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Abstract: Fires greatly threaten the grassland ecosystem, human life, and economic development.
However, since limited research focuses on grassland fire prediction, it is necessary to find a better
method to predict the probability of grassland-fire occurrence. Multiple environmental variables im-
pact fire occurrence. After selecting natural variables based on remote sensing data and anthropogenic
variables, we built regression models of grassland fire probability, taking into account historical
fire points and variables in Inner Mongolia. We arrived at three methods to identify grassland
fire drivers and predict fire probability: global logistic regression, geographically weighted logistic
regression, and random forest. According to the results, the random forest model had the best
predictive effect. Nine variables selected by a geographically weighted logistic regression model
exercised a spatially unbalanced influence on grassland fires. The three models all showed that
meteorological factors and a normalized difference vegetation index (NDVI) were of great importance
to grassland fire occurrence. In Inner Mongolia, grassland fires occurring in different areas indicated
varying responses to the influencing drivers, and areas that differed in their natural and geographical
conditions had different fire-prevention periods. Thus, a grassland fire management strategy based
on local conditions should be advocated, and existing fire-monitoring systems based on original
meteorological factors should be improved by adding remote sensing data of grassland fuels to
increase accuracy.

Keywords: grassland fire; fire drivers; fire predicting; vegetation index; meteorological factors; Inner
Mongolia; geographically weighted logistic regression; random forest

1. Introduction

Grassland ecosystems are precious natural resources and have crucial ecological func-
tions, such as maintaining water, regulating local climate conditions, and providing food
and herbs [1,2]. Fire is a common disturbance factor [3,4], and in a long-term evolutionary
process, it establishes a harmonious and balanced relationship with grassland ecosystems.
Fire promotes grassland regeneration, succession, species evolution, and biodiversity, be-
coming an integrated part of grassland ecosystems [5,6]. However, in the context of global
climate change along with human activities, fire frequency is increasing and fire seasons are
lengthening [7]. In many regions, fire increasingly impacts the resources for human well-
being and functions in the ecosystem [8]. Frequent and uncontrollable grassland fires are
sudden and highly destructive disasters that not only alter the structure, function, pattern,
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and processes of the landscape, but also affect the carbon cycle in grassland ecosystems [9].
Moreover, fires pose threats to herdsmen’s lives, infrastructures, and valuable grassland
resources [10]. They result from a combination of numerous anthropogenic and natural
factors [11]. The accurate prediction of the occurrence of grassland fires aids in locating
high-risk areas for fire prevention and fire-fighting. Many studies of grassland-fire occur-
rence have been performed utilizing remote sensing methods; the main methods and their
advantages and disadvantages are shown in Table 1. The first three methods in Table 1
make no predictions on a time scale, and the last method does not consider influence
factors comprehensively enough. Nevertheless, the third method in Table 1 is employed
for reference in this study. Furthermore, daily meteorological factors should be included in
prediction models to solve the problem of time scale.

Table 1. Main remote sensing methods on predicting grassland fire occurrences.

Serial
Number Methods Advantages Disadvantages

1
Modeling based on meteorological data

from meteorological
satellites [12]

Study area with large scale
estimation can be made Limited accuracy

2
Builds the relationship between fire

occurrence and soil moisture investigated
by field measurement [13–15]

High accuracy
Time-consuming and laborious;

only a small-scale estimation
can be made

3
Evaluation based on meteorological data,
fuel condition of MODIS Inversion and

other social data [16,17]

Consideration from many aspects;
improves the accuracy of prediction

to some extent

Many kinds of data need
processing

4 Monitoring vegetation moisture by
time-series satellites [18] Long-term fire risk assessment Considers only moisture of

vegetation

The prediction of grassland-fire occurrence needs to choose independent variables.
With human population increase and the development of the social economy, factors affect-
ing grassland fires are becoming more complex [19]. Among natural factors, meteorological
ones are commonly treated as fire drivers [20] because climate/weather can influence
fire occurrence, with drier environments in some mesic biomes usually displaying more
fire activity than wetter ones [21]. Climate conditions are key factors for the condition
of vegetation and the distribution of live fuel loads and exercise an important impact on
grassland fires and their spread. The vegetation indices based on remote sensing are key
indicators to reflect the vegetation condition. Some scholars added variables such as spring
NDVI, autumn NDVI [22], the vegetation condition index (VCI) [23], and the percentage
of grassland, shrubland, and forest areas [24] that can reflect the vegetation condition or
fuel load in the analysis of fire occurrence patterns. In addition, topography influences fire
occurrence indirectly by contributing to fuel changes and the moisture content by changes
in temperature and water availability [25]. Although topography plays a relatively smaller
role on fire-occurrence patterns, researchers have nevertheless opted to select variables
such as a topographic roughness index, considering elevation, slope, aspect index, and
surface curvature in fire-occurrence predictions [26]. Human activity is always the major
factor; for example, higher human population density always increases ignition sources [27]
because of smoking, outdoor barbecues, vehicle breakdown, and other human activities.
The distance to the nearest road and settlement is often used as a proxy for the intensity of
human activities [28]. Alongside the chosen variables, appropriate models are also needed
to predict grassland fire occurrences.

Over the last decades, many regression models have been developed to explore
the relationship between fire occurrence and independent variables [20,29–31]. Among
these, the global logistic regression (GLR) model is the most widely used conventional
method [32]. GLR assumes that the samples are independent and have a constant re-
lationship between the dependent variable and the independent variables in the entire
study area [33]. However, due to the environmental heterogeneity in different spatial
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locations, the relative importance of factors affecting fire occurrence may inevitably be
different. This phenomenon is called spatial non-stationarity [34]. To solve this problem,
the geographically weighted logistic regression (GWLR) model was adopted. This model
can deal with the various relationships between dependent and independent variables
across geographical locations [35]. GWLR first assumes that the model structure is spatially
non-stationary, which means that the relationship between the binary-dependent variables
and the continuous independent variables changes with geographic locations. Second, it
tests whether the spatial non-stationary relationship of this hypothesis is significant [34].
Recently, to improve prediction accuracy, a variety of machine-learning methods, including
neural networks, support vector machines, and random forests [31,36,37] also have been
used in fire-occurrence prediction. Among these methods, Random Forest (RF) is deemed
to be a flexible method to assess complex interactions among variables. With this method,
it is unnecessary to set the function form in advance, and the important variables are
automatically selected, regardless of how many are input at the beginning. It can overcome
the problem of over-fitting [20,32] and the complex interactions between covariables to
obtain a high predictive performance [38]. Therefore, the RF model has demonstrated its
strong predictive ability in fire-occurrence probability [20,39].

Although GWLR overcomes the shortcomings of GLR and new machine-learning
methods have been proposed, model comparisons are commonly taken to determine the
best-fitted model in fire prediction [8,40]. For example, Guo (2016) and Oliveira (2012)
both compared the GLR model to the RF model in fire predictions and found that the RF
model performs better than the GLR model. Because RF can generate multiple prediction
models at the same time and summarize the results of the models to improve the accuracy
of classification, it is more accurate than GLR [20,39]. Phelps and Woolford employed
logistic regression, bagged classification trees, random forest, and neural network„ but
they found all the models were unsuitable for fire-occurrence prediction because of the
bias in their training data, which led all the models to overpredict the number of fire
occurrences [40]. However, in the present study, multiple fire-predicting models focus
on the spatial differences of fire occurrence [24,41,42] rather than the variation within
the year. Furthermore, research has focused more on forest-fire occurrence [43–46] and
less on grassland fires, even though both are important vegetation ecosystems on the
earth. Moreover, grasslands cover one-third of the Earth’s terrestrial surface [47], so the
impact of grassland fires cannot be neglected. China possesses nearly 3.92 × 106 km2

area of grasslands, accounting for 12% of the world’s grasslands and 41.7% of the national
land area. Grassland is the main land cover type in the Inner Mongolia Autonomous
Region [48]. Meanwhile, the Inner Mongolian grassland is the main component of the
temperate grasslands of Eurasia, where grassland fires are extremely active [49]. To protect
grassland ecosystems, safeguard the lives and safety of local people, and promote the
development of husbandry, it is necessary to explore the rules of grassland fire-occurrence
distribution in Inner Mongolia. Due to the lack of relevant research, the driving factors and
spatial patterns of grassland fires in Inner Mongolia are currently unclear.

