated soil moisture precipitation day -1 precipitation day 0

(a) Direct relationship: field 27, station Las Arenas, 2018
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(b) Inverse relationship: field 36, station Llanos de la Boveda, 2019

Figure 9. Time series of measured and estimated soil moisture reported respectively in light blue and
red for two fields characterized by direct (a) and inverse (b) relationship between γVV

0 and SSMv.
Precipitation is also depicted with grey bars.

Figure 10a,b show the relationship between measured and estimated soil moisture for
the two reference fields 27 and 36 respectively. In the image it is also reported in black the
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line where measured and estimated soil moisture have equal values: as can be observed,
for both the fields the points are well distributed around this line.
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Figure 10. Relationship between measured and estimated soil moisture for two fields characterized
by direct (a) and inverse (b) relationship between γVV

0 and SSMv. In black it is depicted the line
where measured and estimated soil moisture are equal.

Appendix A includes the time series and the graphs showing the relations between
estimated and measured soil moisture for the other 6 fields highlithed in bold in Table 2,
over which good results of estimated soil moisture were obtained.

Since most of the measurement stations are on the borders of agricultural fields, on
some of the analyzed fields the inversion algorithm has been calibrated by using in situ
data of the same measurment station, such as for the fields 26 and 27 with the data of the
station of Las Arenas. The results obtained over these two fields are comparable in terms of
bias and RMSE, while the values of the correlation and determination coefficient are better
for the field 27. The crop type associated with the measurment station of Las Arenas by the
ISMN is vineyard, and from the RGB image in Figure 4a it is possible to observe that the
field 26 is indeed covered by vineyard, while the field 27 it is not. Even though the field
where more likely the measurment station is installed is the field 26, better results were
obtained over the field 27. This is probably due to the fact that on field 27, the assumptions
of smooth changes in vegetation and soil roughness conditions, which are at the basis of
the retrieval algorithm, are valid. On the other hand, this result is important because it
suggests that in situ data of one measurement station could be used for calibrating the
retrieval algorithm over more than one field. However, for deepening the causes of these
results, further investigations should be carried on with in situ information on the yearly
crop type.

By assuming that also field 27 can be classified as raifed cereal, which is very likely
given the main agricultural cover of the study area, it can be said that the best results were
obtained from fields whose vegetation cover, according to the data provided from ISMN,
is wheat or barley. Yearly specific in situ data on vegetation cover should be available for
checking this hypothesis.

It is also interesting to note that different fields associated with the same measurement
station in different years are characterized by different γVV

0 /SSMv slopes, as can be read
from Table 2 for the stations of Las Arenas, Las Vacas and Zamarron. On field 40, associated
with Zamarron, different trends were detected also on the same fields for different years.
Unfortunately, these different behaviours cannot be addressed in the present study due to
the lack of in situ data, but some assumptions on their causes can be made. For example,
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the presence of two different crop types over the two fields may have influenced the
penetration capacity of the SAR signal, allowing the detection of the subsurface scattering
when bare soil or low vegetation was present for dry soil conditions. The two fields could
also have been characterized by different composition and texture of the soil, or maybe
some agricultural practises such as tillage could have changed the structure of the first
layer or soil during study period.

Sensitivity Analysis

A sensitivity analysis was performed on the two in situ parameters of the retrieval algo-
rithm, namely the maximum and minimum value of measured soil moisture (SSMmax

v , SSMmin
v

in Equation (5)). The analysis was performed only on the 8 fields on which the proposed
estimation method obtained good results. Table 3 shows the bias and RMSE of the soil
moisture estimated by varying of ±10% the parameters of interest. The correlation and
determination coefficient are not reported in the table, since they were found not to change
with the parameters of significant orders of magnitude. The table highlights in bold results
equal or better than the orginal ones, which are half of all the cases. Moreover, it has to be
noted that the remaining part of the metrics are very close to the original values and of the
same order of magnitude. This means that the solution does not spread excessively around
the original results with a reasonable variation of the in situ parameters.

Table 3. Variation of bias and RMSE of the estimated soil moisture by changing of ±10% the in situ
parameters of the retrieval algorithm for the 8 fields on which better performance is obtained. The
parameters are the minimum and maximum values of measured soil moisture SSMmin and SSMmax.

Station Name Field ID Year

bias [
m3

m3 ] RMSE [
m3

m3 ]

SSMmin SSMmax SSMmin SSMmax

+10% −10% +10% −10% +10% −10% +10% −10%

Carretoro 6 2020 0.002 0.003 0.006 0.000 0.017 0.017 0.018 0.016
Concejo del Monte 12 2019 0.030 0.047 0.057 0.020 0.049 0.064 0.073 0.043
Guarrati 22 2018 −0.008 −0.002 0.006 −0.016 0.070 0.075 0.083 0.065
La Cruz de Elias 25 2018 0.025 0.032 0.040 0.017 0.040 0.045 0.053 0.033
Las Arenas 27 2018 0.018 0.023 0.034 0.008 0.040 0.043 0.051 0.037
Las Vacas 34 2018 0.042 0.043 0.053 0.033 0.055 0.057 0.065 0.048
Llanos de la Boveda 36 2019 −0.012 −0.005 0.000 −0.017 0.027 0.026 0.027 0.030
Zamarron 39 2018 −0.001 0.000 0.005 −0.005 0.026 0.026 0.027 0.027