In this study, we aim to (1) explore the temporal and spatial distribution patterns of
historical grassland fires from 2000 to 2018 in Inner Mongolia to obtain a whole view of the
distribution of fire points; (2) predict grassland fire probability based on fire points and
environmental variables by three models to identify the drivers of grassland fire occurrence
and thereby to find the best-fitting model by comparing the performances of all three;
(3) apply the three models to check whether they can predict the daily probability of
grassland-fire occurrence in Inner Mongolia in 2014 accurately and put forward some
suggestions on grassland-fire management. Our results will facilitate formulating region-
specific strategies for protecting grassland resources, and forecasting, warning of, and
managing fires.
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2. Materials and Methods
2.1. Study Area

The Inner Mongolia Autonomous Region is located in the north of China (37◦24′–53◦23′N,
97◦12′–126◦04′E), bordered by Mongolia and Russia. The distance from the east to the west
is about 2400 km, and the span between the north and the south is about 1700 km. The
region has a long and narrow shape extending from the northeast to the southwest with
a total area of 118.3 × 104 km2 (Figure 1a). According to the Seventh National Census of
China in 2020, the resident population of the district was then 24.05 million.
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Figure 1. Geographical location of the study area. (a) The relative position and elevation of Inner
Mongolia, (b) fire ignition points and vegetation type map, and (c) administrative map on the
city level. (All the base map layers except ignition points were from © Institute of Geographic
Sciences and Natural Resources Research, CAS; fire ignition points came from Inner Mongolia Fire
Management Department).

Inner Mongolia has a temperate continental monsoon climate with the annual average
temperature ranging from 0 to 8 ◦C and annual precipitation from 50 to 450 mm [50]. The
climate is characterized by large temperature differences, long sunshine duration, and
limited and imbalanced precipitation. From the northeast to the southwest, it comprises
temperate humid, semi-humid, semi-arid, arid, and extreme arid zones [51].The grassland
vegetation in Inner Mongolia has a distinct zonal distribution pattern from northeast to
southwest as well. The three main types are temperate meadow grassland, temperate
typical grassland, and temperate desert grassland [52] (Figure 1b).

2.2. Data Sources and Pre-Processing
2.2.1. Dependent Variable

We collected the historical grassland fire-occurrence records from the Inner Mon-
golia Fire Management Department. These records contained detailed information on
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each grassland fire in Inner Mongolia, including the geographical location, the start time,
size, cause, and casualties. There were 1049 fires recorded from 2000 to 2018, of which
685 had geographical coordinate information; thus we selected these records and removed
the ones without geographical information. The geographical distribution patterns of fire
occurrences are shown in Figure 1b. Binomial LR, GWLR and RF models were adopted
in this study. Because the two binomial models required the data in a binomial distri-
bution [53], and the RF model also needs a classified variable as a dependent variable, a
certain percentage of randomly distributed non-fire points had to be created to meet the
requirements [54]. Then, based on the 685 fire-occurrence points, the non-fire-occurrence
points were created by ArcGIS10.6 with 1.5 times number of fire points [55]. Therefore,
1711 was the total number of sampling points. Next, we created an attribute for these
points in the attribute table, with the non-fire points coded 0 and the fire points coded 1.
We treated this attribute as the dependent variable. The specific workflow is presented
in Figure 2.
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2.2.2. Explanatory Variables

The drivers of fire occurrence are various, including anthropogenic and natural
factors [11]. Human actions usually are an ignition trigger, while natural environmental fac-
tors influence fire-occurrence probability. Some factors can be biotic, such as the vegetation
cover influencing the load and flammability, or abiotic, such as the climate and topography
influencing fuel moisture and fire spread [56–58]. Therefore, we chose four categories
(meteorology, anthropogenic activity, vegetation, and topography) as explanatory variables
to predict fire-occurrence probability. The meteorological factors included mean annual
temperature and precipitation, daily average wind speed, daily average temperature, daily
average specific humidity, and daily cumulative precipitation; the anthropogenic factors
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involved population density and distance to the nearest settlement, road, river, and rail-
way. Vegetation factors included the Normalized Difference Vegetation Index (NDVI) and
the global vegetation moisture index (GVMI), while the topographic factors consisted of
elevation, aspect and slope. These choices will be explained in the following paragraphs.
The data source, abbreviation, and unit of all the variables are listed in Table 2.

• Meteorological factors

Meteorology plays an important role in fire occurrence. The mean annual temperature
and precipitation were selected as climate factors because they have an obvious influence
on fuel moisture content, a crucial condition for fire occurrences. Furthermore, they are
traditional indicators of the degree of climate change [59]. The daily average temperature,
windspeed, specific humidity, and cumulative precipitation directly influence the moisture
content of fuels [60]. Meteorological factors in this study are from the China Meteorological
Forcing Data (1979–2018) [61]. These CMFD are derived from remote sensing products,
reanalysis datasets, and in situ station data, providing the NetCDF format of the dataset.
The value of each variable was extracted by the locations and date of the sampling points.
For non-fire points, the daily meteorological data consisted of a random date from 1990 to
2018 extracted three times to build models to obtain the prediction accuracies. We found a
negligible difference in accuracy among the three models.

• Anthropogenic factors

Human activities are closely related to human-caused fire occurrences [62]. The
distance to human infrastructure, such as roads, railways, and settlements, is usually used
to represent the intensity of human activity [28,63]. In Inner Mongolia, herdsmen prefer to
water their livestock from rivers, so the closer the river, the greater the intensity of human
activity. Based on this, we selected the distance to the nearest settlement, road, railway,
and river as the anthropogenic factor. Digital maps (1:250,000) locating these points were
collected from the National Catalogue Service for Geographic Information. We calculated
the Euclidean distance to the nearest railway, road, river, and settlement, respectively,
to create four raster layers by ArcGIS. These distances served as proxies of intensity for
human activities. Next, the total sampling points layer was superimposed on the four
layers, respectively, and we extracted the values of the four variables according to the
location of points. Population density showed a strong correlation with the intensity of
human activity, for the greater the population density in a region, the greater the number
of people, so the more human activities [63]. Therefore, we used population density data
of counties throughout the study area to generate the raster layer of population density,
and then the total sampling points layer was superimposed on this layer to extract the
population density value as the population density variable.

• Vegetation factors

Fire needs fuel to burn, and the fuel load also influences the fire occurrences. Veg-
etation coverage is usually used to indicate the gross of live and dead fuels above the
surface [64]. The Normalized Difference Vegetation Index (NDVI) can be used to represent
the vegetation coverage [65]. The vegetation moisture content is also one of the conditions
of vegetation flammability. The Global Vegetation Moisture Index (GVMI) can provide
direct information on vegetation water content at the canopy level [66] and thus reflects the
moisture content of live fuels. Therefore, two indexes, NDVI and GVMI, were selected to
represent the fuel load and fuel moisture conditions, respectively. The NDVI raster dataset
from the Resource and Environment Science and Data Center was obtained to calculate the
average NDVI value from 2000 to 2018, utilizing the Raster Calculator tool in ArcGIS10.6 to
create an NDVI raster layer. Next, the total sampling points layer was superimposed on
the NDVI raster layer to extract values as a variable GVMI is based on a combination of
near-infrared and short-wave infrared bands of the electromagnetic spectrum to estimate
vegetation moisture content (Ceccato et al., 2002). Bands 2 and 6 of the product MOD09A1
of MODIS surface reflectance were used.
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• Topographic factors

The topographic factors affect vegetation distribution, composition, and flammability [67].
The higher the elevation, the lower the temperature. Different aspects will receive im-
balanced radiation from the sun. Hence, the vegetation type changes with elevation and
aspect. Human-caused fires occur more frequently on gentle slopes [68]. The elevation
data came from the Geospatial Data Cloud. The 90 m spatial resolution digital elevation
model (DEM) was adopted [69], and then the processes of georeferencing, mosaic, clip, and
resampling on DEM were necessary. By utilizing the 3D Analyst tool of ArcGIS10.6, the
raster layers of the slope and aspect were obtained. The aspect needed to be exponentiated
before analysis, so it was converted into an aspect index according to the specific method
provided by Zhangwen Su [26].

Explanatory variables were extracted from the corresponding map layers, and the
value of each was extracted as an attribute of the sampling points to form the completed
sampling dataset collection. We randomly chose 60% from fire points and non-fire points
respectively as a training dataset, and the remaining 40% as a test dataset.

Table 2. Explanatory variables and their sources.