Finally, Figure 11 shows the lines fitting the distributions of the estimated soil moisture
as a function of the measured soil moisture, obtained by varying the in situ parameters in
the retrieval algorithm. In the graphs, the black line represents the line fitting the original
solution, while the red and the blue dashed lines depict the solution obtained by changing
the parameters respectively of +10% and −10%. The image on the left shows the variation
of the parameter SSMmin, while the image on the right illustrate the variation of SSMmax
for the field 27 during 2018. In order to understand the influence of the variation of the
parameters on the soil moisture estimation, the lines of the ±10% SSMmax are briefly
analyzed. The slope of the solution obtained by using SSMmax + 10% (dashed red line)
is almost parallel to the grey line, which slope is equal to 1. The associated value of bias
is higher in respect to the orginal one, and indeed the red dashed line is shifted up in
comparison to the black line. At the contrary, the dashed blue line obtained by using
SSMmax − 10% is less sloping in respect to the not changed solution, but since it intercepts
the grey line characterized by slope 1, the values of RMSE are lower. This is a very good
result in view of an expansion of the proposed estimation method to a validation study,
when enough data will be available.
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Figure 11. Effect of the variation of the in situ parameters on the lines interpolating the distribution
of points on the plane measured—estimated soil moisture. The black line fits the distribution of the
original solution, while the red and the blue dashed lines depict the line fitting the solution obtained
by changing the parameters respectively of +10% and −10%. The grey line is characterized by slope
equal to one. The tested parameters are the minimum and maximum value of in situ data for every
field. This graph is referred to the field 27 of the Las Arenas station for the year 2018.

5. Conclusions and Future Works

An inversion algorithm was applied on Sentinel-1 co-polarized data for retrieving soil
moisture over some agricultural fields. From a preliminary analysis on the relationship
between the co-polarized backscattering coefficient and the measured soil moisture at the
field scale, it emerged that some fields showed a strong direct relation, while some others
were characterized by a strong inverse relationship. This second behaviour was found also
by other authors [34,37] on arid climate areas, such the one considered in this study. The
inversion algorithm was adapted accordingly to these two trends of the dataset, and it was
applied to the differences of SAR signal over carefully selected fields. The signal differences
were calculated with a Change Detection method by excluding from the dataset the dates
associated with steep variations of vegetation and soil roughness conditions. The detection
of the outliers was perfomed with the DBSCAN algorithm in a 3D space composed by
the differences of the features ∆γVV

0 , ∆γVH
0 , ∆(γVH

0 /γVV
0 ). Good results of estimated soil

moisture were obtained, with coefficients of correlation and RMSE up to r = 0.89 and
RMSE = 0.042m3/m3 for fields characterized by direct γVV

0 − SSMv relationship, and up
to r = 0.84 and RMSE = 0.026m3/m3 over fields characterized by inverse relationship.
Given the succesfull application of the proposed retrieval method not only over fields
characterized by a direct relationship between γVV

0 and SSMv, but also over fields with
strong inverse relationships, it can be concluded that it is fundamental to check the nature
of the γVV

0 − SSMv relationship when estimating the superficial soil moisture at the field
scale from SAR data, especially over agricultural areas characterized by arid climate.

The proposed retrieval method obtained good results over some selected fields where
wheat and barley are cultivated according to the ISMN classification. It can be thus said
that over those selected fields the assumptions of smooth changes in vegetation and soil
roughness conditions were respected. In order to expand the soil moisture estimation to
fields not selected for soil moisture retrieval in the present study, future works should
concentrate in relaxing the just mentioned hypothesis. Given the potential of SAR data in
mapping both vegetation dynamics and soil roughness changes at various wavelenghts,
such as the X-band [44,45], multi bands SAR data should be used for modelling the different
components affecting the total backscattering coefficient.

The causes of the inverse relationship are not yet completely addressed in literature and
in the present work the authors were not able to investigate them due to a lack of in situ data.
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Some authors supposed that the inverse behaviour is due to soil roughness variations [35],
while some others claimed that it could be due to a volumetric scattering caused by subsurface
scatterers [37]. Future studies should investigate the causes of this inverse relationship. From
the results of the present work it cannot be excluded that also the vegetation cover could have
played a role. It was indeed found for few stations that fields characterized by differente crops
and associated with the same measurement station showed different behaviors.

Finally, in the present work a calibration study of the proposed retrieval method
was presented, followed by a sensitivity analysis, since not enough data were available
for a validation study. In view of a future validation of the proposed method and of its
applications over other study areas, a comprehensive dataset composed by the following
information should be created and studied: mean SAR response of both co-polarized and
cross-polarized bands over the field under study for some agricultural seasons; yearly
cultivalted crop type with information on associated agricultural practises performed; in
situ soil moisture data; soil composition information.
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Appendix A. Superficial Soil Moisture
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(a) Field 25, station La Cruz de Elias, 2018

2018-04 2018-05 2018-06 2018-07 2018-08 2018-09 2018-10 2018-11
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

SS
M

 [m
3

m
3
]

0

5

10

15

20

25

30

35

Pr
ec

ip
ita

tio
n 

[m
m

]

hourly soil moisture estimated soil moisture precipitation day -1 precipitation day 0

(b) Field 34, station 16 Las Vacas, 2018

Figure A1. Cont.
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Figure A1. Time series of measured and estimated soil moisture reported respectively in light blue
and red for three fields characterized by direct relationship between γVV

0 and SSMv. Precipitation
are also depicted with grey bars.
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Figure A2. Relationship between measured and estimated soil moisture for three fields characterized
by direct relationship between γVV

0 and SSMv. In black it is depicted the line where measured and
estimated soil moisture are equal.
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Figure A3. Time series of measured and estimated soil moisture reported respectively in light blue
and red for three fields characterized by inverse relationship between γVV

0 and SSMv. Precipitation
are also depicted with grey bars.
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Figure A4. Relationship between measured and estimated soil moisture for three fields characterized
by inverse relationship between γVV

0 and SSMv. In black it is depicted the line where measured and
estimated soil moisture are equal.

References
1. Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil

moisture–climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [CrossRef]
2. Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of

Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [CrossRef]
3. Pasolli, L.; Notarnicola, C.; Bertoldi, G.; Bruzzone, L.; Remelgado, R.; Greifeneder, F.; Niedrist, G.; Chiesa, S.D.; Tappeiner, U.;

Zebisch, M. Estimation of Soil Moisture in Mountain Areas Using SVR Technique Applied to Multiscale Active Radar Images at
C-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 262–283. [CrossRef]

4. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC; Technical Report WMO/TD No. 1244;
Global Climate Observing System: Geneva, Switzerland, 2010; 23p.

5. Brocca, L.; Crow, W.T.; Ciabatta, L.; Massari, C.; de Rosnay, P.; Enenkel, M.; Hahn, S.; Amarnath, G.; Camici, S.; Tarpanelli, A.;
et al. A Review of the Applications of ASCAT Soil Moisture Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017,
10, 2285–2306. [CrossRef]

6. Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future
trends. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 36–56. [CrossRef]

7. Srivastava, P.K. Satellite Soil Moisture: Review of Theory and Applications in Water Resources. Water Resour. Manag. 2017, 31,
3161–3176. [CrossRef]

8. Yu, K.; Han, S.; Bu, J.; An, Y.; Zhou, Z.; Wang, C.; Tabibi, S.; Cheong, J.W. Spaceborne GNSS Reflectometry. Remote Sens. 2022,
14, 1605. [CrossRef]

9. Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Bitar, A.A.; Cabot, F.; Gruhier, C.; Juglea, S.E.;
et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [CrossRef]

10. Chan, S.K.; Bindlish, R.; O'Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J.; et al.
Assessment of the SMAP Passive Soil Moisture Product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [CrossRef]

http://doi.org/10.1016/j.earscirev.2010.02.004
http://dx.doi.org/10.1029/2018RG000618
http://dx.doi.org/10.1109/JSTARS.2014.2378795
http://dx.doi.org/10.1109/JSTARS.2017.2651140
http://dx.doi.org/10.1016/j.pce.2015.02.009
http://dx.doi.org/10.1007/s11269-017-1722-6
http://dx.doi.org/10.3390/rs14071605
http://dx.doi.org/10.1109/TGRS.2012.2184548
http://dx.doi.org/10.1109/TGRS.2016.2561938


Remote Sens. 2023, 15, 2997 20 of 21

11. Li, L.; Gaiser, P.W.; Gao, B.C.; Bevilacqua, R.M.; Jackson, T.J.; Njoku, E.G.; Rudiger, C.; Calvet, J.C.; Bindlish, R. WindSat Global
Soil Moisture Retrieval and Validation. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2224–2241. [CrossRef]

12. Wagner, W.; Hahn, S.; Kidd, R.; Melzer, T.; Bartalis, Z.; Hasenauer, S.; Figa-Salda na, J.; de Rosnay, P.; Jann, A.; Schneider, S.; et al.
The ASCAT Soil Moisture Product: A Review of its Specifications, Validation Results, and Emerging Applications. Meteorol. Z.
2013, 22, 5–33. [CrossRef]

13. Kornelsen, K.C.; Coulibaly, P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J.
Hydrol. 2013, 476, 460–489. [CrossRef]

14. Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES
Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [CrossRef]

15. Balenzano, A.; Mattia, F.; Satalino, G.; Lovergine, F.P.; Palmisano, D.; Peng, J.; Marzahn, P.; Wegmüller, U.; Cartus, O.; Dąbrowska-
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