Factors Variables Abbreviation Data Source Units Resolution

Meteorological
factors

Mean annual temperature Temp

China Meteorological Forcing
Data (1979–2018) [61]

K 0.1◦

Mean annual precipitation Prec mm/h 0.1◦

Daily average specific humidity Humi_dy kg/kg 0.1◦

Daily cumulative precipitation Prec_dy mm/h 0.1◦

Daily average temperature Temp_dy K 0.1◦

Daily average wind speed Wind_dy m/s 0.1◦

Anthropogenic
factors

Distance to nearest settlement D_resp National Catalogue Service for
Geographic Information

https://www.webmap.cn
(accessed on 21 May 2021)

km 500 m
Distance to nearest road D_road km 500 m
Distance to nearest river D_river km 500 m

Distance to nearest railway D_rail km 500 m

Population density P_density
National Bureau of Statistics of
China http://www.stats.gov.cn
(accessed on 12 February 2021)

per/km2 500 m

Vegetation
factors

Global vegetation moisture index GVMI

Level-1 and Atmosphere
Archive & Distribution System

Distributed Active Archive
Center https://ladsweb.
modaps.eosdis.nasa.gov/

(accessed on 22 April 2021)

- 500 m

Normalized Difference
Vegetation Index NDVI Resource and Environment

Science and Data Center [70] - 1000 m

Topographic
factors

elevation Elev Geospatial Data Cloud
http://www.gscloud.cn

(accessed on 16 April 2021)

Meter 500 m
aspect index Aspect - 500 m

slope Slope degree 500 m

2.3. Data Analysis Methods
2.3.1. Multicollinearity Diagnosis between Explanatory Variables

If there is a strong multicollinearity among explanatory variables, the regression
fitting may produce a biased parameter estimation, leading to an excessive standard
error of regression coefficient; thus, the model will be unreliable [53,63]. The variance
inflation factor (VIF) is a common method to evaluate multicollinearity among variables.
Therefore, we did a multicollinearity diagnosis for our sampling dataset by VIF. The
VIF test was manipulated by the car package of R studio 1.3. This indicated that there
was moderate collinearity for the Prec variable and the NDVI variable with their VIF
greater than 5 (Figure 3).

https://www.webmap.cn
http://www.stats.gov.cn
https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
http://www.gscloud.cn
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2.3.2. Trend Analysis of Grassland Fires

To obtain a concrete and overall distribution of all the historical fire occurrence points,
we need a tool to present them clearly. Trend analysis is an analytical tool in the Ar-
cGIS geographic statistics module, one that can analyze the spatial distribution trends of
data [71]. To find the spatial distribution patterns of grassland-fire occurrences, the Inner
Mongolia map was divided into 6064 grids of 20 × 20 km by the create fishnet tool; then
the fire points in each grid were calculated. Trend analysis in ArcGIS was used to obtain a
three-dimensional overview of fire points in the geographical space. Further, to find the
characteristics of time change in a year, a month was divided into 2 parts; thus, a year
was divided into 24 parts. The sample number of fire points was reclassified into 24 parts
according to the fire-occurrence date from 2000 to 2018.

2.3.3. Modelling Methods

In this study, we selected the logistic regression model as a benchmark and the random
forest model for its strong predictive ability in fire-occurrence probability [39]. We selected
geographically weighted logistic regression, which demonstrates its ability for dealing with
spatial heterogeneity. The following reveals how we employed the three models.

• Global logistic regression (GLR)

Logistic regression is a useful tool for predicting a binary variable through a series of
continuous or categorical predictor variables. In our study, the binary variable was whether
the fire happened at the sampling points, so the explanatory variables were used to explain
the binary variable. However, the variable of Prec has been diagnosed as demonstrating
moderate collinearity with NDVI and was thus deleted from explanatory variables. The
training dataset was input to build the model, and the test dataset was used to calculate
the prediction accuracy. The global logistic regression was performed by the AER package
in R studio1.3.

• Geographically weighted logistic regression (GWLR)

The GWLR model can be built by the spgwr and GWmodel packages in R, ArcGIS,
GWR4 software, etc. However, among these models, the freely accessible GWR4 software
has a strong operability by providing a concise workspace, making it easy to select the
model type, input the variables, and output the results. As noted above, the training
dataset was also utilized to build the GWLR model. With the Prec deleted, the test dataset
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was used to test the model performance. A conventional GWR is represented by the
following expression:

yi = ∑
k

βk(ai, bi)xk,i + εi (1)

where yi, xk,i and εi are dependent variables, k is the explanatory variable, and the Gaus-
sian error is at location, respectively; (ai, bi) is the X/Y coordinate of the i location; and
coefficients β (ai, bi) vary, depending on the location.

We employed the GWR4 software to build the GWLR model and chose the adaptive bi-
square as the kernel function type, and the golden section search as the bandwidth selection
method. The “golden section search” option can be used to automatically determine the
best bandwidth size. Generally, the fixed kernel specifies an equal distance threshold for
each regression point, while the adaptive kernel specifies the number of neighbors to be
considered for each regression point. Therefore, the fixed kernels approach is suitable
when the points are regularly distributed in space, and the adaptive approach is more
appropriate for spatially clustered points [72]. According to the spatial distribution pattern
of our fire occurrence data, the adaptive approach was selected to build the model. The
Akaike information criterion (AIC) approach was used to assess the goodness-of-fit for
each model. GWLR shares similarity with its global counterpart, producing the regression
coefficients and significance tests. It is worth noting that rather than a single parameter, a
collection of parameters for each sampling point can be obtained [34].

• Random forest (RF)

In the RF model, the parameter of mtry represents the number of variables used to
split the tree at every node, while the ntree parameter represents the number of decision
trees, and the nodesize parameter represents the minimum number of nodes in a decision
tree [73]. According to our data, we performed the parameter tuning, and mtry defaulted to
“2”, while Nodesize defaulted to “1” for our classification model. The ntree was determined
by multiple testing for how many decision trees should be obtained when the error in the
model is relatively stable. After multiple tests, the parameter of ntree was set as 500.

To understand the importance of each variable in the model, this study utilized IncN-
odePurity, which provides a means to assess the contribution of each predictor variable
to the modelling performance. The value is just relative and can be calculated using the
decrease in tree-node impurities attributable to each predictor variable [73]. A larger IncN-
odePurity indicates a stronger importance of these predictor variables [74]. Furthermore,
the RF model has the limitation that it is unable to calculate the specific regression coeffi-
cient and confidence interval. We utilized the randomForest package in R studio4.0.3 to
build the random forest model.

2.3.4. Model Evaluation Methods

To evaluate the goodness of fit for the three models we chose forr statistical measures,
we selected the Akaike information criterion (AIC), the area under curve (AUC), the mean
absolute error (MAE), the root mean square error (RMSE), and R2. Based on the concept
of entropy, AIC can measure the complexity of the estimated model and the goodness
of fit for the model-data. AIC is an index obtained in the process of model fitting. The
characteristic receiver-operating curve (ROC) was obtained by plotting sensitivity versus
specificity for various probability thresholds. The area under the curve (AUC) is often
also used to evaluate model performance [75]. MAE, the average value of absolute error,
can better reflect the actual situation of the predicted value error. MAE is defined in the
following expression:

MAE =
1
n ∑n

i=1|ŷi − yi| (2)
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RMSE is adopted to measure the deviation between the observed value and the true
value. It is more sensitive to outliers than MAE.

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (3)

R2 reflects the fitting degree of the regression line to the observed value, and is
calculated by the following equation:

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(ŷi − yi)

2 (4)

where n is the number of samples, ŷi is the fire-occurrence probability predicted by the
model, yi is a binary value representing whether a fire exists, and yi is the arithmetic mean
of binary values.

3. Results
3.1. Temporal and Spatial Distribution Patterns of Fire Occurrences

From a spatial perspective, the distribution of fire points demonstrated a decreasing
trend from east to west. The distribution was more balanced from the north-south di-
rection, except for the northernmost area, where no fire points existed due to the lack of
grassland (Figure 4).
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plane; the blue points are the projection of the observations onto the YZ plane).

From a temporal perspective, there were two peaks of fire occurrences during a year.
The first one appeared in the first half of April, and the second, in the first half of October
(Figure 5). The number of fires during the first fire-prevention period was significantly
higher than during the second fire-prevention period. According to the Regulations on Fire
Prevention of Forests and Grasslands in the Inner Mongolia Autonomous Region, there
are two fire prevention periods, 15 March–15 June, and 15 September–15 November. We
found that the periods when the number of fires was greater than 20 coincided with the
fire-prevention periods regulated in the region.
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3.2. Model Fitting

Based on the GLR model, only 9 variables had significant coefficients (p < 0.05) among
the 16 explanatory variables: namely, Temp, Humi_dy, Wind_dy, D_river, D_resp, D_rail,
GVMI, NDVI, and Slope were regarded as grassland-fire drivers. Among the drivers, only
NDVI and Wind_dy were positively correlated with fire occurrences, and the rest of drivers
were negatively correlated (Table 3).

Table 3. Parameter estimation of explanatory variables by the GLR model.

Variable Abbreviation Coefficient Standard Error p-Value

Intercept Intercept 38.543 10.218 <0.0001
Mean annual temperature Temp −0.138 0.036 <0.0001
Distance to nearest river D_river −0.009 <0.0001 <0.0001

Distance to nearest settlement D_resp −0.142 <0.0001 <0.0001
Distance to nearest railway D_rail −0.004 <0.0001 0.024

Global vegetation moisture index GVMI −7.523 1.650 <0.0001
Normalized Difference

Vegetation Index NDVI 2.599 0.560 <0.0001

Daily average specific humidity Humi_dy −857.033 81.818 <0.0001
Daily average wind speed Wind_dy 0.217 0.050 <0.0001

Slope Slope −0.108 0.024 <0.0001

The drivers selected by the GWLR model were consistent with the GLR model. The
GWLR model spatialized the coefficient of each of the selected explanatory variables
(Figure 6), which demonstrated large spatial variations (Table 4).

Table 4. Coefficient statistics of explanatory variables selected by the GWLR model.

Variable Mean Min 1Q Median 3Q Max

Intercept 30.55973 8.352316 14.07005 28.78026 40.13325 109.0789
Humi_dy −711.947 −1407.05 −1115.85 −1037.32 −26.1174 262.0729
Wind_dy 0.204153 −0.37813 −0.21256 0.123083 0.534187 1.327401

NDVI 1.294488 −1.53458 0.749144 1.351105 1.899675 4.123084
GVMI −7.48481 −9.86252 −8.10707 −7.24877 −6.92158 −3.26509
Temp −0.10685 −0.38292 −0.14078 −0.09896 −0.0535 −0.02163
Slope −0.06249 −0.10811 −0.0675 −0.0622 −0.05487 −0.03551
D_rail −0.00752 −0.0189 −0.01085 −0.00803 −0.00173 −0.00097
D_resp −0.11175 −0.25096 −0.14876 −0.12328 −0.05028 0.016634
D_river −0.00949 −0.02133 −0.0166 −0.00881 −0.00415 0.002383
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Figure 6. The spatial distribution of significant areas of the estimated coefficient for each variable
selected by GWLR model. These maps were drawn according to the t-value for each pixel. The pixels
with the corresponding t-value between −1.96 and 1.96 (insignificant area) are not displayed on
the graph. Those pixels with the t-value greater than 1.96 or less than −1.96 (significant area) are
displayed on the graph. The negative coefficient values are depicted in cool colors, and the positive
coefficient values are depicted in warm colors. (a) is the spatial distribution of significant areas of
the estimated coefficient for Humi_dy, (b) is for Wind_dy, (c) is for Temp, (d) is for GVMI, (e) is for
NDVI, (f) is for Slope, (g) is for D_resp, (h) is for D_river and (i) is for D_rail.

Among the meteorological factors, the significant area of Humi_dy was distributed in
the eastern and central parts of the study area, accounting for more than 64.3% of the total.
In the positively significant area of Wind_dy located in the northernmost and westernmost
area, including Hulunbuir and almost the entirety of Alxa, the negatively significant areas
are concentrated in the middle. Temp was significant in some parts of the east, showing
a negative correlation. Among the vegetation factors, GVMI was more significant in the
eastern region, with small areas distributed in the central and western regions. NDVI
was positively significant correlated with fire occurrence in a small area in the west. As
for the topographic factors, only Slope was negatively correlated with a significant area,
accounting for only 15% of the study area scattered in the eastern and central regions.
Among anthropic factors, the significant area of D_resp was found in Hulunbuir and
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the western region, with a greater impact on fire occurrences in the west. D_river was
significantly negatively correlated in the west of Inner Mongolia and west of Hulunbuir.
The significant area of D_rail was located in southern Inner Mongolia.

All the explanatory variables were put into the RF model. To understand the impor-
tance of each variable in the model, the IncNodePurity was employed. The ranking of
variables is shown in Figure 7. In general, the importance of each explanatory variable was
quite different, with the two daily-scale meteorological variables, Humi_dy and Temp_dy,
much greater than other variables. Five meteorological variables stood in the top six in
importance, indicating that meteorological conditions were the main cause of the grassland-
fire occurrences. The importance of the NDVI variable reflecting the load of fuels was
relatively high, as expected. Among the three topographical variables, Slope and Aspect
were of lower importance, indicating that topographical conditions have less impact on the
occurrence of grassland fires in Inner Mongolia.
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3.3. Model Validation

Table 5 lists several statistical measures to evaluate the performance of the GLR, GWLR
and RF models. The RF model as a machine-learning algorithm cannot obtain the AIC
value, so only the GLR and GWLR models were compared according to AIC. The AIC
value of the GWLR model was smaller than that of the GLR model. This indicated that
the GWLR model had a higher goodness of fit. The AUC value of GLR, GWLR and RF
model was 0.841, 0.909 and 0.944; the MAE value was 0.148, 0.111 and 0.053; the RMSE
value was 0.390, 0.338, and 0.231; R2 was 0.363, 0.537, and 0.779, respectively. The higher R2

and AUC values mean higher prediction accuracy, while on the contrary, the lower MAE
and RMSE values represent a superior fit of the models. Therefore, the RF model has the
highest scores in the AUC and R2 and the lowest with MAE and RMSE. In comparison, the
RF model performed better than both the GWLR and the GLR model and had the ability to
predict grassland-fire occurrences in the region more accurately.

Table 5. Comparisons of the quality of fit of the three models by test dataset.

Model
Akaike

Information
Criterion (AIC)

Area under
Curve (AUC)

Mean Absolute
Error (MAE)

Root Mean
Square Error

(RMSE)
R2

GLR 1018.496 0.841 0.148 0.390 0.363
GWLR 807.330 0.909 0.111 0.338 0.537

RF - 0.944 0.053 0.231 0.779
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3.4. Model Application

According to the RF model, daily meteorological conditions were of higher importance
than other explanatory variables. The vast territory of Inner Mongolia and its geographical
features lead to great spatial variations in the meteorological conditions, resulting in
greater differences in the probability of fire occurrence in the eastern and western regions.
Therefore, we randomly chose two points, one in the eastern and the other in the western
area. Point 1 was located in the Hulunbuir grassland in northeastern Inner Mongolia, and
Point 2 was located in the Ordos Plateau. Both points were areas with a high density of
historical fire points. Based on the 19-year fire records obtained, we found that 2014 had
the highest number of grassland fires, with a total of 111 occurrences. For this reason,
2014 served as an example. We used the three models to estimate the probability of fire
occurrence with daily meteorological variables in 2014 and other explanatory variables.

Figure 8a shows the estimated probability of fire occurrence according to the three
models at Point 1, and Figure 7c, at Point 2 on each day in 2014. We found that the
estimated probability of fire occurrence with GLR and GWLR was higher than with RF at
both locations. During periods with no fire prevention, the probability according to GLR
and GWLR was also much higher than with RF, indicating that the RF model reasonably
assesses fire prevention periods. We also found that the probability of fire occurrence
estimated by each model at Point 1 was higher than at Point 2, which may be due to higher
fuel loads at the former.
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the daily fire-occurrence probability of two typical points in 2014. The gray area represents the
fire-prevention periods, and the gray lines indicate the value of 0.5; (b) is the kernel density level of
historical grassland-fire occurrences.

4. Discussion
4.1. Temporal and Spatial Distribution Patterns of Historical Grassland Fires

In space, fires were historically densely distributed in eastern and central Inner Mon-
golia because these are areas of typical grassland and meadow grassland (Figure 1b) that
provide sufficient fuel. Furthermore, these areas have dense traffic routes, and human ac-
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tivities are more intense than in western Inner Mongolia. In the northern part of Hulunbuir,
the main vegetation type is boreal deciduous coniferous forest (Figure 1c), so grassland
fires rarely occur. Historically, fires are concentrated in spring and autumn (Figure 5) and
thus closely related to local climate characteristics. The area is dominated by a temperate
continental monsoon climate [76]. In spring, the temperature rises rapidly, the wind speed
is high, and the air humidity is low, leading to frequent fires. In autumn and winter, the air
is dry, increasing the number of fires. However, because of the high latitude, snow-covered
dead fuel in winter reduces the probability of fire occurrence [77].

4.2. Model Validation

According to the value of R2 and AIC, the GWLR model fits better than GLR. The latter
predicts fire occurrence in view of the different roles of variables across various spatial
locations and thus produces lower values of MAE and RMSE and higher values of AUC
than GLR (Table 5). This demonstrates that the GWLR model is more suitable to this study
area than GLR because Inner Mongolia has a large area with strong heterogeneity.

Compared with the GWLR and GLR models, the RF model shows the best fitting
and lowest values of MAE and RMSE. Although the RF model does not consider spatially
non-stationary aspects, it can improve the prediction accuracy by gathering a large number
of classification trees to find the relationship among variables [38]. In this study, the
explanatory variables of fire occurrence were multiple, and the RF model precisely captured
their relationship.

4.3. Model Comparison in Predictive Ability

In the last decades, model comparisons have evoked widespread attention to choosing
the most suitable prediction models [31,37,39,40]. In our study, the GLR model’s goodness
of fit was not competitive with that of the other two models (GWLR and RF) (Table 4). Our
results are consistent with previous fire-prediction studies [26,39,40], demonstrating that
GWLR and RF perform better than GLR in predicting fire occurrences. Moreover, the GLR
model improperly predicted a high probability of fire occurrences during winter at both
locations (Figure 8a,c). The temporal distribution of historical fire occurrences showed only
that fewer fires occurred in winter (Figure 5), suggesting that the prediction ability of the
GLR model was not ideal in our study area. This may have been caused by other crucial
environmental variables we did not consider, such as water deficit [78], drought [79] etc.,
demonstrating a need to explore further in future studies.

The GWLR model is an improvement over GLR by adding a spatial weight matrix to
reduce model residuals [80], and therefore the goodness of fit was better than with GLR
(Table 5). However, the GWLR model also erroneously predicted a high probability of
fire occurrences during winter and summer at both locations (Figure 7a,c), contrary to the
historical fire statistics (Figure 5). We speculated that the GWLR model focuses excessively
on more significant meteorological variables and ignores the effects of other variables on
fire occurrence.

The RF model had the best fit among the three models (Table 4). Moreover, the
predictions for the two locations generally captured the seasonality of fire probability
in our study area. Seasonal characteristics here were higher during spring and autumn
and lower in winter and summer [81]. The predictions were also consistent with the fire
prevention periods (Figure 8). Therefore, the RF model can be used to predict grassland-fire
occurrences in our study area.

4.4. Factors Affecting Grassland-Fire Occurrences

Many factors may impact fire occurrences, including vegetation, meteorological/climatic
factors, topography, and human activities [41,82,83]. In our study, meteorological/climatic
factors (daily average specific humidity, daily average wind speed and mean annual
temperature) showed a higher importance as revealed by the GWLR models, in line with
previous studies [63,84]. Daily average specific humidity had a negative relationship to fire
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occurrences (Tables 2 and 3) because, with the increase of air humidity, the fuel moisture
content also increases, making the fuel hard to ignite [85]. However, the importance of daily
average specific humidity had great spatial variations. More importance was observed
in the eastern region (Figure 6a), which is near the sea, so the spatial difference of daily
average humidity was more obvious.

Generally speaking, the higher the wind speed, the more water vapor produced by
plant transpiration is taken away, and the more oxygen is brought to the combustion of
fuels [86], thereby increasing the probability of fire occurrences. Therefore, in this study, the
daily average wind speed was positively related to fire occurrences (Table 2). However, this
positive correlation was not spatially uniform, with some parts of the central area showing
a negative correlation (Figure 6b). We speculated that this may be due to the characteristics
of a temperate continental monsoon climate. When the wind blows from the sea to the
continent, it brings a humid airflow, thereby reducing the probability of fire occurrences.

Generally speaking, temperature correlated positively with fire occurrences [87]. On
the contrary, a negative relation emerged in our study (Tables 2 and 3) because of the
climate characteristics of rain and heat synchronization. When the moisture is high, fuel
does not ignite easily in hot weather. Furthermore, this negative relation was also spatially
non-stationary. In some parts of eastern Inner Mongolia, a significant difference is observed
(Figure 6c) due to the greater differences of natural geographic features and cultural
landscapes in our study area [26,79].

Concerning anthropogenic factors, the three significant human-related variables were,
as expected, all negatively correlated with fire occurrence (Tables 2 and 3). Our results were
consistent with previous research [28]. Historical fire records showed that the majority of
fires were human originated. Human activities are more common near roads, settlements
and rivers, resulting in more fire occurrences [63]. Therefore, human factors revealed a
negative relation with fire occurrences. These relations were also spatially heterogeneous
(Figure 6g–i) due to the variations in the spatial distribution of roads, rivers and settlements.

As for vegetation conditions, fuel moisture and fuel loads have crucial impacts on
fire occurrences [22,69,88]. We found that the global vegetation moisture index (GVMI)
was negatively correlated with fire occurrence (Tables 2 and 3) because with the increase of
moisture, fuel is hard to ignite [26]. In addition, significant coefficients of GVMI were found
in the eastern region (Figure 5d). This could be explained by the climate constraints
hypothesis [89] as the fuel in the eastern region is abundant, and climate conditions
determine fire occurrences. Our results also showed that NDVI was positively correlated
with fire occurrences (Tables 2 and 3), for sufficient fuel is one of the burning conditions [84].
Spatially, however, only a small part of western Inner Mongolia had significant NDVI
coefficients (Figure 6e), which may support the fuel constraints hypothesis [89]. Vegetation
in western Inner Mongolia is sparse, but if coverage increases, this would significantly
increase the fire-occurrence probability.

Finally, topographic factors also affect fire occurrence patterns [88,90]. In this study,
we found that the slope and fire occurrence showed a negative correlation in some parts
(Tables 2 and 3). Our results were consistent with the results obtained by Zhang [69]. We
believe this emerged because the grasslands of Inner Mongolia are mainly distributed on a
flat plateau; thus more grassland fires also occur on the flat ground, where there are limited
slopes, resulting in a negative correlation between grassland-fire occurrences and slope.

4.5. Implications for Grassland Fire Management

From a spatial perspective, our results also showed spatial non-stationarities for
various variables in predicting fire occurrences. For example, the influence of Humi_dy,
Wind_dy, GVMI and D_resp on fire occurrences was significant in eastern Inner Mongolia,
and NDVI, D_resp and D_river were important in western Inner Mongolia (Figure 5).
The spatial non-stationarity of variables may have implications for accurately mapping
fire risk zones for fire management based on different environmental factors for various
regions, instead of traditional mapping methods which regard a variable as having equal



Remote Sens. 2023, 15, 2999 17 of 21

importance across a studied area. Furthermore, our results showed that the RF model
performed best in our study area; consequently, this model should be used to map fire-
occurrence probability. The spatial pattern of the probability of fire occurrence is of crucial
importance in fire management [91]. This method could be applied to allocate priority
areas for grassland fuel treatments [92]. From a temporal perspective, the fire-prevention
period in spring and autumn should be adjusted according to local conditions. For example,
Point 1, located on Hulunbuir region, has a high latitude and insufficient heat. According
to the RF model prediction, the period of high fire probability in autumn starts and ends
earlier than currently believed, and the period of high fire probability in spring is shorter
(Figure 7a). Therefore, the fire prevention period should be adjusted accordingly.

Strict measures should be taken to prevent fires from occurring, such as forbidding any
uses of wildland fire during fire-prevention periods and adding remote sensing data about
grassland fuels into the original fire-monitor systems based on meteorological factors to
improve prediction accuracy. In addition, with the increasing intensity of human activities,
a large area of grassland is occupied by cultivated land, and increasingly burning straw in
agriculture poses a fire danger. With global warming, the drivers of grassland fires become
more complex. Grassland management strategies must pay more attention to changes in
these drivers and their relationship with grassland fires to ensure effective fire prevention.

5. Conclusions

This study analyzed the temporal and spatial characteristics and driving factors of
grassland fires in the Inner Mongolia Autonomous Region from 2000 to 2018, comparing
the prediction accuracy of global logistic regression, geographically weighted logistic
regression, and random forest models. The spatial distribution of historical fires in Inner
Mongolian grasslands was higher in the east than in central and western areas, and the
high-incidence fire season was generally the same as the fire-prevention period regulated
for Inner Mongolian forests and grasslands. The quality fit of the random forest model was
the highest, and geographically weighted logistic regression models were also significant
to some extent for reference. The influence of nine drivers selected by a geographically
weighted logistic-regression model on grassland fires was spatially unbalanced. The
random forest and geographically weighted logistic-regression models both demonstrated
that meteorological factors and NDVI were of great importance to grassland fires. Inner
Mongolia has a vast territory, and different areas present different sensitivities to different
drivers. Areas with different hydrothermal conditions had different fire-prevention periods;
thus, grassland fire management strategies based on local conditions should be advocated.
It is suggested to improve the existing methods of meteorological fire monitoring by adding
remote sensing data of grassland fuels.

Author Contributions: Conceptualization, C.C. and Y.C.; methodology, C.C. and Y.C.; software, C.C.
and Z.X.; validation, C.C.; formal analysis, C.C. and X.P.; investigation, M.G.; resources, H.Z.; data
curation, C.C. and X.P.; writing—original draft preparation, C.C.; writing—review and editing, C.C.
and Y.C.; visualization, C.C.; supervision, Y.H.; project administration, Y.C.; funding acquisition, Y.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China Strategic International Cooperation in Science and Technology Innovation Program
(2018YFE0207800), the National Natural Science Foundation of China (grant no. 31971483), and
the National Key R&D Program of China (Grant number: 2022YFC3003101).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 2999 18 of 21

References
1. Steiner, J.L.; Wetter, J.; Robertson, S.; Teet, S.; Wang, J.; Wu, X.; Zhou, Y.; Brown, D.; Xiao, X. Grassland Wildfires in the Southern

Great Plains: Monitoring Ecological Impacts and Recovery. Remote Sens. 2020, 12, 619. [CrossRef]
2. Jiang, L.; Yu, S.; Wulantuya; Duwala. Summary of Grassland Fire Research. Acta Agrestia Sin. 2018, 26, 791–803.
3. Thomson, D.M.; Bonapart, A.D.; King, R.A.; Schultz, E.L.; Startin, C.R.; Ward, D. Long-term monitoring of a highly invaded

annual grassland community through drought, before and after an unintentional fire. J. Veg. Sci. 2020, 31, 307–318. [CrossRef]
4. Bond, W.J.; Keeley, J.E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005,

20, 387–394. [CrossRef] [PubMed]
5. Lamont, B.B.; He, T. Fire-Proneness as a Prerequisite for the Evolution of Fire-Adapted Traits. Trends Plant Sci. 2017, 22, 278–288.

[CrossRef]
6. Chandra, K.K.; Bhardwaj, A.K. Incidence of forest fire in India and its effect on terrestrial ecosystem dynamics, nutrient and

microbial status of soil. Int. J. Agric. For. 2015, 5, 69–78.
7. Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced

variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [CrossRef]
8. Mohajane, M.; Costache, R.; Karimi, F.; Pham, Q.B.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote

sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021, 129, 107869. [CrossRef]
9. Yu, T.; Zhuang, Q. Quantifying global N2O emissions from natural ecosystem soils using trait-based biogeochemistry models.

Biogeosciences 2019, 16, 207–222. [CrossRef]
10. Podur, J.; Martell, D.L.; Csillag, F. Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecol. Model. 2003,

164, 1–20. [CrossRef]
11. Adámek, M.; Jankovská, Z.; Hadincová, V.; Kula, E.; Wild, J. Drivers of forest fire occurrence in the cultural landscape of Central

Europe. Landsc. Ecol. 2018, 33, 2031–2045. [CrossRef]
12. Zheng, W.; Shao, J.; Wang, M.; Liu, C. Dynamic monitoring and analysis of grassland fire based on multi-source satellite remote

sensing data. J. Nat. Disasters 2013, 22, 54–61.
13. Sharma, S.; Dhakal, K. Boots on the Ground and Eyes in the Sky: A Perspective on Estimating Fire Danger from Soil Moisture

Content. Fire 2021, 4, 45. [CrossRef]
14. Rakhmatulina, E.; Stephens, S.; Thompson, S. Soil moisture influences on Sierra Nevada dead fuel moisture content and fire risks.

For. Ecol. Manag. 2021, 496, 119379. [CrossRef]
15. Vinodkumar, V.; Dharssi, I.; Yebra, M.; Fox-Hughes, P. Continental-scale prediction of live fuel moisture content using soil

moisture information. Agric. For. Meteorol. 2021, 307, 108503. [CrossRef]
16. Van Linn, P.F.; Nussear, K.E.; Esque, T.C.; DeFalco, L.A.; Inman, R.D.; Abella, S.R. Estimating wildfire risk on a Mojave Desert

landscape using remote sensing and field sampling. Int. J. Wildland Fire 2013, 22, 770–779. [CrossRef]
17. Bian, H.F.; Zhang, H.Y.; Zhou, D.W.; Xu, J.W.; Zhang, Z.X. Integrating models to evaluate and map grassland fire risk zones in

Hulunbuir of Inner Mongolia, China. Fire Saf. J. 2013, 61, 207–216. [CrossRef]
18. Verbesselt, J.; Somers, B.; van Aardt, J.; Jonckheere, I.; Coppin, P. Monitoring herbaceous biomass and water content with SPOT

VEGETATION time-series to improve fire risk assessment in savanna ecosystems. Remote Sens. Environ. 2006, 101, 399–414.
[CrossRef]

19. Alexandre, P.M.; Mockrin, M.H.; Stewart, S.I.; Hammer, R.B.; Radeloff, V.C. Rebuilding and new housing development after
wildfire. Int. J. Wildland Fire 2015, 24, 138–149. [CrossRef]

20. Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediter-
ranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [CrossRef]

21. Mitchener, L.J.; Parker, A.J. Climate, lightning, and wildfire in the national forests of the southeastern United States: 1989–1998.
Phys. Geogr. 2005, 26, 147–162. [CrossRef]

22. Wu, Z.W.; He, H.S.; Keane, R.E.; Zhu, Z.; Wang, Y.; Shan, Y. Current and future patterns of forest fire occurrence in China. Int. J.
Wildland Fire 2020, 29, 104–119. [CrossRef]

23. Zapata-Rios, X.; Lopez-Fabara, C.; Navarrete, A.; Torres-Paguay, S.; Flores, M. Spatiotemporal patterns of burned areas, fire
drivers, and fire probability across the equatorial Andes. J. Mt. Sci. 2021, 18, 952–972. [CrossRef]

24. Pavlek, K.; Biscevic, F.; Furcic, P.; Grdan, A.; Gugic, V.; Malesic, N.; Moharic, P.; Vragovic, V.; Fuerst-Bjelis, B.; Cvitanovic, M.
Spatial patterns and drivers of fire occurrence in a Mediterranean environment: A case study of southern Croatia. Geogr. Tidsskr.
2017, 117, 22–35. [CrossRef]

25. Lafon, C.W.; Grissino-Mayer, H.D. Spatial patterns of fire occurrence in the central Appalachian mountains and implications for
wildland fire management. Phys. Geogr. 2007, 28, 1–20. [CrossRef]

26. Su, Z.; Zheng, L.; Luo, S.; Tigabu, M.; Guo, F. Modeling wildfire drivers in Chinese tropical forest ecosystems using global logistic
regression and geographically weighted logistic regression. Nat. Hazards 2021, 108, 1317–1345. [CrossRef]

27. Syphard, A.D.; Radeloff, V.C.; Keeley, J.E.; Hawbaker, T.J.; Clayton, M.K.; Stewart, S.I.; Hammer, R.B. Human influence on
California fire regimes. Ecol. Appl. 2007, 17, 1388–1402. [CrossRef]

28. Liu, Z.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under
climate change in a boreal forest of Northeast China. Glob. Chang. Biol. 2012, 18, 2041–2056. [CrossRef]

https://doi.org/10.3390/rs12040619
https://doi.org/10.1111/jvs.12833
https://doi.org/10.1016/j.tree.2005.04.025
https://www.ncbi.nlm.nih.gov/pubmed/16701401
https://doi.org/10.1016/j.tplants.2016.11.004
https://doi.org/10.1038/ncomms8537
https://doi.org/10.1016/j.ecolind.2021.107869
https://doi.org/10.5194/bg-16-207-2019
https://doi.org/10.1016/S0304-3800(02)00386-1
https://doi.org/10.1007/s10980-018-0712-2
https://doi.org/10.3390/fire4030045
https://doi.org/10.1016/j.foreco.2021.119379
https://doi.org/10.1016/j.agrformet.2021.108503
https://doi.org/10.1071/WF12158
https://doi.org/10.1016/j.firesaf.2013.09.004
https://doi.org/10.1016/j.rse.2006.01.005
https://doi.org/10.1071/WF13197
https://doi.org/10.1016/j.foreco.2012.03.003
https://doi.org/10.2747/0272-3646.26.2.147
https://doi.org/10.1071/WF19039
https://doi.org/10.1007/s11629-020-6402-y
https://doi.org/10.1080/00167223.2016.1266272
https://doi.org/10.2747/0272-3646.28.1.1
https://doi.org/10.1007/s11069-021-04733-6
https://doi.org/10.1890/06-1128.1
https://doi.org/10.1111/j.1365-2486.2012.02649.x


Remote Sens. 2023, 15, 2999 19 of 21

29. Miranda, B.R.; Sturtevant, B.R.; Stewart, S.I.; Hammer, R.B. Spatial and temporal drivers of wildfire occurrence in the context of
rural development in northern Wisconsin, USA. Int. J. Wildland Fire 2012, 21, 141–154. [CrossRef]

30. Wu, Z.; He, H.S.; Yang, J.; Liu, Z.; Liang, Y. Relative effects of climatic and local factors on fire occurrence in boreal forest
landscapes of northeastern China. Sci. Total Environ. 2014, 493, 472–480. [CrossRef]

31. Phelps, N.; Woolford, D.G. Comparing calibrated statistical and machine learning methods for wildland fire occurrence prediction:
A case study of human-caused fires in Lac La Biche, Alberta, Canadac. Int. J. Wildland Fire 2021, 30, 850–870. [CrossRef]

32. Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [CrossRef]
33. Zhang, H.; Han, X.; Dai, S. Fire Occurrence Probability Mapping of Northeast China with Binary Logistic Regression Model. IEEE

J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 121–127. [CrossRef]
34. Fotheringham, A.S.; Brunsdon, C.; Charlton, M.E. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships;

John Wiley & Sons Ltd.: Chichester, UK, 2002.
35. Liang, H.; Wang, W.; Guo, F.; Lin, F.; Lin, Y. Comparing the application of logistic and geographically weighted logistic regression

models for Fujian forest fire forecasting. Acta Ecol. Sin. 2017, 37, 4128–4141.
36. Rodrigues, M.; de la Riva, J. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ.

Model. Softw. 2014, 57, 192–201. [CrossRef]
37. De Vasconcelos, M.J.P.; Silva, S.; Tome, M.; Alvim, M.; Pereira, J. Spatial prediction of fire ignition probabilities: Comparing

logistic regression and neural networks. Photogramm. Eng. Remote Sens. 2001, 67, 73–81.
38. Gao, C.; Lin, H.-L.; Hu, H.-Q.; Song, H. A review of models of forest fire occurrence prediction in China. Ying Yong Sheng Tai Xue

Bao = J. Appl. Ecol. 2020, 31, 3227–3240. [CrossRef]
39. Guo, F.; Wang, G.; Su, Z.; Liang, H.; Wang, W.; Lin, F.; Liu, A. What drives forest fire in Fujian, China? Evidence from logistic

regression and Random Forests. Int. J. Wildland Fire 2016, 25, 505–519. [CrossRef]
40. Phelps, N.; Woolford, D.G. Guidelines for effective evaluation and comparison of wildland fire occurrence prediction models. Int.

J. Wildland Fire 2021, 30, 225–240. [CrossRef]
41. Parajuli, A.; Gautam, A.P.; Sharma, S.P.; Bhujel, K.B.; Sharma, G.; Thapa, P.B.; Bist, B.S.; Poudel, S. Forest fire risk mapping using

GIS and remote sensing in two major landscapes of Nepal. Geomat. Nat. Hazards Risk 2020, 11, 2569–2586. [CrossRef]
42. Mallinis, G.; Petrila, M.; Mitsopoulos, I.; Lorent, A.; Neagu, S.; Apostol, B.; Gancz, V.; Popa, I.; Goldammer, J.G. Geospatial

Patterns and Drivers of Forest Fire Occurrence in Romania. Appl. Spat. Anal. Policy 2019, 12, 773–795. [CrossRef]
43. Arnan, X.; Quevedo, L.; Rodrigo, A. Forest fire occurrence increases the distribution of a scarce forest type in the Mediterranean

Basin. Acta Oecol. 2013, 46, 39–47. [CrossRef]
44. Matin, M.A.; Chitale, V.S.; Murthy, M.S.R.; Uddin, K.; Bajracharya, B.; Pradhan, S. Understanding forest fire patterns and risk

in Nepal using remote sensing, geographic information system and historical fire data. Int. J. Wildland Fire 2017, 26, 276–286.
[CrossRef]

45. Renard, Q.; Pélissier, R.; Ramesh, B.R.; Kodandapani, N. Environmental susceptibility model for predicting forest fire occurrence
in the Western Ghats of India. Int. J. Wildland Fire 2012, 21, 368–379. [CrossRef]

46. Wotton, B.M.; Nock, C.A.; Flannigan, M.D. Forest fire occurrence and climate change in Canada. Int. J. Wildland Fire 2010,
19, 253–271. [CrossRef]

47. Muro, J.; Linstädter, A.; Magdon, P.; Wöllauer, S.; Männer, F.A.; Schwarz, L.-M.; Ghazaryan, G.; Schultz, J.; Malenovský, Z.;
Dubovyk, O. Predicting plant biomass and species richness in temperate grasslands across regions, time, and land management
with remote sensing and deep learning. Remote Sens. Environ. 2022, 282, 113262. [CrossRef]

48. Liu, M.; Dries, L.; Heijman, W.; Huang, J.; Zhu, X.; Hu, Y.; Chen, H. The Impact of Ecological Construction Programs on Grassland
Conservation in Inner Mongolia, China. Land Degrad. Dev. 2018, 29, 326–336. [CrossRef]

49. Le Page, Y.; Pereira, J.M.C.; Trigo, R.; da Camara, C.; Oom, D.; Mota, B. Global fire activity patterns (1996-2006) and climatic
influence: An analysis using the World Fire Atlas. Atmos. Chem. Phys. 2008, 8, 1911–1924. [CrossRef]

50. Jia, Y.; Cui, X.; Liu, Y.; Liu, Y.; Xu, C.; Li, T.; Ran, Q.; Wang, Y. Drought vulnerability assessment in Inner Mongolia. Acta Ecol. Sin.
2020, 40, 9070–9082.

51. Li, J.; Feng, C. Ecosystem service values and ecological improvement based on land use change: A case study of the Inner
Mongolia Autonomous Region. Acta Ecol. Sin. 2019, 39, 4741–4750.

52. Zhou, H.; Wang, Y.; Zhou, G. Temporal and spatial dynamics of grassland fires in Inner Mongolia. Acta Pratacult. Sin. 2016,
25, 16–25.

53. Wheeler, D.C. Diagnostic tools and a remedial method for collinearity in geographically weighted regression. Environ. Plan. A
Econ. Space 2007, 39, 2464–2481. [CrossRef]

54. Guo, F.; Su, Z.; Wang, G.; Sun, L.; Lin, F.; Liu, A. Wildfire ignition in the forests of southeast China: Identifying drivers and spatial
distribution to predict wildfire likelihood. Appl. Geogr. 2016, 66, 12–21. [CrossRef]

55. Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2009,
18, 921–931. [CrossRef]

56. Engelmark, O. EARLY postfire tree regeneration in a Picea-Vaccinium forest in northern Sweden. J. Veg. Sci. 1993, 4, 791–794.
[CrossRef]

57. Cardille, J.A.; Ventura, S.J.; Turner, M.G. Environmental and social factors influencing wildfires in the Upper Midwest, United
States. Ecol. Appl. 2001, 11, 111–127. [CrossRef]

https://doi.org/10.1071/WF10133
https://doi.org/10.1016/j.scitotenv.2014.06.011
https://doi.org/10.1071/WF20139
https://doi.org/10.1890/02-3114
https://doi.org/10.1109/JSTARS.2012.2236680
https://doi.org/10.1016/j.envsoft.2014.03.003
https://doi.org/10.13287/j.1001-9332.202009.014
https://doi.org/10.1071/WF15121
https://doi.org/10.1071/WF20134
https://doi.org/10.1080/19475705.2020.1853251
https://doi.org/10.1007/s12061-018-9269-3
https://doi.org/10.1016/j.actao.2012.10.005
https://doi.org/10.1071/WF16056
https://doi.org/10.1071/WF10109
https://doi.org/10.1071/WF09002
https://doi.org/10.1016/j.rse.2022.113262
https://doi.org/10.1002/ldr.2692
https://doi.org/10.5194/acp-8-1911-2008
https://doi.org/10.1068/a38325
https://doi.org/10.1016/j.apgeog.2015.11.014
https://doi.org/10.1071/WF07123
https://doi.org/10.2307/3235616
https://doi.org/10.1890/1051-0761(2001)011[0111:EASFIW]2.0.CO;2


Remote Sens. 2023, 15, 2999 20 of 21

58. Diaz-Delgado, R.; Lloret, F.; Pons, X. Spatial patterns of fire occurrence in Catalonia, NE, Spain. Landsc. Ecol. 2004, 19, 731–745.
[CrossRef]

59. Scholze, M.; Knorr, W.; Arnell, N.W.; Prentice, I.C. A climate-change risk analysis for world ecosystems. Proc. Natl. Acad. Sci. USA
2006, 103, 13116–13120. [CrossRef]

60. Shmuel, A.; Ziv, Y.; Heifetz, E. Machine-Learning-based evaluation of the time-lagged effect of meteorological factors on 10-hour
dead fuel moisture content. For. Ecol. Manag. 2022, 505, 119897. [CrossRef]

61. Yang, K. China Meteorological Forcing Data (1979–2018); National Tibetan Plateau/Third Pole Environment Data Center: Beijing,
China, 2018. [CrossRef]

62. Vilar, L.; Woolford, D.G.; Martell, D.L.; Pilar Martin, M. A model for predicting human-caused wildfire occurrence in the region
of Madrid, Spain. Int. J. Wildland Fire 2010, 19, 325–337. [CrossRef]

63. Chang, Y.; Zhu, Z.; Bu, R.; Chen, H.; Feng, Y.; Li, Y.; Hu, Y.; Wang, Z. Predicting fire occurrence patterns with logistic regression in
Heilongjiang Province, China. Landsc. Ecol. 2013, 28, 1989–2004. [CrossRef]

64. Purevdorj, T.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J.
Remote Sens. 1998, 19, 3519–3535. [CrossRef]

65. Jimenez-Munoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martinez, P. Comparison between Fractional Vegetation
Cover Retrievals from Vegetation Indices and Spectral Mixture Analysis: Case Study of PROBA/CHRIS Data over an Agricultural
Area. Sensors 2009, 9, 768–793. [CrossRef] [PubMed]

66. Ceccato, P.; Flasse, S.; Gregoire, J.M. Designing a spectral index to estimate vegetation water content from remote sensing
data —Part 2 Validation and applications. Remote Sens. Environ. 2002, 82, 198–207. [CrossRef]

67. Syphard, A.D.; Radeloff, V.C.; Keuler, N.S.; Taylor, R.S.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. Predicting spatial patterns of
fire on a southern California landscape. Int. J. Wildland Fire 2008, 17, 602–613. [CrossRef]

68. Conedera, M.; Torriani, D.; Neff, C.; Ricotta, C.; Bajocco, S.; Pezzatti, G.B. Using Monte Carlo simulations to estimate relative fire
ignition danger in a low-to-medium fire-prone region. For. Ecol. Manag. 2011, 261, 2179–2187. [CrossRef]

69. Zhang, H. Spatial analysis of fire-influencing factors in Henan Province. Prog. Geogr. 2014, 33, 958–968.
70. Xu, X. China Monthly Vegetation Index (NDVI) Spatial Distribution Dataset; Chinese Academy of Sciences: Beijing, China, 2018.

[CrossRef]
71. Mou, N.; Liu, W.; Wang, H.; Dai, H. ArcGIS 10 Tutorial: From Beginner to Master; Sinomap Press: Beijing, China, 2012. (In Chinese)
72. Nunes, A.N.; Lourenço, L.; Meira, A.C.C. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci. Total

Environ. 2016, 573, 1190–1202. [CrossRef]
73. Su, H.; Shen, W.; Wang, J.; Ali, A.; Li, M. Machine learning and geostatistical approaches for estimating aboveground biomass in

Chinese subtropical forests. For. Ecosyst. 2020, 7, 64. [CrossRef]
74. Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping Tree Canopy Cover and Aboveground

Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sens. 2015, 7, 10017–10041. [CrossRef]
75. Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure

in species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [CrossRef]
76. Xue, Z.C.; Kappas, M.; Wyss, D. Spatio-Temporal Grassland Development in Inner Mongolia after Implementation of the First

Comprehensive Nation-Wide Grassland Conservation Program. Land 2021, 10, 38. [CrossRef]
77. Zhao, F.; Shu, L.; Di, X.; Tian, X.; Wang, M. Changes in the Occurring Date of Forest Fires in the Inner Mongolia Daxing’anling

Forest Region Under Global Warming. Sci. Silvae Sin. 2009, 45, 166–172.
78. Syphard, A.D.; Sheehan, T.; Rustigian-Romsos, H.; Ferschweiler, K. Mapping future fire probability under climate change: Does

vegetation matter? PLoS ONE 2018, 13, e0201680. [CrossRef]
79. Rodrigues, M.; Jiménez-Ruano, A.; Peña-Angulo, D.; de la Riva, J. A comprehensive spatial-temporal analysis of driving factors

of human-caused wildfires in Spain using Geographically Weighted Logistic Regression. J. Environ. Manag. 2018, 225, 177–192.
[CrossRef]

80. Monjarás-Vega, N.A.; Briones-Herrera, C.I.; Vega-Nieva, D.J.; Calleros-Flores, E.; Corral-Rivas, J.J.; López-Serrano, P.M.; Pompa-
García, M.; Rodríguez-Trejo, D.A.; Carrillo-Parra, A.; González-Cabán, A.; et al. Predicting forest fire kernel density at multiple
scales with geographically weighted regression in Mexico. Sci. Total Environ. 2020, 718, 137313. [CrossRef]

81. Shabbir, A.H.; Zhang, J.; Groninger, J.W.; van Etten, E.J.B.; Sarkodie, S.A.; Lutz, J.A.; Valencia, C. Seasonal weather and climate
prediction over area burned in grasslands of northeast China. Sci. Rep. 2020, 10, 19961. [CrossRef]

82. Muller, M.M.; Vila-Vilardell, L.; Vacik, H. Towards an integrated forest fire danger assessment system for the European Alps. Ecol.
Inform. 2020, 60, 101151. [CrossRef]

83. Sousa, D.; Cruz-Jesus, F.; Sousa, A.; Painho, M. A multivariate approach to assess the structural determinants of large wildfires:
Evidence from a Mediterranean country. Int. J. Wildland Fire 2021, 30, 241. [CrossRef]

84. Guo, F.; Su, Z.; Wang, G.; Sun, L.; Tigabu, M.; Yang, X.; Hu, H. Understanding fire drivers and relative impacts in different
Chinese forest ecosystems. Sci. Total Environ. 2017, 605–606, 411–425. [CrossRef]

85. Masinda, M.M.; Li, F.; Liu, Q.; Sun, L.; Hu, T. Prediction model of moisture content of dead fine fuel in forest plantations on
Maoer Mountain, Northeast China. J. For. Res. 2021, 32, 2023–2035. [CrossRef]

86. Masinda, M.M.; Sun, L.; Wang, G.; Hu, T. Moisture content thresholds for ignition and rate of fire spread for various dead fuels in
northeast forest ecosystems of China. J. For. Res. 2020, 32, 1147–1155. [CrossRef]

https://doi.org/10.1007/s10980-005-0183-1
https://doi.org/10.1073/pnas.0601816103
https://doi.org/10.1016/j.foreco.2021.119897
https://doi.org/10.11888/AtmosphericPhysics.tpe.249369.file
https://doi.org/10.1071/WF09030
https://doi.org/10.1007/s10980-013-9935-4
https://doi.org/10.1080/014311698213795
https://doi.org/10.3390/s90200768
https://www.ncbi.nlm.nih.gov/pubmed/22399938
https://doi.org/10.1016/S0034-4257(02)00036-6
https://doi.org/10.1071/WF07087
https://doi.org/10.1016/j.foreco.2010.08.013
https://doi.org/10.12078/2018060602
https://doi.org/10.1016/j.scitotenv.2016.03.121
https://doi.org/10.1186/s40663-020-00276-7
https://doi.org/10.3390/rs70810017
https://doi.org/10.1111/j.1466-8238.2011.00683.x
https://doi.org/10.3390/land10010038
https://doi.org/10.1371/journal.pone.0201680
https://doi.org/10.1016/j.jenvman.2018.07.098
https://doi.org/10.1016/j.scitotenv.2020.137313
https://doi.org/10.1038/s41598-020-76191-2
https://doi.org/10.1016/j.ecoinf.2020.101151
https://doi.org/10.1071/WF20119
https://doi.org/10.1016/j.scitotenv.2017.06.219
https://doi.org/10.1007/s11676-020-01280-x
https://doi.org/10.1007/s11676-020-01162-2


Remote Sens. 2023, 15, 2999 21 of 21

87. Syphard, A.D.; Rustigian-Romsos, H.; Mann, M.; Conlisk, E.; Moritz, M.A.; Ackerly, D. The relative influence of climate and
housing development on current and projected future fire patterns and structure loss across three California landscapes. Glob.
Environ. Chang. 2019, 56, 41–55. [CrossRef]

88. Naderpour, M.; Rizeei, H.M.; Ramezani, F. Forest Fire Risk Prediction: A Spatial Deep Neural Network-Based Framework. Remote
Sens. 2021, 13, 2513. [CrossRef]

89. Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132.
[CrossRef]

90. Su, Z.W.; Tigabu, M.; Cao, Q.Q.; Wang, G.Y.; Hu, H.Q.; Guo, F.T. Comparative analysis of spatial variation in forest fire drivers
between boreal and subtropical ecosystems in China. For. Ecol. Manag. 2019, 454, 117669. [CrossRef]
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